Properties

Label 1160.4.a.g.1.8
Level $1160$
Weight $4$
Character 1160.1
Self dual yes
Analytic conductor $68.442$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1160,4,Mod(1,1160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1160.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1160 = 2^{3} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1160.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.4422156067\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 2 x^{10} - 179 x^{9} + 370 x^{8} + 10353 x^{7} - 19394 x^{6} - 210392 x^{5} + 267796 x^{4} + \cdots + 567808 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{12}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(2.81857\) of defining polynomial
Character \(\chi\) \(=\) 1160.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.81857 q^{3} -5.00000 q^{5} -26.0684 q^{7} -19.0556 q^{9} -23.3506 q^{11} +1.24079 q^{13} -14.0929 q^{15} +85.2728 q^{17} -111.018 q^{19} -73.4757 q^{21} +35.9888 q^{23} +25.0000 q^{25} -129.811 q^{27} -29.0000 q^{29} +58.5275 q^{31} -65.8153 q^{33} +130.342 q^{35} -226.421 q^{37} +3.49725 q^{39} +447.304 q^{41} -490.884 q^{43} +95.2782 q^{45} +223.382 q^{47} +336.562 q^{49} +240.347 q^{51} +137.117 q^{53} +116.753 q^{55} -312.912 q^{57} +352.244 q^{59} +133.867 q^{61} +496.751 q^{63} -6.20394 q^{65} +450.653 q^{67} +101.437 q^{69} +462.170 q^{71} -17.1569 q^{73} +70.4643 q^{75} +608.712 q^{77} +1221.19 q^{79} +148.620 q^{81} -481.608 q^{83} -426.364 q^{85} -81.7386 q^{87} -179.628 q^{89} -32.3454 q^{91} +164.964 q^{93} +555.089 q^{95} +956.201 q^{97} +444.960 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 2 q^{3} - 55 q^{5} + 56 q^{7} + 65 q^{9} - 8 q^{11} + 16 q^{13} - 10 q^{15} + 64 q^{17} + 160 q^{19} - 48 q^{21} + 140 q^{23} + 275 q^{25} - 136 q^{27} - 319 q^{29} - 144 q^{31} - 424 q^{33} - 280 q^{35}+ \cdots + 6884 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.81857 0.542435 0.271217 0.962518i \(-0.412574\pi\)
0.271217 + 0.962518i \(0.412574\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −26.0684 −1.40756 −0.703781 0.710417i \(-0.748506\pi\)
−0.703781 + 0.710417i \(0.748506\pi\)
\(8\) 0 0
\(9\) −19.0556 −0.705765
\(10\) 0 0
\(11\) −23.3506 −0.640042 −0.320021 0.947410i \(-0.603690\pi\)
−0.320021 + 0.947410i \(0.603690\pi\)
\(12\) 0 0
\(13\) 1.24079 0.0264717 0.0132359 0.999912i \(-0.495787\pi\)
0.0132359 + 0.999912i \(0.495787\pi\)
\(14\) 0 0
\(15\) −14.0929 −0.242584
\(16\) 0 0
\(17\) 85.2728 1.21657 0.608285 0.793719i \(-0.291858\pi\)
0.608285 + 0.793719i \(0.291858\pi\)
\(18\) 0 0
\(19\) −111.018 −1.34049 −0.670243 0.742142i \(-0.733810\pi\)
−0.670243 + 0.742142i \(0.733810\pi\)
\(20\) 0 0
\(21\) −73.4757 −0.763510
\(22\) 0 0
\(23\) 35.9888 0.326268 0.163134 0.986604i \(-0.447840\pi\)
0.163134 + 0.986604i \(0.447840\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −129.811 −0.925266
\(28\) 0 0
\(29\) −29.0000 −0.185695
\(30\) 0 0
\(31\) 58.5275 0.339092 0.169546 0.985522i \(-0.445770\pi\)
0.169546 + 0.985522i \(0.445770\pi\)
\(32\) 0 0
\(33\) −65.8153 −0.347181
\(34\) 0 0
\(35\) 130.342 0.629481
\(36\) 0 0
\(37\) −226.421 −1.00604 −0.503018 0.864276i \(-0.667777\pi\)
−0.503018 + 0.864276i \(0.667777\pi\)
\(38\) 0 0
\(39\) 3.49725 0.0143592
\(40\) 0 0
\(41\) 447.304 1.70383 0.851917 0.523677i \(-0.175440\pi\)
0.851917 + 0.523677i \(0.175440\pi\)
\(42\) 0 0
\(43\) −490.884 −1.74091 −0.870454 0.492249i \(-0.836175\pi\)
−0.870454 + 0.492249i \(0.836175\pi\)
\(44\) 0 0
\(45\) 95.2782 0.315628
\(46\) 0 0
\(47\) 223.382 0.693267 0.346634 0.938001i \(-0.387325\pi\)
0.346634 + 0.938001i \(0.387325\pi\)
\(48\) 0 0
\(49\) 336.562 0.981232
\(50\) 0 0
\(51\) 240.347 0.659909
\(52\) 0 0
\(53\) 137.117 0.355367 0.177683 0.984088i \(-0.443140\pi\)
0.177683 + 0.984088i \(0.443140\pi\)
\(54\) 0 0
\(55\) 116.753 0.286235
\(56\) 0 0
\(57\) −312.912 −0.727126
\(58\) 0 0
\(59\) 352.244 0.777260 0.388630 0.921394i \(-0.372949\pi\)
0.388630 + 0.921394i \(0.372949\pi\)
\(60\) 0 0
\(61\) 133.867 0.280982 0.140491 0.990082i \(-0.455132\pi\)
0.140491 + 0.990082i \(0.455132\pi\)
\(62\) 0 0
\(63\) 496.751 0.993408
\(64\) 0 0
\(65\) −6.20394 −0.0118385
\(66\) 0 0
