Properties

Label 1160.4.a.h.1.1
Level $1160$
Weight $4$
Character 1160.1
Self dual yes
Analytic conductor $68.442$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1160,4,Mod(1,1160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1160.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1160 = 2^{3} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1160.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.4422156067\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 3 x^{10} - 200 x^{9} + 418 x^{8} + 13211 x^{7} - 14353 x^{6} - 314463 x^{5} + 64817 x^{4} + \cdots + 712233 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{9}\cdot 3^{3}\cdot 43 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(9.75401\) of defining polynomial
Character \(\chi\) \(=\) 1160.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.75401 q^{3} -5.00000 q^{5} +20.2215 q^{7} +49.6327 q^{9} +33.9939 q^{11} +39.9236 q^{13} +43.7701 q^{15} +113.921 q^{17} +88.7397 q^{19} -177.019 q^{21} -32.5916 q^{23} +25.0000 q^{25} -198.127 q^{27} +29.0000 q^{29} +231.747 q^{31} -297.583 q^{33} -101.108 q^{35} +150.130 q^{37} -349.492 q^{39} -467.305 q^{41} +487.375 q^{43} -248.164 q^{45} -494.646 q^{47} +65.9094 q^{49} -997.264 q^{51} -400.043 q^{53} -169.970 q^{55} -776.829 q^{57} +601.764 q^{59} +330.984 q^{61} +1003.65 q^{63} -199.618 q^{65} +822.435 q^{67} +285.307 q^{69} -717.511 q^{71} -243.999 q^{73} -218.850 q^{75} +687.408 q^{77} -1330.75 q^{79} +394.323 q^{81} +761.481 q^{83} -569.604 q^{85} -253.866 q^{87} +1483.31 q^{89} +807.315 q^{91} -2028.72 q^{93} -443.699 q^{95} -1341.77 q^{97} +1687.21 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 8 q^{3} - 55 q^{5} + 16 q^{7} + 117 q^{9} + 26 q^{11} + 52 q^{13} - 40 q^{15} + 14 q^{17} + 146 q^{19} - 288 q^{21} - 80 q^{23} + 275 q^{25} + 224 q^{27} + 319 q^{29} - 38 q^{31} - 152 q^{33} - 80 q^{35}+ \cdots + 4690 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −8.75401 −1.68471 −0.842355 0.538923i \(-0.818831\pi\)
−0.842355 + 0.538923i \(0.818831\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 20.2215 1.09186 0.545929 0.837831i \(-0.316177\pi\)
0.545929 + 0.837831i \(0.316177\pi\)
\(8\) 0 0
\(9\) 49.6327 1.83825
\(10\) 0 0
\(11\) 33.9939 0.931778 0.465889 0.884843i \(-0.345735\pi\)
0.465889 + 0.884843i \(0.345735\pi\)
\(12\) 0 0
\(13\) 39.9236 0.851755 0.425878 0.904781i \(-0.359965\pi\)
0.425878 + 0.904781i \(0.359965\pi\)
\(14\) 0 0
\(15\) 43.7701 0.753425
\(16\) 0 0
\(17\) 113.921 1.62529 0.812643 0.582762i \(-0.198028\pi\)
0.812643 + 0.582762i \(0.198028\pi\)
\(18\) 0 0
\(19\) 88.7397 1.07149 0.535744 0.844380i \(-0.320031\pi\)
0.535744 + 0.844380i \(0.320031\pi\)
\(20\) 0 0
\(21\) −177.019 −1.83947
\(22\) 0 0
\(23\) −32.5916 −0.295470 −0.147735 0.989027i \(-0.547198\pi\)
−0.147735 + 0.989027i \(0.547198\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −198.127 −1.41221
\(28\) 0 0
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) 231.747 1.34268 0.671339 0.741150i \(-0.265719\pi\)