\(67\) 450.653 0.821733 0.410866 0.911696i \(-0.365226\pi\)
0.410866 + 0.911696i \(0.365226\pi\)
\(68\) 0 0
\(69\) 101.437 0.176979
\(70\) 0 0
\(71\) 462.170 0.772528 0.386264 0.922388i \(-0.373765\pi\)
0.386264 + 0.922388i \(0.373765\pi\)
\(72\) 0 0
\(73\) −17.1569 −0.0275078 −0.0137539 0.999905i \(-0.504378\pi\)
−0.0137539 + 0.999905i \(0.504378\pi\)
\(74\) 0 0
\(75\) 70.4643 0.108487
\(76\) 0 0
\(77\) 608.712 0.900899
\(78\) 0 0
\(79\) 1221.19 1.73918 0.869590 0.493775i \(-0.164383\pi\)
0.869590 + 0.493775i \(0.164383\pi\)
\(80\) 0 0
\(81\) 148.620 0.203869
\(82\) 0 0
\(83\) −481.608 −0.636908 −0.318454 0.947938i \(-0.603164\pi\)
−0.318454 + 0.947938i \(0.603164\pi\)
\(84\) 0 0
\(85\) −426.364 −0.544066
\(86\) 0 0
\(87\) −81.7386 −0.100728
\(88\) 0 0
\(89\) −179.628 −0.213938 −0.106969 0.994262i \(-0.534115\pi\)
−0.106969 + 0.994262i \(0.534115\pi\)
\(90\) 0 0
\(91\) −32.3454 −0.0372606
\(92\) 0 0
\(93\) 164.964 0.183935
\(94\) 0 0
\(95\) 555.089 0.599483
\(96\) 0 0
\(97\) 956.201 1.00090 0.500451 0.865765i \(-0.333168\pi\)
0.500451 + 0.865765i \(0.333168\pi\)
\(98\) 0 0
\(99\) 444.960 0.451719
\(100\) 0 0
\(101\) 1798.35 1.77171 0.885854 0.463965i \(-0.153574\pi\)
0.885854 + 0.463965i \(0.153574\pi\)
\(102\) 0 0
\(103\) −1427.36 −1.36546 −0.682728 0.730673i \(-0.739207\pi\)
−0.682728 + 0.730673i \(0.739207\pi\)
\(104\) 0 0
\(105\) 367.379 0.341452
\(106\) 0 0
\(107\) 470.074 0.424708 0.212354 0.977193i \(-0.431887\pi\)
0.212354 + 0.977193i \(0.431887\pi\)
\(108\) 0 0
\(109\) −1965.70 −1.72734 −0.863668 0.504060i \(-0.831839\pi\)
−0.863668 + 0.504060i \(0.831839\pi\)
\(110\) 0 0
\(111\) −638.184 −0.545709
\(112\) 0 0
\(113\) 1183.13 0.984953 0.492477 0.870326i \(-0.336092\pi\)
0.492477 + 0.870326i \(0.336092\pi\)
\(114\) 0 0
\(115\) −179.944 −0.145912
\(116\) 0 0
\(117\) −23.6440 −0.0186828
\(118\) 0 0
\(119\) −2222.93 −1.71240
\(120\) 0 0
\(121\) −785.751 −0.590346
\(122\) 0 0
\(123\) 1260.76 0.924219
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 1059.72 0.740435 0.370218 0.928945i \(-0.379283\pi\)
0.370218 + 0.928945i \(0.379283\pi\)
\(128\) 0 0
\(129\) −1383.59 −0.944329
\(130\) 0 0
\(131\) −1533.41 −1.02271 −0.511354 0.859370i \(-0.670856\pi\)
−0.511354 + 0.859370i \(0.670856\pi\)
\(132\) 0 0
\(133\) 2894.06 1.88682
\(134\) 0 0
\(135\) 649.056 0.413791
\(136\) 0 0
\(137\) 15.4018 0.00960484 0.00480242 0.999988i \(-0.498471\pi\)
0.00480242 + 0.999988i \(0.498471\pi\)
\(138\) 0 0
\(139\) 2534.21 1.54640 0.773198 0.634165i \(-0.218656\pi\)
0.773198 + 0.634165i \(0.218656\pi\)
\(140\) 0 0
\(141\) 629.617 0.376052
\(142\) 0 0
\(143\) −28.9731 −0.0169430
\(144\) 0 0
\(145\) 145.000 0.0830455
\(146\) 0 0
\(147\) 948.626 0.532254
\(148\) 0 0
\(149\) −2113.08 −1.16181 −0.580907 0.813970i \(-0.697302\pi\)
−0.580907 + 0.813970i \(0.697302\pi\)
\(150\) 0 0
\(151\) −212.741 −0.114653 −0.0573265 0.998355i \(-0.518258\pi\)
−0.0573265 + 0.998355i \(0.518258\pi\)
\(152\) 0 0
\(153\) −1624.93 −0.858612
\(154\) 0 0
\(155\) −292.637 −0.151646
\(156\) 0 0
\(157\) 3239.00 1.64650 0.823251 0.567678i \(-0.192158\pi\)
0.823251 + 0.567678i \(0.192158\pi\)
\(158\) 0 0
\(159\) 386.473 0.192763
\(160\) 0 0
\(161\) −938.170 −0.459243
\(162\) 0 0
\(163\) −2007.15 −0.964493 −0.482247 0.876036i \(-0.660179\pi\)
−0.482247 + 0.876036i \(0.660179\pi\)
\(164\) 0 0
\(165\) 329.076 0.155264
\(166\) 0 0
\(167\) 3510.22 1.62652 0.813261 0.581899i \(-0.197690\pi\)
0.813261 + 0.581899i \(0.197690\pi\)
\(168\) 0 0
\(169\) −2195.46 −0.999299
\(170\) 0 0
\(171\) 2115.52 0.946067
\(172\) 0 0
\(173\) −1855.20 −0.815310 −0.407655 0.913136i \(-0.633653\pi\)
−0.407655 + 0.913136i \(0.633653\pi\)
\(174\) 0 0
\(175\) −651.710 −0.281512
\(176\) 0 0
\(177\) 992.826 0.421612
\(178\) 0 0
\(179\) −761.071 −0.317794 −0.158897 0.987295i \(-0.550794\pi\)
−0.158897 + 0.987295i \(0.550794\pi\)
\(180\) 0 0
\(181\) 3988.76 1.63802 0.819011 0.573778i \(-0.194523\pi\)
0.819011 + 0.573778i \(0.194523\pi\)
\(182\) 0 0
\(183\) 377.313 0.152414
\(184\) 0 0
\(185\) 1132.10 0.449913
\(186\) 0 0
\(187\) −1991.17 −0.778656
\(188\) 0 0
\(189\) 3383.97 1.30237
\(190\) 0 0
\(191\) 598.925 0.226894 0.113447 0.993544i \(-0.463811\pi\)
0.113447 + 0.993544i \(0.463811\pi\)
\(192\) 0 0
\(193\) −3120.67 −1.16389 −0.581945 0.813228i \(-0.697708\pi\)
−0.581945 + 0.813228i \(0.697708\pi\)
\(194\) 0 0
\(195\) −17.4862 −0.00642162
\(196\) 0 0
\(197\) 3767.68 1.36262 0.681309 0.731996i \(-0.261411\pi\)
0.681309 + 0.731996i \(0.261411\pi\)
\(198\) 0 0
\(199\) −3884.76 −1.38384 −0.691918 0.721976i \(-0.743234\pi\)
−0.691918 + 0.721976i \(0.743234\pi\)
\(200\) 0 0
\(201\) 1270.20 0.445736
\(202\) 0 0
\(203\) 755.984 0.261378
\(204\) 0 0
\(205\) −2236.52 −0.761978
\(206\) 0 0
\(207\) −685.789 −0.230269
\(208\) 0 0
\(209\) 2592.33 0.857967
\(210\) 0 0
\(211\) 98.8592 0.0322547 0.0161274 0.999870i \(-0.494866\pi\)
0.0161274 + 0.999870i \(0.494866\pi\)
\(212\) 0 0
\(213\) 1302.66 0.419046
\(214\) 0 0
\(215\) 2454.42 0.778558
\(216\) 0 0
\(217\) −1525.72 −0.477293
\(218\) 0 0
\(219\) −48.3581 −0.0149212
\(220\) 0 0
\(221\) 105.805 0.0322047
\(222\) 0 0
\(223\) −962.114 −0.288915 −0.144457 0.989511i \(-0.546144\pi\)
−0.144457 + 0.989511i \(0.546144\pi\)
\(224\) 0 0
\(225\) −476.391 −0.141153
\(226\) 0 0
\(227\) −2092.95 −0.611955 −0.305977 0.952039i \(-0.598983\pi\)
−0.305977 + 0.952039i \(0.598983\pi\)
\(228\) 0 0
\(229\) −1525.39 −0.440178 −0.220089 0.975480i \(-0.570635\pi\)
−0.220089 + 0.975480i \(0.570635\pi\)
\(230\) 0 0
\(231\) 1715.70 0.488679
\(232\) 0 0
\(233\) 1682.88 0.473171 0.236586 0.971611i \(-0.423972\pi\)
0.236586 + 0.971611i \(0.423972\pi\)
\(234\) 0 0
\(235\) −1116.91 −0.310039
\(236\) 0 0
\(237\) 3442.03 0.943391
\(238\) 0 0
\(239\) 886.758 0.239998 0.119999 0.992774i \(-0.461711\pi\)
0.119999 + 0.992774i \(0.461711\pi\)
\(240\) 0 0
\(241\) 4111.82 1.09903 0.549513 0.835485i \(-0.314813\pi\)
0.549513 + 0.835485i \(0.314813\pi\)
\(242\) 0 0
\(243\) 3923.80 1.03585
\(244\) 0 0
\(245\) −1682.81 −0.438820
\(246\) 0 0
\(247\) −137.749 −0.0354850
\(248\) 0 0
\(249\) −1357.45 −0.345481
\(250\) 0 0
\(251\) −7052.67 −1.77355 −0.886775 0.462202i \(-0.847059\pi\)
−0.886775 + 0.462202i \(0.847059\pi\)
\(252\) 0 0
\(253\) −840.358 −0.208825
\(254\) 0 0
\(255\) −1201.74 −0.295120
\(256\) 0 0
\(257\) 824.415 0.200100 0.100050 0.994982i \(-0.468100\pi\)
0.100050 + 0.994982i \(0.468100\pi\)
\(258\) 0 0
\(259\) 5902.43 1.41606
\(260\) 0 0
\(261\) 552.614 0.131057
\(262\) 0 0
\(263\) −1553.82 −0.364307 −0.182154 0.983270i \(-0.558307\pi\)
−0.182154 + 0.983270i \(0.558307\pi\)
\(264\) 0 0
\(265\) −685.584 −0.158925
\(266\) 0 0
\(267\) −506.294 −0.116047
\(268\) 0 0
\(269\) 5304.92 1.20240 0.601202 0.799097i \(-0.294689\pi\)
0.601202 + 0.799097i \(0.294689\pi\)
\(270\) 0 0
\(271\) 1988.76 0.445789 0.222894 0.974843i \(-0.428449\pi\)
0.222894 + 0.974843i \(0.428449\pi\)
\(272\) 0 0
\(273\) −91.1677 −0.0202114
\(274\) 0 0
\(275\) −583.764 −0.128008
\(276\) 0 0
\(277\) 4779.07 1.03663 0.518315 0.855190i \(-0.326560\pi\)
0.518315 + 0.855190i \(0.326560\pi\)
\(278\) 0 0
\(279\) −1115.28 −0.239319
\(280\) 0 0
\(281\) 362.267 0.0769075 0.0384538 0.999260i \(-0.487757\pi\)
0.0384538 + 0.999260i \(0.487757\pi\)
\(282\) 0 0
\(283\) 4932.90 1.03615 0.518075 0.855335i \(-0.326649\pi\)
0.518075 + 0.855335i \(0.326649\pi\)
\(284\) 0 0
\(285\) 1564.56 0.325180
\(286\) 0 0
\(287\) −11660.5 −2.39825
\(288\) 0 0
\(289\) 2358.44 0.480042
\(290\) 0 0
\(291\) 2695.12 0.542924
\(292\) 0 0
\(293\) 9504.43 1.89507 0.947534 0.319655i \(-0.103567\pi\)
0.947534 + 0.319655i \(0.103567\pi\)
\(294\) 0 0
\(295\) −1761.22 −0.347601
\(296\) 0 0
\(297\) 3031.17 0.592209
\(298\) 0 0
\(299\) 44.6544 0.00863689
\(300\) 0 0
\(301\) 12796.6 2.45044
\(302\) 0 0
\(303\) 5068.78 0.961035
\(304\) 0 0
\(305\) −669.334 −0.125659
\(306\) 0 0
\(307\) −7000.28 −1.30139 −0.650696 0.759339i \(-0.725523\pi\)
−0.650696 + 0.759339i \(0.725523\pi\)
\(308\) 0 0
\(309\) −4023.12 −0.740670
\(310\) 0 0
\(311\) 866.348 0.157962 0.0789809 0.996876i \(-0.474833\pi\)
0.0789809 + 0.996876i \(0.474833\pi\)
\(312\) 0 0
\(313\) 388.214 0.0701060 0.0350530 0.999385i \(-0.488840\pi\)
0.0350530 + 0.999385i \(0.488840\pi\)
\(314\) 0 0
\(315\) −2483.75 −0.444266
\(316\) 0 0
\(317\) −1832.34 −0.324652 −0.162326 0.986737i \(-0.551900\pi\)
−0.162326 + 0.986737i \(0.551900\pi\)
\(318\) 0 0