0.671339 + 0.741150i \(0.265719\pi\)
\(32\) 0 0
\(33\) −297.583 −1.56978
\(34\) 0 0
\(35\) −101.108 −0.488294
\(36\) 0 0
\(37\) 150.130 0.667062 0.333531 0.942739i \(-0.391760\pi\)
0.333531 + 0.942739i \(0.391760\pi\)
\(38\) 0 0
\(39\) −349.492 −1.43496
\(40\) 0 0
\(41\) −467.305 −1.78002 −0.890010 0.455940i \(-0.849303\pi\)
−0.890010 + 0.455940i \(0.849303\pi\)
\(42\) 0 0
\(43\) 487.375 1.72846 0.864232 0.503093i \(-0.167805\pi\)
0.864232 + 0.503093i \(0.167805\pi\)
\(44\) 0 0
\(45\) −248.164 −0.822090
\(46\) 0 0
\(47\) −494.646 −1.53514 −0.767570 0.640965i \(-0.778534\pi\)
−0.767570 + 0.640965i \(0.778534\pi\)
\(48\) 0 0
\(49\) 65.9094 0.192156
\(50\) 0 0
\(51\) −997.264 −2.73813
\(52\) 0 0
\(53\) −400.043 −1.03680 −0.518398 0.855140i \(-0.673471\pi\)
−0.518398 + 0.855140i \(0.673471\pi\)
\(54\) 0 0
\(55\) −169.970 −0.416704
\(56\) 0 0
\(57\) −776.829 −1.80515
\(58\) 0 0
\(59\) 601.764 1.32785 0.663924 0.747800i \(-0.268890\pi\)
0.663924 + 0.747800i \(0.268890\pi\)
\(60\) 0 0
\(61\) 330.984 0.694724 0.347362 0.937731i \(-0.387078\pi\)
0.347362 + 0.937731i \(0.387078\pi\)
\(62\) 0 0
\(63\) 1003.65 2.00711
\(64\) 0 0
\(65\) −199.618 −0.380916
\(66\) 0 0
\(67\) 822.435 1.49965 0.749824 0.661638i \(-0.230138\pi\)
0.749824 + 0.661638i \(0.230138\pi\)
\(68\) 0 0
\(69\) 285.307 0.497782
\(70\) 0 0
\(71\) −717.511 −1.19934 −0.599668 0.800249i \(-0.704701\pi\)
−0.599668 + 0.800249i \(0.704701\pi\)
\(72\) 0 0
\(73\) −243.999 −0.391204 −0.195602 0.980683i \(-0.562666\pi\)
−0.195602 + 0.980683i \(0.562666\pi\)
\(74\) 0 0
\(75\) −218.850 −0.336942
\(76\) 0 0
\(77\) 687.408 1.01737
\(78\) 0 0
\(79\) −1330.75 −1.89521 −0.947605 0.319444i \(-0.896504\pi\)
−0.947605 + 0.319444i \(0.896504\pi\)
\(80\) 0 0
\(81\) 394.323 0.540909
\(82\) 0 0
\(83\) 761.481 1.00703 0.503514 0.863987i \(-0.332040\pi\)
0.503514 + 0.863987i \(0.332040\pi\)
\(84\) 0 0
\(85\) −569.604 −0.726850
\(86\) 0 0
\(87\) −253.866 −0.312843
\(88\) 0 0
\(89\) 1483.31 1.76664 0.883319 0.468773i \(-0.155304\pi\)
0.883319 + 0.468773i \(0.155304\pi\)
\(90\) 0 0
\(91\) 807.315 0.929996
\(92\) 0 0
\(93\) −2028.72 −2.26203
\(94\) 0 0
\(95\) −443.699 −0.479184
\(96\) 0 0
\(97\) −1341.77 −1.40450 −0.702250 0.711930i \(-0.747821\pi\)
−0.702250 + 0.711930i \(0.747821\pi\)
\(98\) 0 0
\(99\) 1687.21 1.71284
\(100\) 0 0
\(101\) 33.9198 0.0334173 0.0167086 0.999860i \(-0.494681\pi\)
0.0167086 + 0.999860i \(0.494681\pi\)
\(102\) 0 0
\(103\) 86.2177 0.0824784 0.0412392 0.999149i \(-0.486869\pi\)
0.0412392 + 0.999149i \(0.486869\pi\)
\(104\) 0 0
\(105\) 885.097 0.822634
\(106\) 0 0
\(107\) 1645.15 1.48638 0.743192 0.669079i \(-0.233311\pi\)
0.743192 + 0.669079i \(0.233311\pi\)
\(108\) 0 0
\(109\) −23.2824 −0.0204592 −0.0102296 0.999948i \(-0.503256\pi\)
−0.0102296 + 0.999948i \(0.503256\pi\)
\(110\) 0 0
\(111\) −1314.24 −1.12381
\(112\) 0 0
\(113\) 1062.77 0.884752 0.442376 0.896830i \(-0.354136\pi\)
0.442376 + 0.896830i \(0.354136\pi\)
\(114\) 0 0