\(319\) 677.167 0.118853
\(320\) 0 0
\(321\) 1324.94 0.230376
\(322\) 0 0
\(323\) −9466.79 −1.63079
\(324\) 0 0
\(325\) 31.0197 0.00529435
\(326\) 0 0
\(327\) −5540.46 −0.936967
\(328\) 0 0
\(329\) −5823.21 −0.975817
\(330\) 0 0
\(331\) −11334.6 −1.88220 −0.941098 0.338134i \(-0.890204\pi\)
−0.941098 + 0.338134i \(0.890204\pi\)
\(332\) 0 0
\(333\) 4314.60 0.710025
\(334\) 0 0
\(335\) −2253.27 −0.367490
\(336\) 0 0
\(337\) −1607.74 −0.259880 −0.129940 0.991522i \(-0.541478\pi\)
−0.129940 + 0.991522i \(0.541478\pi\)
\(338\) 0 0
\(339\) 3334.74 0.534273
\(340\) 0 0
\(341\) −1366.65 −0.217033
\(342\) 0 0
\(343\) 167.817 0.0264176
\(344\) 0 0
\(345\) −507.185 −0.0791475
\(346\) 0 0
\(347\) 3317.76 0.513276 0.256638 0.966508i \(-0.417385\pi\)
0.256638 + 0.966508i \(0.417385\pi\)
\(348\) 0 0
\(349\) 8700.51 1.33446 0.667231 0.744851i \(-0.267479\pi\)
0.667231 + 0.744851i \(0.267479\pi\)
\(350\) 0 0
\(351\) −161.068 −0.0244934
\(352\) 0 0
\(353\) 11916.2 1.79669 0.898347 0.439286i \(-0.144768\pi\)
0.898347 + 0.439286i \(0.144768\pi\)
\(354\) 0 0
\(355\) −2310.85 −0.345485
\(356\) 0 0
\(357\) −6265.48 −0.928864
\(358\) 0 0
\(359\) −4750.30 −0.698360 −0.349180 0.937056i \(-0.613540\pi\)
−0.349180 + 0.937056i \(0.613540\pi\)
\(360\) 0 0
\(361\) 5465.95 0.796901
\(362\) 0 0
\(363\) −2214.70 −0.320224
\(364\) 0 0
\(365\) 85.7847 0.0123018
\(366\) 0 0
\(367\) 8332.78 1.18520 0.592599 0.805498i \(-0.298102\pi\)
0.592599 + 0.805498i \(0.298102\pi\)
\(368\) 0 0
\(369\) −8523.68 −1.20251
\(370\) 0 0
\(371\) −3574.42 −0.500201
\(372\) 0 0
\(373\) −8718.56 −1.21027 −0.605134 0.796123i \(-0.706881\pi\)
−0.605134 + 0.796123i \(0.706881\pi\)
\(374\) 0 0
\(375\) −352.322 −0.0485168
\(376\) 0 0
\(377\) −35.9828 −0.00491568
\(378\) 0 0
\(379\) −9266.54 −1.25591 −0.627955 0.778249i \(-0.716108\pi\)
−0.627955 + 0.778249i \(0.716108\pi\)
\(380\) 0 0
\(381\) 2986.91 0.401638
\(382\) 0 0
\(383\) −4157.46 −0.554664 −0.277332 0.960774i \(-0.589450\pi\)
−0.277332 + 0.960774i \(0.589450\pi\)
\(384\) 0 0
\(385\) −3043.56 −0.402894
\(386\) 0 0
\(387\) 9354.11 1.22867
\(388\) 0 0
\(389\) 5776.27 0.752876 0.376438 0.926442i \(-0.377149\pi\)
0.376438 + 0.926442i \(0.377149\pi\)
\(390\) 0 0
\(391\) 3068.86 0.396928
\(392\) 0 0
\(393\) −4322.03 −0.554753
\(394\) 0 0
\(395\) −6105.97 −0.777785
\(396\) 0 0
\(397\) −8760.87 −1.10755 −0.553773 0.832668i \(-0.686812\pi\)
−0.553773 + 0.832668i \(0.686812\pi\)
\(398\) 0 0
\(399\) 8157.11 1.02347
\(400\) 0 0
\(401\) −2850.16 −0.354939 −0.177469 0.984126i \(-0.556791\pi\)
−0.177469 + 0.984126i \(0.556791\pi\)
\(402\) 0 0
\(403\) 72.6201 0.00897635
\(404\) 0 0
\(405\) −743.101 −0.0911728
\(406\) 0 0
\(407\) 5287.06 0.643906
\(408\) 0 0
\(409\) −11829.9 −1.43020 −0.715098 0.699025i \(-0.753618\pi\)
−0.715098 + 0.699025i \(0.753618\pi\)
\(410\) 0 0
\(411\) 43.4110 0.00521000
\(412\) 0 0
\(413\) −9182.45 −1.09404
\(414\) 0 0
\(415\) 2408.04 0.284834
\(416\) 0 0
\(417\) 7142.86 0.838818
\(418\) 0 0
\(419\) 2861.50 0.333636 0.166818 0.985988i \(-0.446651\pi\)
0.166818 + 0.985988i \(0.446651\pi\)
\(420\) 0 0
\(421\) 2642.71 0.305933 0.152966 0.988231i \(-0.451117\pi\)
0.152966 + 0.988231i \(0.451117\pi\)
\(422\) 0 0
\(423\) −4256.68 −0.489284
\(424\) 0 0
\(425\) 2131.82 0.243314
\(426\) 0 0
\(427\) −3489.70 −0.395499
\(428\) 0 0
\(429\) −81.6627 −0.00919048
\(430\) 0 0
\(431\) 1147.71 0.128267 0.0641335 0.997941i \(-0.479572\pi\)
0.0641335 + 0.997941i \(0.479572\pi\)
\(432\) 0 0
\(433\) 15563.7 1.72735 0.863676 0.504048i \(-0.168156\pi\)
0.863676 + 0.504048i \(0.168156\pi\)
\(434\) 0 0
\(435\) 408.693 0.0450467
\(436\) 0 0
\(437\) −3995.39 −0.437358
\(438\) 0 0
\(439\) 14046.7 1.52713 0.763567 0.645729i \(-0.223446\pi\)
0.763567 + 0.645729i \(0.223446\pi\)
\(440\) 0 0
\(441\) −6413.42 −0.692519
\(442\) 0 0
\(443\) 2538.61 0.272264 0.136132 0.990691i \(-0.456533\pi\)
0.136132 + 0.990691i \(0.456533\pi\)
\(444\) 0 0
\(445\) 898.138 0.0956760
\(446\) 0 0
\(447\) −5955.87 −0.630208
\(448\) 0 0
\(449\) 13802.5 1.45074 0.725370 0.688359i \(-0.241669\pi\)
0.725370 + 0.688359i \(0.241669\pi\)
\(450\) 0 0
\(451\) −10444.8 −1.09053
\(452\) 0 0
\(453\) −599.626 −0.0621918
\(454\) 0 0
\(455\) 161.727 0.0166634
\(456\) 0 0
\(457\) 4047.50 0.414298 0.207149 0.978309i \(-0.433581\pi\)
0.207149 + 0.978309i \(0.433581\pi\)
\(458\) 0 0
\(459\) −11069.4 −1.12565
\(460\) 0 0
\(461\) 705.096 0.0712356 0.0356178 0.999365i \(-0.488660\pi\)
0.0356178 + 0.999365i \(0.488660\pi\)
\(462\) 0 0
\(463\) 3440.10 0.345302 0.172651 0.984983i \(-0.444767\pi\)
0.172651 + 0.984983i \(0.444767\pi\)
\(464\) 0 0
\(465\) −824.820 −0.0822583
\(466\) 0 0
\(467\) −5931.86 −0.587781 −0.293891 0.955839i \(-0.594950\pi\)
−0.293891 + 0.955839i \(0.594950\pi\)
\(468\) 0 0
\(469\) −11747.8 −1.15664
\(470\) 0 0
\(471\) 9129.37 0.893119
\(472\) 0 0
\(473\) 11462.4 1.11425
\(474\) 0 0
\(475\) −2775.44 −0.268097
\(476\) 0 0
\(477\) −2612.85 −0.250805
\(478\) 0 0
\(479\) −13018.9 −1.24186 −0.620929 0.783867i \(-0.713244\pi\)
−0.620929 + 0.783867i \(0.713244\pi\)
\(480\) 0 0
\(481\) −280.940 −0.0266315
\(482\) 0 0
\(483\) −2644.30 −0.249109
\(484\) 0 0
\(485\) −4781.01 −0.447617
\(486\) 0 0
\(487\) 12450.0 1.15844 0.579222 0.815170i \(-0.303356\pi\)
0.579222 + 0.815170i \(0.303356\pi\)
\(488\) 0 0
\(489\) −5657.31 −0.523174
\(490\) 0 0
\(491\) −16627.1 −1.52825 −0.764126 0.645067i \(-0.776829\pi\)
−0.764126 + 0.645067i \(0.776829\pi\)
\(492\) 0 0
\(493\) −2472.91 −0.225911
\(494\) 0 0
\(495\) −2224.80 −0.202015
\(496\) 0 0
\(497\) −12048.0 −1.08738
\(498\) 0 0
\(499\) −21405.0 −1.92028 −0.960140 0.279518i \(-0.909825\pi\)
−0.960140 + 0.279518i \(0.909825\pi\)
\(500\) 0 0
\(501\) 9893.82 0.882282
\(502\) 0 0
\(503\) −13585.1 −1.20423 −0.602117 0.798408i \(-0.705676\pi\)
−0.602117 + 0.798408i \(0.705676\pi\)
\(504\) 0 0
\(505\) −8991.75 −0.792332
\(506\) 0 0
\(507\) −6188.06 −0.542054
\(508\) 0 0
\(509\) 3332.50 0.290197 0.145099 0.989417i \(-0.453650\pi\)
0.145099 + 0.989417i \(0.453650\pi\)
\(510\) 0 0
\(511\) 447.254 0.0387189
\(512\) 0 0
\(513\) 14411.3 1.24031
\(514\) 0 0
\(515\) 7136.80 0.610650
\(516\) 0 0
\(517\) −5216.09 −0.443720
\(518\) 0 0
\(519\) −5229.03 −0.442252
\(520\) 0 0
\(521\) −18894.0 −1.58879 −0.794396 0.607400i \(-0.792213\pi\)
−0.794396 + 0.607400i \(0.792213\pi\)
\(522\) 0 0
\(523\) −9603.20 −0.802903 −0.401452 0.915880i \(-0.631494\pi\)
−0.401452 + 0.915880i \(0.631494\pi\)
\(524\) 0 0
\(525\) −1836.89 −0.152702
\(526\) 0 0
\(527\) 4990.80 0.412529
\(528\) 0 0
\(529\) −10871.8 −0.893549
\(530\) 0 0
\(531\) −6712.25 −0.548562
\(532\) 0 0
\(533\) 555.010 0.0451034
\(534\) 0 0
\(535\) −2350.37 −0.189935
\(536\) 0 0
\(537\) −2145.13 −0.172382
\(538\) 0 0
\(539\) −7858.92 −0.628029
\(540\) 0 0
\(541\) 14655.5 1.16468 0.582339 0.812946i \(-0.302137\pi\)
0.582339 + 0.812946i \(0.302137\pi\)
\(542\) 0 0
\(543\) 11242.6 0.888519
\(544\) 0 0
\(545\) 9828.49 0.772489
\(546\) 0 0
\(547\) −10880.5 −0.850489 −0.425244 0.905079i \(-0.639812\pi\)
−0.425244 + 0.905079i \(0.639812\pi\)
\(548\) 0 0
\(549\) −2550.92 −0.198307
\(550\) 0 0
\(551\) 3219.52 0.248922
\(552\) 0 0
\(553\) −31834.6 −2.44800
\(554\) 0 0
\(555\) 3190.92 0.244049
\(556\) 0 0
\(557\) −3863.82 −0.293923 −0.146962 0.989142i \(-0.546949\pi\)
−0.146962 + 0.989142i \(0.546949\pi\)
\(558\) 0 0
\(559\) −609.082 −0.0460849
\(560\) 0 0
\(561\) −5612.25 −0.422370
\(562\) 0 0
\(563\) 15893.3 1.18974 0.594870 0.803822i \(-0.297203\pi\)
0.594870 + 0.803822i \(0.297203\pi\)
\(564\) 0 0
\(565\) −5915.66 −0.440485
\(566\) 0 0
\(567\) −3874.29 −0.286958
\(568\) 0 0
\(569\) 6923.24 0.510083 0.255042 0.966930i \(-0.417911\pi\)
0.255042 + 0.966930i \(0.417911\pi\)
\(570\) 0 0
\(571\) 18659.2 1.36754 0.683768 0.729699i \(-0.260340\pi\)
0.683768 + 0.729699i \(0.260340\pi\)
\(572\) 0 0
\(573\) 1688.11 0.123075
\(574\) 0 0
\(575\) 899.719 0.0652537
\(576\) 0 0
\(577\) −3522.67 −0.254161 −0.127080 0.991892i \(-0.540561\pi\)
−0.127080 + 0.991892i \(0.540561\pi\)
\(578\) 0 0
\(579\) −8795.83 −0.631334
\(580\) 0 0
\(581\) 12554.8 0.896487
\(582\) 0 0
\(583\) −3201.75 −0.227450
\(584\) 0 0
\(585\) 118.220 0.00835521
\(586\) 0 0
\(587\) 20375.0 1.43265 0.716324 0.697767i \(-0.245823\pi\)
0.716324 + 0.697767i \(0.245823\pi\)
\(588\) 0 0
\(589\) −6497.59 −0.454548
\(590\) 0 0
\(591\) 10619.5 0.739131
\(592\) 0 0
\(593\) −4174.07 −0.289053 −0.144526 0.989501i \(-0.546166\pi\)