\(115\) 162.958 0.132138
\(116\) 0 0
\(117\) 1981.52 1.56574
\(118\) 0 0
\(119\) 2303.65 1.77458
\(120\) 0 0
\(121\) −175.413 −0.131790
\(122\) 0 0
\(123\) 4090.80 2.99882
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −369.524 −0.258188 −0.129094 0.991632i \(-0.541207\pi\)
−0.129094 + 0.991632i \(0.541207\pi\)
\(128\) 0 0
\(129\) −4266.48 −2.91196
\(130\) 0 0
\(131\) −1773.75 −1.18300 −0.591502 0.806304i \(-0.701465\pi\)
−0.591502 + 0.806304i \(0.701465\pi\)
\(132\) 0 0
\(133\) 1794.45 1.16991
\(134\) 0 0
\(135\) 990.635 0.631558
\(136\) 0 0
\(137\) 58.3106 0.0363636 0.0181818 0.999835i \(-0.494212\pi\)
0.0181818 + 0.999835i \(0.494212\pi\)
\(138\) 0 0
\(139\) 701.578 0.428108 0.214054 0.976822i \(-0.431333\pi\)
0.214054 + 0.976822i \(0.431333\pi\)
\(140\) 0 0
\(141\) 4330.14 2.58627
\(142\) 0 0
\(143\) 1357.16 0.793646
\(144\) 0 0
\(145\) −145.000 −0.0830455
\(146\) 0 0
\(147\) −576.972 −0.323727
\(148\) 0 0
\(149\) −1211.72 −0.666227 −0.333113 0.942887i \(-0.608099\pi\)
−0.333113 + 0.942887i \(0.608099\pi\)
\(150\) 0 0
\(151\) 2515.91 1.35590 0.677952 0.735106i \(-0.262868\pi\)
0.677952 + 0.735106i \(0.262868\pi\)
\(152\) 0 0
\(153\) 5654.20 2.98768
\(154\) 0 0
\(155\) −1158.74 −0.600464
\(156\) 0 0
\(157\) −869.155 −0.441823 −0.220911 0.975294i \(-0.570903\pi\)
−0.220911 + 0.975294i \(0.570903\pi\)
\(158\) 0 0
\(159\) 3501.98 1.74670
\(160\) 0 0
\(161\) −659.051 −0.322612
\(162\) 0 0
\(163\) 3865.09 1.85729 0.928643 0.370976i \(-0.120977\pi\)
0.928643 + 0.370976i \(0.120977\pi\)
\(164\) 0 0
\(165\) 1487.92 0.702025
\(166\) 0 0
\(167\) 3407.54 1.57894 0.789472 0.613787i \(-0.210355\pi\)
0.789472 + 0.613787i \(0.210355\pi\)
\(168\) 0 0
\(169\) −603.106 −0.274513
\(170\) 0 0
\(171\) 4404.39 1.96966
\(172\) 0 0
\(173\) −796.244 −0.349927 −0.174963 0.984575i \(-0.555981\pi\)
−0.174963 + 0.984575i \(0.555981\pi\)
\(174\) 0 0
\(175\) 505.538 0.218372
\(176\) 0 0
\(177\) −5267.85 −2.23704
\(178\) 0 0
\(179\) −958.647 −0.400294 −0.200147 0.979766i \(-0.564142\pi\)
−0.200147 + 0.979766i \(0.564142\pi\)
\(180\) 0 0
\(181\) −4679.53 −1.92169 −0.960847 0.277080i \(-0.910633\pi\)
−0.960847 + 0.277080i \(0.910633\pi\)
\(182\) 0 0
\(183\) −2897.44 −1.17041
\(184\) 0 0
\(185\) −750.652 −0.298319
\(186\) 0 0
\(187\) 3872.61 1.51440
\(188\) 0 0
\(189\) −4006.43 −1.54193
\(190\) 0 0
\(191\) −1343.72 −0.509049 −0.254524 0.967066i \(-0.581919\pi\)
−0.254524 + 0.967066i \(0.581919\pi\)
\(192\) 0 0
\(193\) 2895.86 1.08005 0.540023 0.841650i \(-0.318416\pi\)
0.540023 + 0.841650i \(0.318416\pi\)
\(194\) 0 0
\(195\) 1747.46 0.641734
\(196\) 0 0
\(197\) −3151.36 −1.13972 −0.569860 0.821742i \(-0.693003\pi\)
−0.569860 + 0.821742i \(0.693003\pi\)
\(198\) 0 0
\(199\) 2922.77 1.04115 0.520577 0.853815i \(-0.325717\pi\)
0.520577 + 0.853815i \(0.325717\pi\)
\(200\) 0 0
\(201\) −7199.60 −2.52647
\(202\) 0 0
\(203\) 586.424 0.202753
\(204\) 0 0
\(205\) 2336.53 0.796049
\(206\) 0 0
\(207\) −1617.61 −0.543148
\(208\) 0 0
\(209\) 3016.61 0.998389
\(210\) 0 0
\(211\) −3475.86 −1.13407 −0.567033 0.823695i \(-0.691909\pi\)
−0.567033 + 0.823695i \(0.691909\pi\)
\(212\) 0 0
\(213\) 6281.10 2.02053
\(214\) 0 0
\(215\) −2436.87 −0.772993
\(216\) 0 0
\(217\) 4686.28 1.46602
\(218\) 0 0
\(219\) 2135.97 0.659066
\(220\) 0 0
\(221\) 4548.13 1.38434
\(222\) 0 0
\(223\) 2296.27 0.689549 0.344774 0.938686i \(-0.387955\pi\)
0.344774 + 0.938686i \(0.387955\pi\)
\(224\) 0 0
\(225\) 1240.82 0.367650
\(226\) 0 0
\(227\) −976.842 −0.285618 −0.142809 0.989750i \(-0.545613\pi\)
−0.142809 + 0.989750i \(0.545613\pi\)
\(228\) 0 0
\(229\) −3657.24 −1.05536 −0.527680 0.849443i \(-0.676938\pi\)
−0.527680 + 0.849443i \(0.676938\pi\)
\(230\) 0 0
\(231\) −6017.58 −1.71397
\(232\) 0 0
\(233\) −3264.90 −0.917987 −0.458994 0.888440i \(-0.651790\pi\)
−0.458994 + 0.888440i \(0.651790\pi\)
\(234\) 0 0
\(235\) 2473.23 0.686535
\(236\) 0 0
\(237\) 11649.4 3.19288
\(238\) 0 0
\(239\) 3790.15 1.02579 0.512896 0.858451i \(-0.328573\pi\)
0.512896 + 0.858451i \(0.328573\pi\)
\(240\) 0 0
\(241\) −577.658 −0.154399 −0.0771997 0.997016i \(-0.524598\pi\)
−0.0771997 + 0.997016i \(0.524598\pi\)
\(242\) 0 0
\(243\) 1897.52 0.500931
\(244\) 0 0
\(245\) −329.547 −0.0859346
\(246\) 0 0
\(247\) 3542.81 0.912646
\(248\) 0 0
\(249\) −6666.01 −1.69655
\(250\) 0 0
\(251\) −2331.95 −0.586419 −0.293209 0.956048i \(-0.594723\pi\)
−0.293209 + 0.956048i \(0.594723\pi\)
\(252\) 0 0
\(253\) −1107.92 −0.275313
\(254\) 0 0
\(255\) 4986.32 1.22453
\(256\) 0 0
\(257\) −4878.53 −1.18410 −0.592051 0.805900i \(-0.701682\pi\)
−0.592051 + 0.805900i \(0.701682\pi\)
\(258\) 0 0
\(259\) 3035.86 0.728338
\(260\) 0 0
\(261\) 1439.35 0.341354
\(262\) 0 0
\(263\) 4620.92 1.08341 0.541707 0.840567i \(-0.317778\pi\)
0.541707 + 0.840567i \(0.317778\pi\)
\(264\) 0 0
\(265\) 2000.22 0.463669
\(266\) 0 0
\(267\) −12984.9 −2.97627
\(268\) 0 0
\(269\) −1717.68 −0.389326 −0.194663 0.980870i \(-0.562361\pi\)
−0.194663 + 0.980870i \(0.562361\pi\)
\(270\) 0 0
\(271\) 1170.35 0.262339 0.131169 0.991360i \(-0.458127\pi\)
0.131169 + 0.991360i \(0.458127\pi\)
\(272\) 0 0
\(273\) −7067.25 −1.56677
\(274\) 0 0
\(275\) 849.848 0.186356
\(276\) 0 0
\(277\) −931.693 −0.202094 −0.101047 0.994882i \(-0.532219\pi\)
−0.101047 + 0.994882i \(0.532219\pi\)
\(278\) 0 0
\(279\) 11502.2 2.46818
\(280\) 0 0
\(281\) 2345.63 0.497967 0.248983 0.968508i \(-0.419904\pi\)
0.248983 + 0.968508i \(0.419904\pi\)
\(282\) 0 0
\(283\) −4409.55 −0.926221 −0.463111 0.886300i \(-0.653267\pi\)
−0.463111 + 0.886300i \(0.653267\pi\)
\(284\) 0 0
\(285\) 3884.14 0.807287
\(286\) 0 0
\(287\) −9449.62 −1.94353
\(288\) 0 0
\(289\) 8064.94 1.64155
\(290\) 0 0
\(291\) 11745.9 2.36618
\(292\) 0 0
\(293\) 5722.09 1.14091 0.570457 0.821327i \(-0.306766\pi\)
0.570457 + 0.821327i \(0.306766\pi\)
\(294\) 0 0
\(295\) −3008.82 −0.593831
\(296\) 0 0
\(297\) −6735.11 −1.31586
\(298\) 0 0
\(299\) −1301.17 −0.251668
\(300\) 0 0
\(301\) 9855.45 1.88724
\(302\) 0 0
\(303\) −296.934 −0.0562984