−0.144526 + 0.989501i \(0.546166\pi\)
\(594\) 0 0
\(595\) 11114.6 0.765807
\(596\) 0 0
\(597\) −10949.5 −0.750641
\(598\) 0 0
\(599\) −9914.79 −0.676306 −0.338153 0.941091i \(-0.609802\pi\)
−0.338153 + 0.941091i \(0.609802\pi\)
\(600\) 0 0
\(601\) 9322.05 0.632703 0.316351 0.948642i \(-0.397542\pi\)
0.316351 + 0.948642i \(0.397542\pi\)
\(602\) 0 0
\(603\) −8587.49 −0.579950
\(604\) 0 0
\(605\) 3928.75 0.264011
\(606\) 0 0
\(607\) 2971.29 0.198684 0.0993419 0.995053i \(-0.468326\pi\)
0.0993419 + 0.995053i \(0.468326\pi\)
\(608\) 0 0
\(609\) 2130.80 0.141780
\(610\) 0 0
\(611\) 277.169 0.0183520
\(612\) 0 0
\(613\) −6394.07 −0.421295 −0.210648 0.977562i \(-0.567557\pi\)
−0.210648 + 0.977562i \(0.567557\pi\)
\(614\) 0 0
\(615\) −6303.80 −0.413323
\(616\) 0 0
\(617\) 3743.82 0.244280 0.122140 0.992513i \(-0.461024\pi\)
0.122140 + 0.992513i \(0.461024\pi\)
\(618\) 0 0
\(619\) −14398.8 −0.934954 −0.467477 0.884005i \(-0.654837\pi\)
−0.467477 + 0.884005i \(0.654837\pi\)
\(620\) 0 0
\(621\) −4671.74 −0.301885
\(622\) 0 0
\(623\) 4682.61 0.301131
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 7306.67 0.465391
\(628\) 0 0
\(629\) −19307.5 −1.22391
\(630\) 0 0
\(631\) −16775.9 −1.05838 −0.529190 0.848503i \(-0.677504\pi\)
−0.529190 + 0.848503i \(0.677504\pi\)
\(632\) 0 0
\(633\) 278.642 0.0174961
\(634\) 0 0
\(635\) −5298.62 −0.331133
\(636\) 0 0
\(637\) 417.602 0.0259749
\(638\) 0 0
\(639\) −8806.95 −0.545223
\(640\) 0 0
\(641\) −20797.5 −1.28151 −0.640757 0.767744i \(-0.721379\pi\)
−0.640757 + 0.767744i \(0.721379\pi\)
\(642\) 0 0
\(643\) 21041.5 1.29050 0.645252 0.763970i \(-0.276752\pi\)
0.645252 + 0.763970i \(0.276752\pi\)
\(644\) 0 0
\(645\) 6917.96 0.422317
\(646\) 0 0
\(647\) −1186.85 −0.0721171 −0.0360586 0.999350i \(-0.511480\pi\)
−0.0360586 + 0.999350i \(0.511480\pi\)
\(648\) 0 0
\(649\) −8225.11 −0.497479
\(650\) 0 0
\(651\) −4300.35 −0.258900
\(652\) 0 0
\(653\) −7217.10 −0.432507 −0.216253 0.976337i \(-0.569384\pi\)
−0.216253 + 0.976337i \(0.569384\pi\)
\(654\) 0 0
\(655\) 7667.06 0.457369
\(656\) 0 0
\(657\) 326.936 0.0194140
\(658\) 0 0
\(659\) −12372.4 −0.731353 −0.365676 0.930742i \(-0.619162\pi\)
−0.365676 + 0.930742i \(0.619162\pi\)
\(660\) 0 0
\(661\) 13670.8 0.804434 0.402217 0.915544i \(-0.368240\pi\)
0.402217 + 0.915544i \(0.368240\pi\)
\(662\) 0 0
\(663\) 298.220 0.0174689
\(664\) 0 0
\(665\) −14470.3 −0.843810
\(666\) 0 0
\(667\) −1043.67 −0.0605865
\(668\) 0 0
\(669\) −2711.79 −0.156717
\(670\) 0 0
\(671\) −3125.87 −0.179840
\(672\) 0 0
\(673\) 11415.3 0.653830 0.326915 0.945054i \(-0.393991\pi\)
0.326915 + 0.945054i \(0.393991\pi\)
\(674\) 0 0
\(675\) −3245.28 −0.185053
\(676\) 0 0
\(677\) −28110.6 −1.59583 −0.797917 0.602767i \(-0.794065\pi\)
−0.797917 + 0.602767i \(0.794065\pi\)
\(678\) 0 0
\(679\) −24926.6 −1.40883
\(680\) 0 0
\(681\) −5899.12 −0.331945
\(682\) 0 0
\(683\) 6207.75 0.347779 0.173889 0.984765i \(-0.444366\pi\)
0.173889 + 0.984765i \(0.444366\pi\)
\(684\) 0 0
\(685\) −77.0089 −0.00429541
\(686\) 0 0
\(687\) −4299.43 −0.238768
\(688\) 0 0
\(689\) 170.133 0.00940717
\(690\) 0 0
\(691\) 13192.1 0.726266 0.363133 0.931737i \(-0.381707\pi\)
0.363133 + 0.931737i \(0.381707\pi\)
\(692\) 0 0
\(693\) −11599.4 −0.635823
\(694\) 0 0
\(695\) −12671.1 −0.691569
\(696\) 0 0
\(697\) 38142.9 2.07283
\(698\) 0 0
\(699\) 4743.31 0.256664
\(700\) 0 0
\(701\) 21056.4 1.13450 0.567252 0.823544i \(-0.308006\pi\)
0.567252 + 0.823544i \(0.308006\pi\)
\(702\) 0 0
\(703\) 25136.7 1.34858
\(704\) 0 0
\(705\) −3148.09 −0.168176
\(706\) 0 0
\(707\) −46880.1 −2.49379
\(708\) 0 0
\(709\) 11512.8 0.609833 0.304917 0.952379i \(-0.401371\pi\)
0.304917 + 0.952379i \(0.401371\pi\)
\(710\) 0 0
\(711\) −23270.7 −1.22745
\(712\) 0 0
\(713\) 2106.33 0.110635
\(714\) 0 0
\(715\) 144.865 0.00757715
\(716\) 0 0
\(717\) 2499.39 0.130183
\(718\) 0 0
\(719\) −9823.82 −0.509550 −0.254775 0.967000i \(-0.582001\pi\)
−0.254775 + 0.967000i \(0.582001\pi\)
\(720\) 0 0
\(721\) 37209.0 1.92196
\(722\) 0 0
\(723\) 11589.5 0.596150
\(724\) 0 0
\(725\) −725.000 −0.0371391
\(726\) 0 0
\(727\) 18755.7 0.956824 0.478412 0.878136i \(-0.341213\pi\)