\(304\) 0 0
\(305\) −1654.92 −0.310690
\(306\) 0 0
\(307\) −8543.77 −1.58833 −0.794167 0.607699i \(-0.792093\pi\)
−0.794167 + 0.607699i \(0.792093\pi\)
\(308\) 0 0
\(309\) −754.750 −0.138952
\(310\) 0 0
\(311\) −7379.96 −1.34559 −0.672796 0.739828i \(-0.734907\pi\)
−0.672796 + 0.739828i \(0.734907\pi\)
\(312\) 0 0
\(313\) −5170.10 −0.933647 −0.466824 0.884350i \(-0.654602\pi\)
−0.466824 + 0.884350i \(0.654602\pi\)
\(314\) 0 0
\(315\) −5018.24 −0.897606
\(316\) 0 0
\(317\) −5298.42 −0.938766 −0.469383 0.882995i \(-0.655524\pi\)
−0.469383 + 0.882995i \(0.655524\pi\)
\(318\) 0 0
\(319\) 985.824 0.173027
\(320\) 0 0
\(321\) −14401.7 −2.50413
\(322\) 0 0
\(323\) 10109.3 1.74147
\(324\) 0 0
\(325\) 998.090 0.170351
\(326\) 0 0
\(327\) 203.815 0.0344678
\(328\) 0 0
\(329\) −10002.5 −1.67616
\(330\) 0 0
\(331\) 2759.40 0.458218 0.229109 0.973401i \(-0.426419\pi\)
0.229109 + 0.973401i \(0.426419\pi\)
\(332\) 0 0
\(333\) 7451.38 1.22623
\(334\) 0 0
\(335\) −4112.17 −0.670663
\(336\) 0 0
\(337\) 9327.83 1.50777 0.753886 0.657005i \(-0.228177\pi\)
0.753886 + 0.657005i \(0.228177\pi\)
\(338\) 0 0
\(339\) −9303.49 −1.49055
\(340\) 0 0
\(341\) 7878.00 1.25108
\(342\) 0 0
\(343\) −5603.19 −0.882052
\(344\) 0 0
\(345\) −1426.54 −0.222615
\(346\) 0 0
\(347\) 9199.14 1.42316 0.711579 0.702606i \(-0.247980\pi\)
0.711579 + 0.702606i \(0.247980\pi\)
\(348\) 0 0
\(349\) 1562.14 0.239598 0.119799 0.992798i \(-0.461775\pi\)
0.119799 + 0.992798i \(0.461775\pi\)
\(350\) 0 0
\(351\) −7909.94 −1.20285
\(352\) 0 0
\(353\) 5984.23 0.902290 0.451145 0.892451i \(-0.351016\pi\)
0.451145 + 0.892451i \(0.351016\pi\)
\(354\) 0 0
\(355\) 3587.55 0.536360
\(356\) 0 0
\(357\) −20166.2 −2.98966
\(358\) 0 0
\(359\) −6116.97 −0.899280 −0.449640 0.893210i \(-0.648448\pi\)
−0.449640 + 0.893210i \(0.648448\pi\)
\(360\) 0 0
\(361\) 1015.74 0.148089
\(362\) 0 0
\(363\) 1535.57 0.222029
\(364\) 0 0
\(365\) 1220.00 0.174952
\(366\) 0 0
\(367\) −13303.5 −1.89220 −0.946099 0.323877i \(-0.895014\pi\)
−0.946099 + 0.323877i \(0.895014\pi\)
\(368\) 0 0
\(369\) −23193.6 −3.27212
\(370\) 0 0
\(371\) −8089.47 −1.13203
\(372\) 0 0
\(373\) 11561.0 1.60484 0.802421 0.596758i \(-0.203545\pi\)
0.802421 + 0.596758i \(0.203545\pi\)
\(374\) 0 0
\(375\) 1094.25 0.150685
\(376\) 0 0
\(377\) 1157.78 0.158167
\(378\) 0 0
\(379\) −7536.96 −1.02150 −0.510749 0.859730i \(-0.670632\pi\)
−0.510749 + 0.859730i \(0.670632\pi\)
\(380\) 0 0
\(381\) 3234.81 0.434973
\(382\) 0 0
\(383\) 5077.34 0.677388 0.338694 0.940897i \(-0.390015\pi\)
0.338694 + 0.940897i \(0.390015\pi\)
\(384\) 0 0
\(385\) −3437.04 −0.454982
\(386\) 0 0
\(387\) 24189.7 3.17735
\(388\) 0 0
\(389\) −8940.54 −1.16530 −0.582652 0.812722i \(-0.697985\pi\)
−0.582652 + 0.812722i \(0.697985\pi\)
\(390\) 0 0
\(391\) −3712.86 −0.480223
\(392\) 0 0
\(393\) 15527.4 1.99302
\(394\) 0 0
\(395\) 6653.77 0.847564
\(396\) 0 0
\(397\) 6436.32 0.813676 0.406838 0.913500i \(-0.366631\pi\)
0.406838 + 0.913500i \(0.366631\pi\)
\(398\) 0 0
\(399\) −15708.6 −1.97097
\(400\) 0 0
\(401\) −6832.73 −0.850899 −0.425449 0.904982i \(-0.639884\pi\)
−0.425449 + 0.904982i \(0.639884\pi\)
\(402\) 0 0
\(403\) 9252.19 1.14363
\(404\) 0 0
\(405\) −1971.61 −0.241902
\(406\) 0 0
\(407\) 5103.52 0.621553
\(408\) 0 0
\(409\) −6981.52 −0.844044 −0.422022 0.906586i \(-0.638680\pi\)
−0.422022 + 0.906586i \(0.638680\pi\)
\(410\) 0 0
\(411\) −510.452 −0.0612621
\(412\) 0 0
\(413\) 12168.6 1.44982
\(414\) 0 0
\(415\) −3807.40 −0.450357
\(416\) 0 0
\(417\) −6141.62 −0.721238
\(418\) 0 0
\(419\) −9700.75 −1.13106 −0.565528 0.824729i \(-0.691328\pi\)
−0.565528 + 0.824729i \(0.691328\pi\)
\(420\) 0 0
\(421\) 7969.20 0.922554 0.461277 0.887256i \(-0.347392\pi\)
0.461277 + 0.887256i \(0.347392\pi\)
\(422\) 0 0
\(423\) −24550.6 −2.82197
\(424\) 0 0
\(425\) 2848.02 0.325057
\(426\) 0 0
\(427\) 6693.00 0.758540
\(428\) 0 0
\(429\) −11880.6 −1.33706
\(430\) 0 0
\(431\) −1698.55 −0.189828 −0.0949142 0.995485i \(-0.530258\pi\)
−0.0949142 + 0.995485i \(0.530258\pi\)
\(432\) 0 0
\(433\) 5252.28 0.582929 0.291465 0.956582i \(-0.405857\pi\)
0.291465 + 0.956582i \(0.405857\pi\)
\(434\) 0 0
\(435\) 1269.33 0.139908
\(436\) 0 0
\(437\) −2892.17 −0.316593
\(438\) 0 0
\(439\) 5682.28 0.617768 0.308884 0.951100i \(-0.400044\pi\)
0.308884 + 0.951100i \(0.400044\pi\)
\(440\) 0 0
\(441\) 3271.26 0.353230
\(442\) 0 0
\(443\) −6717.45 −0.720442 −0.360221 0.932867i \(-0.617299\pi\)
−0.360221 + 0.932867i \(0.617299\pi\)
\(444\) 0 0
\(445\) −7416.56 −0.790064
\(446\) 0 0
\(447\) 10607.4 1.12240
\(448\) 0 0
\(449\) 11142.6 1.17116 0.585581 0.810614i \(-0.300867\pi\)
0.585581 + 0.810614i \(0.300867\pi\)
\(450\) 0 0
\(451\) −15885.5 −1.65858
\(452\) 0 0
\(453\) −22024.3 −2.28431
\(454\) 0 0
\(455\) −4036.58 −0.415907
\(456\) 0 0
\(457\) 14112.2 1.44451 0.722257 0.691625i \(-0.243105\pi\)
0.722257 + 0.691625i \(0.243105\pi\)
\(458\) 0 0
\(459\) −22570.8 −2.29524
\(460\) 0 0
\(461\) 6100.16 0.616297 0.308149 0.951338i \(-0.400291\pi\)
0.308149 + 0.951338i \(0.400291\pi\)
\(462\) 0 0
\(463\) −4635.93 −0.465335 −0.232667 0.972556i \(-0.574745\pi\)
−0.232667 + 0.972556i \(0.574745\pi\)
\(464\) 0 0
\(465\) 10143.6 1.01161
\(466\) 0 0
\(467\) −4280.41 −0.424141 −0.212071 0.977254i \(-0.568021\pi\)
−0.212071 + 0.977254i \(0.568021\pi\)
\(468\) 0 0
\(469\) 16630.9 1.63740
\(470\) 0 0
\(471\) 7608.60 0.744343
\(472\) 0 0
\(473\) 16567.8 1.61054
\(474\) 0 0
\(475\) 2218.49 0.214298
\(476\) 0 0
\(477\) −19855.2 −1.90589
\(478\) 0 0
\(479\) −1717.52 −0.163832 −0.0819160 0.996639i \(-0.526104\pi\)
−0.0819160 + 0.996639i \(0.526104\pi\)
\(480\) 0 0
\(481\) 5993.75 0.568173
\(482\) 0 0
\(483\) 5769.34 0.543507
\(484\) 0 0
\(485\) 6708.87 0.628112
\(486\) 0 0
\(487\) 19402.3 1.80534 0.902672 0.430330i \(-0.141603\pi\)
0.902672 + 0.430330i \(0.141603\pi\)
\(488\) 0 0
\(489\) −33835.1 −3.12899
\(490\) 0 0
\(491\) −3585.22 −0.329529 −0.164764 0.986333i \(-0.552686\pi\)
−0.164764 + 0.986333i \(0.552686\pi\)
\(492\) 0 0
\(493\) 3303.70 0.301808