0.478412 + 0.878136i \(0.341213\pi\)
\(728\) 0 0
\(729\) 7046.77 0.358013
\(730\) 0 0
\(731\) −41859.0 −2.11794
\(732\) 0 0
\(733\) 2594.67 0.130745 0.0653725 0.997861i \(-0.479176\pi\)
0.0653725 + 0.997861i \(0.479176\pi\)
\(734\) 0 0
\(735\) −4743.13 −0.238031
\(736\) 0 0
\(737\) −10523.0 −0.525943
\(738\) 0 0
\(739\) 23906.0 1.18998 0.594992 0.803732i \(-0.297155\pi\)
0.594992 + 0.803732i \(0.297155\pi\)
\(740\) 0 0
\(741\) −388.257 −0.0192483
\(742\) 0 0
\(743\) 21038.5 1.03880 0.519400 0.854531i \(-0.326156\pi\)
0.519400 + 0.854531i \(0.326156\pi\)
\(744\) 0 0
\(745\) 10565.4 0.519579
\(746\) 0 0
\(747\) 9177.35 0.449507
\(748\) 0 0
\(749\) −12254.1 −0.597803
\(750\) 0 0
\(751\) 34793.9 1.69061 0.845304 0.534285i \(-0.179419\pi\)
0.845304 + 0.534285i \(0.179419\pi\)
\(752\) 0 0
\(753\) −19878.5 −0.962034
\(754\) 0 0
\(755\) 1063.71 0.0512744
\(756\) 0 0
\(757\) −33348.7 −1.60116 −0.800581 0.599224i \(-0.795476\pi\)
−0.800581 + 0.599224i \(0.795476\pi\)
\(758\) 0 0
\(759\) −2368.61 −0.113274
\(760\) 0 0
\(761\) 25093.6 1.19532 0.597661 0.801749i \(-0.296097\pi\)
0.597661 + 0.801749i \(0.296097\pi\)
\(762\) 0 0
\(763\) 51242.6 2.43133
\(764\) 0 0
\(765\) 8124.64 0.383983
\(766\) 0 0
\(767\) 437.060 0.0205754
\(768\) 0 0
\(769\) −33556.5 −1.57357 −0.786787 0.617225i \(-0.788257\pi\)
−0.786787 + 0.617225i \(0.788257\pi\)
\(770\) 0 0
\(771\) 2323.67 0.108541
\(772\) 0 0
\(773\) 35489.1 1.65130 0.825650 0.564182i \(-0.190809\pi\)
0.825650 + 0.564182i \(0.190809\pi\)
\(774\) 0 0
\(775\) 1463.19 0.0678184
\(776\) 0 0
\(777\) 16636.4 0.768120
\(778\) 0 0
\(779\) −49658.7 −2.28397
\(780\) 0 0
\(781\) −10791.9 −0.494450
\(782\) 0 0
\(783\) 3764.52 0.171818
\(784\) 0 0
\(785\) −16195.0 −0.736338
\(786\) 0 0
\(787\) −1449.49 −0.0656528 −0.0328264 0.999461i \(-0.510451\pi\)
−0.0328264 + 0.999461i \(0.510451\pi\)
\(788\) 0 0
\(789\) −4379.56 −0.197613
\(790\) 0 0
\(791\) −30842.4 −1.38638
\(792\) 0 0
\(793\) 166.100 0.00743807
\(794\) 0 0
\(795\) −1932.37 −0.0862063
\(796\) 0 0
\(797\) 34576.8 1.53673 0.768364 0.640013i \(-0.221071\pi\)
0.768364 + 0.640013i \(0.221071\pi\)
\(798\) 0 0
\(799\) 19048.4 0.843408
\(800\) 0 0
\(801\) 3422.92 0.150990
\(802\) 0 0
\(803\) 400.624 0.0176061
\(804\) 0 0
\(805\) 4690.85 0.205380
\(806\) 0 0
\(807\) 14952.3 0.652225
\(808\) 0 0
\(809\) 19613.4 0.852372 0.426186 0.904636i \(-0.359857\pi\)
0.426186 + 0.904636i \(0.359857\pi\)
\(810\) 0 0
\(811\) 37056.7 1.60448 0.802242 0.597000i \(-0.203641\pi\)
0.802242 + 0.597000i \(0.203641\pi\)
\(812\) 0 0
\(813\) 5605.47 0.241811
\(814\) 0 0
\(815\) 10035.8 0.431334
\(816\) 0 0
\(817\) 54496.8 2.33366
\(818\) 0 0
\(819\) 616.362 0.0262972
\(820\) 0 0
\(821\) −42.7009 −0.00181519 −0.000907595 1.00000i \(-0.500289\pi\)
−0.000907595 1.00000i \(0.500289\pi\)
\(822\) 0 0
\(823\) 2146.40 0.0909099 0.0454550 0.998966i \(-0.485526\pi\)
0.0454550 + 0.998966i \(0.485526\pi\)
\(824\) 0 0
\(825\) −1645.38 −0.0694362
\(826\) 0 0
\(827\) 36455.5 1.53287 0.766434 0.642323i \(-0.222029\pi\)
0.766434 + 0.642323i \(0.222029\pi\)
\(828\) 0 0
\(829\) −3326.70 −0.139374 −0.0696871 0.997569i \(-0.522200\pi\)
−0.0696871 + 0.997569i \(0.522200\pi\)
\(830\) 0 0
\(831\) 13470.1 0.562303
\(832\) 0 0
\(833\) 28699.6 1.19374
\(834\) 0 0
\(835\) −17551.1 −0.727403
\(836\) 0 0
\(837\) −7597.52 −0.313750
\(838\) 0 0
\(839\) −40324.7 −1.65931 −0.829656 0.558275i \(-0.811464\pi\)
−0.829656 + 0.558275i \(0.811464\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 0 0
\(843\) 1021.07 0.0417173
\(844\) 0 0
\(845\) 10977.3 0.446900
\(846\) 0 0
\(847\) 20483.3 0.830949
\(848\) 0 0
\(849\) 13903.7 0.562043
\(850\) 0 0
\(851\) −8148.61 −0.328238
\(852\) 0 0
\(853\) 27937.6 1.12141 0.560707 0.828014i \(-0.310529\pi\)
0.560707 + 0.828014i \(0.310529\pi\)
\(854\) 0 0
\(855\) −10577.6 −0.423094
\(856\) 0 0
\(857\) 3858.91 0.153813 0.0769065 0.997038i \(-0.475496\pi\)
0.0769065 + 0.997038i \(0.475496\pi\)
\(858\) 0 0
\(859\) −114.561 −0.00455038 −0.00227519 0.999997i \(-0.500724\pi\)
−0.00227519 + 0.999997i \(0.500724\pi\)
\(860\) 0 0
\(861\) −32866.0 −1.30090
\(862\) 0 0
\(863\) 43027.0 1.69717 0.848585 0.529059i \(-0.177455\pi\)
0.848585 + 0.529059i \(0.177455\pi\)