\(494\) 0 0
\(495\) −8436.05 −0.766005
\(496\) 0 0
\(497\) −14509.2 −1.30951
\(498\) 0 0
\(499\) −2952.68 −0.264890 −0.132445 0.991190i \(-0.542283\pi\)
−0.132445 + 0.991190i \(0.542283\pi\)
\(500\) 0 0
\(501\) −29829.7 −2.66006
\(502\) 0 0
\(503\) −3703.50 −0.328292 −0.164146 0.986436i \(-0.552487\pi\)
−0.164146 + 0.986436i \(0.552487\pi\)
\(504\) 0 0
\(505\) −169.599 −0.0149447
\(506\) 0 0
\(507\) 5279.60 0.462475
\(508\) 0 0
\(509\) 9806.65 0.853973 0.426986 0.904258i \(-0.359575\pi\)
0.426986 + 0.904258i \(0.359575\pi\)
\(510\) 0 0
\(511\) −4934.03 −0.427140
\(512\) 0 0
\(513\) −17581.7 −1.51316
\(514\) 0 0
\(515\) −431.088 −0.0368855
\(516\) 0 0
\(517\) −16815.0 −1.43041
\(518\) 0 0
\(519\) 6970.33 0.589525
\(520\) 0 0
\(521\) 1436.91 0.120830 0.0604149 0.998173i \(-0.480758\pi\)
0.0604149 + 0.998173i \(0.480758\pi\)
\(522\) 0 0
\(523\) 13099.2 1.09520 0.547598 0.836741i \(-0.315542\pi\)
0.547598 + 0.836741i \(0.315542\pi\)
\(524\) 0 0
\(525\) −4425.48 −0.367893
\(526\) 0 0
\(527\) 26400.8 2.18224
\(528\) 0 0
\(529\) −11104.8 −0.912697
\(530\) 0 0
\(531\) 29867.2 2.44091
\(532\) 0 0
\(533\) −18656.5 −1.51614
\(534\) 0 0
\(535\) −8225.77 −0.664731
\(536\) 0 0
\(537\) 8392.01 0.674380
\(538\) 0 0
\(539\) 2240.52 0.179046
\(540\) 0 0
\(541\) 6178.32 0.490992 0.245496 0.969398i \(-0.421049\pi\)
0.245496 + 0.969398i \(0.421049\pi\)
\(542\) 0 0
\(543\) 40964.6 3.23750
\(544\) 0 0
\(545\) 116.412 0.00914963
\(546\) 0 0
\(547\) 22268.3 1.74063 0.870313 0.492499i \(-0.163916\pi\)
0.870313 + 0.492499i \(0.163916\pi\)
\(548\) 0 0
\(549\) 16427.6 1.27708
\(550\) 0 0
\(551\) 2573.45 0.198970
\(552\) 0 0
\(553\) −26909.9 −2.06930
\(554\) 0 0
\(555\) 6571.22 0.502581
\(556\) 0 0
\(557\) −5242.87 −0.398829 −0.199414 0.979915i \(-0.563904\pi\)
−0.199414 + 0.979915i \(0.563904\pi\)
\(558\) 0 0
\(559\) 19457.8 1.47223
\(560\) 0 0
\(561\) −33900.9 −2.55133
\(562\) 0 0
\(563\) −21298.2 −1.59434 −0.797169 0.603757i \(-0.793670\pi\)
−0.797169 + 0.603757i \(0.793670\pi\)
\(564\) 0 0
\(565\) −5313.85 −0.395673
\(566\) 0 0
\(567\) 7973.80 0.590596
\(568\) 0 0
\(569\) −5685.99 −0.418927 −0.209463 0.977817i \(-0.567172\pi\)
−0.209463 + 0.977817i \(0.567172\pi\)
\(570\) 0 0
\(571\) −12511.3 −0.916955 −0.458478 0.888706i \(-0.651605\pi\)
−0.458478 + 0.888706i \(0.651605\pi\)
\(572\) 0 0
\(573\) 11763.0 0.857600
\(574\) 0 0
\(575\) −814.790 −0.0590941
\(576\) 0 0
\(577\) 15403.9 1.11139 0.555696 0.831386i \(-0.312452\pi\)
0.555696 + 0.831386i \(0.312452\pi\)
\(578\) 0 0
\(579\) −25350.4 −1.81956
\(580\) 0 0
\(581\) 15398.3 1.09953
\(582\) 0 0
\(583\) −13599.0 −0.966063
\(584\) 0 0
\(585\) −9907.58 −0.700219
\(586\) 0 0
\(587\) 10911.3 0.767219 0.383609 0.923495i \(-0.374681\pi\)
0.383609 + 0.923495i \(0.374681\pi\)
\(588\) 0 0
\(589\) 20565.2 1.43867
\(590\) 0 0
\(591\) 27587.0 1.92010
\(592\) 0 0
\(593\) −4112.34 −0.284779 −0.142389 0.989811i \(-0.545478\pi\)
−0.142389 + 0.989811i \(0.545478\pi\)
\(594\) 0 0
\(595\) −11518.2 −0.793617