\(864\) 0 0
\(865\) 9276.02 0.364618
\(866\) 0 0
\(867\) 6647.45 0.260391
\(868\) 0 0
\(869\) −28515.6 −1.11315
\(870\) 0 0
\(871\) 559.165 0.0217527
\(872\) 0 0
\(873\) −18221.0 −0.706401
\(874\) 0 0
\(875\) 3258.55 0.125896
\(876\) 0 0
\(877\) −24387.2 −0.938995 −0.469498 0.882934i \(-0.655565\pi\)
−0.469498 + 0.882934i \(0.655565\pi\)
\(878\) 0 0
\(879\) 26788.9 1.02795
\(880\) 0 0
\(881\) −9834.37 −0.376082 −0.188041 0.982161i \(-0.560214\pi\)
−0.188041 + 0.982161i \(0.560214\pi\)
\(882\) 0 0
\(883\) 21793.4 0.830585 0.415292 0.909688i \(-0.363679\pi\)
0.415292 + 0.909688i \(0.363679\pi\)
\(884\) 0 0
\(885\) −4964.13 −0.188551
\(886\) 0 0
\(887\) −12803.2 −0.484657 −0.242329 0.970194i \(-0.577911\pi\)
−0.242329 + 0.970194i \(0.577911\pi\)
\(888\) 0 0
\(889\) −27625.3 −1.04221
\(890\) 0 0
\(891\) −3470.37 −0.130484
\(892\) 0 0
\(893\) −24799.3 −0.929315
\(894\) 0 0
\(895\) 3805.36 0.142122
\(896\) 0 0
\(897\) 125.862 0.00468495
\(898\) 0 0
\(899\) −1697.30 −0.0629678
\(900\) 0 0
\(901\) 11692.3 0.432328
\(902\) 0 0
\(903\) 36068.0 1.32920
\(904\) 0 0
\(905\) −19943.8 −0.732545
\(906\) 0 0
\(907\) 20331.0 0.744299 0.372149 0.928173i \(-0.378621\pi\)
0.372149 + 0.928173i \(0.378621\pi\)
\(908\) 0 0
\(909\) −34268.7 −1.25041
\(910\) 0 0
\(911\) −2439.59 −0.0887236 −0.0443618 0.999016i \(-0.514125\pi\)
−0.0443618 + 0.999016i \(0.514125\pi\)
\(912\) 0 0
\(913\) 11245.8 0.407648
\(914\) 0 0
\(915\) −1886.57 −0.0681617
\(916\) 0 0
\(917\) 39973.6 1.43953
\(918\) 0 0
\(919\) −1187.35 −0.0426193 −0.0213097 0.999773i \(-0.506784\pi\)
−0.0213097 + 0.999773i \(0.506784\pi\)
\(920\) 0 0
\(921\) −19730.8 −0.705920
\(922\) 0 0
\(923\) 573.455 0.0204502
\(924\) 0 0
\(925\) −5660.52 −0.201207
\(926\) 0 0
\(927\) 27199.3 0.963691
\(928\) 0 0
\(929\) −8135.41 −0.287313 −0.143657 0.989628i \(-0.545886\pi\)
−0.143657 + 0.989628i \(0.545886\pi\)
\(930\) 0 0
\(931\) −37364.4 −1.31533
\(932\) 0 0
\(933\) 2441.87 0.0856839
\(934\) 0 0
\(935\) 9955.84 0.348225
\(936\) 0 0
\(937\) 24483.0 0.853601 0.426800 0.904346i \(-0.359641\pi\)
0.426800 + 0.904346i \(0.359641\pi\)
\(938\) 0 0
\(939\) 1094.21 0.0380279
\(940\) 0 0
\(941\) −11602.1 −0.401931 −0.200966 0.979598i \(-0.564408\pi\)
−0.200966 + 0.979598i \(0.564408\pi\)
\(942\) 0 0
\(943\) 16097.9 0.555907
\(944\) 0 0
\(945\) −16919.9 −0.582437
\(946\) 0 0
\(947\) 13467.6 0.462130 0.231065 0.972938i \(-0.425779\pi\)
0.231065 + 0.972938i \(0.425779\pi\)
\(948\) 0 0
\(949\) −21.2881 −0.000728178 0
\(950\) 0 0
\(951\) −5164.59 −0.176102
\(952\) 0 0
\(953\) −35164.0 −1.19525 −0.597625 0.801776i \(-0.703889\pi\)
−0.597625 + 0.801776i \(0.703889\pi\)
\(954\) 0 0
\(955\) −2994.63 −0.101470
\(956\) 0 0
\(957\) 1908.64 0.0644699
\(958\) 0 0
\(959\) −401.500 −0.0135194
\(960\) 0 0
\(961\) −26365.5 −0.885017
\(962\) 0 0
\(963\) −8957.56 −0.299744
\(964\) 0 0
\(965\) 15603.3 0.520507
\(966\) 0 0
\(967\) −11414.1 −0.379580 −0.189790 0.981825i \(-0.560781\pi\)
−0.189790 + 0.981825i \(0.560781\pi\)
\(968\) 0 0
\(969\) −26682.8 −0.884599
\(970\) 0 0
\(971\) 28522.6 0.942670 0.471335 0.881954i \(-0.343772\pi\)
0.471335 + 0.881954i \(0.343772\pi\)
\(972\) 0 0
\(973\) −66062.9 −2.17665
\(974\) 0 0
\(975\) 87.4312 0.00287184
\(976\) 0 0
\(977\) −22494.0 −0.736589 −0.368294 0.929709i \(-0.620058\pi\)
−0.368294 + 0.929709i \(0.620058\pi\)
\(978\) 0 0
\(979\) 4194.41 0.136929
\(980\) 0 0
\(981\) 37457.7 1.21909
\(982\) 0 0
\(983\) 44514.9 1.44436 0.722180 0.691706i \(-0.243140\pi\)
0.722180 + 0.691706i \(0.243140\pi\)
\(984\) 0 0
\(985\) −18838.4 −0.609381
\(986\) 0 0
\(987\) −16413.1 −0.529317
\(988\) 0 0
\(989\) −17666.3 −0.568004
\(990\) 0 0
\(991\) 58738.5 1.88284 0.941418 0.337242i \(-0.109494\pi\)
0.941418 + 0.337242i \(0.109494\pi\)
\(992\) 0 0
\(993\) −31947.4 −1.02097
\(994\) 0 0
\(995\) 19423.8 0.618871
\(996\) 0 0
\(997\) 16881.9 0.536262 0.268131 0.963382i \(-0.413594\pi\)
0.268131 + 0.963382i \(0.413594\pi\)
\(998\) 0 0
\(999\) 29392.0 0.930852
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1160.4.a.g.1.8 11
4.3 odd 2 2320.4.a.bb.1.4 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.4.a.g.1.8 11 1.1 even 1 trivial
2320.4.a.bb.1.4 11 4.3 odd 2