\(596\) 0 0
\(597\) −25585.9 −1.75404
\(598\) 0 0
\(599\) 19002.0 1.29616 0.648080 0.761572i \(-0.275572\pi\)
0.648080 + 0.761572i \(0.275572\pi\)
\(600\) 0 0
\(601\) 3813.27 0.258813 0.129407 0.991592i \(-0.458693\pi\)
0.129407 + 0.991592i \(0.458693\pi\)
\(602\) 0 0
\(603\) 40819.7 2.75672
\(604\) 0 0
\(605\) 877.065 0.0589384
\(606\) 0 0
\(607\) 11543.4 0.771883 0.385941 0.922523i \(-0.373877\pi\)
0.385941 + 0.922523i \(0.373877\pi\)
\(608\) 0 0
\(609\) −5133.56 −0.341580
\(610\) 0 0
\(611\) −19748.1 −1.30756
\(612\) 0 0
\(613\) 1035.60 0.0682338 0.0341169 0.999418i \(-0.489138\pi\)
0.0341169 + 0.999418i \(0.489138\pi\)
\(614\) 0 0
\(615\) −20454.0 −1.34111
\(616\) 0 0
\(617\) −19833.8 −1.29413 −0.647065 0.762434i \(-0.724004\pi\)
−0.647065 + 0.762434i \(0.724004\pi\)
\(618\) 0 0
\(619\) 25107.7 1.63031 0.815157 0.579241i \(-0.196651\pi\)
0.815157 + 0.579241i \(0.196651\pi\)
\(620\) 0 0
\(621\) 6457.27 0.417265
\(622\) 0 0
\(623\) 29994.8 1.92892
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −26407.5 −1.68200
\(628\) 0 0
\(629\) 17103.0 1.08417
\(630\) 0 0
\(631\) −2334.04 −0.147253 −0.0736265 0.997286i \(-0.523457\pi\)
−0.0736265 + 0.997286i \(0.523457\pi\)
\(632\) 0 0
\(633\) 30427.7 1.91057
\(634\) 0 0
\(635\) 1847.62 0.115465
\(636\) 0 0
\(637\) 2631.34 0.163670
\(638\) 0 0
\(639\) −35612.0 −2.20468
\(640\) 0 0
\(641\) −4443.82 −0.273823 −0.136911 0.990583i \(-0.543718\pi\)
−0.136911 + 0.990583i \(0.543718\pi\)
\(642\) 0 0
\(643\) −1157.81 −0.0710102 −0.0355051 0.999369i \(-0.511304\pi\)
−0.0355051 + 0.999369i \(0.511304\pi\)
\(644\) 0 0
\(645\) 21332.4 1.30227
\(646\) 0 0
\(647\) −23478.7 −1.42665 −0.713325 0.700834i \(-0.752812\pi\)
−0.713325 + 0.700834i \(0.752812\pi\)
\(648\) 0 0
\(649\) 20456.3 1.23726
\(650\) 0 0
\(651\) −41023.8 −2.46981
\(652\) 0 0
\(653\) 46.1166 0.00276368 0.00138184 0.999999i \(-0.499560\pi\)
0.00138184 + 0.999999i \(0.499560\pi\)
\(654\) 0 0
\(655\) 8868.76 0.529055
\(656\) 0 0
\(657\) −12110.3 −0.719131
\(658\) 0 0
\(659\) −10953.4 −0.647474 −0.323737 0.946147i \(-0.604939\pi\)
−0.323737 + 0.946147i \(0.604939\pi\)
\(660\) 0 0
\(661\) 8628.34 0.507721 0.253861 0.967241i \(-0.418300\pi\)
0.253861 + 0.967241i \(0.418300\pi\)
\(662\) 0 0
\(663\) −39814.4 −2.33222
\(664\) 0 0
\(665\) −8972.26 −0.523202
\(666\) 0 0
\(667\) −945.156 −0.0548674
\(668\) 0 0
\(669\) −20101.5 −1.16169
\(670\) 0 0
\(671\) 11251.4 0.647328
\(672\) 0 0
\(673\) 10831.3 0.620380 0.310190 0.950675i \(-0.399607\pi\)
0.310190 + 0.950675i \(0.399607\pi\)
\(674\) 0 0
\(675\) −4953.17 −0.282441
\(676\) 0 0
\(677\) 12794.5 0.726342 0.363171 0.931723i \(-0.381694\pi\)
0.363171 + 0.931723i \(0.381694\pi\)
\(678\) 0 0
\(679\) −27132.7 −1.53352
\(680\) 0 0
\(681\) 8551.29 0.481184
\(682\) 0 0
\(683\) 738.760 0.0413878 0.0206939 0.999786i \(-0.493412\pi\)
0.0206939 + 0.999786i \(0.493412\pi\)
\(684\) 0 0
\(685\) −291.553 −0.0162623
\(686\) 0 0
\(687\) 32015.5 1.77798
\(688\) 0 0
\(689\) −15971.2 −0.883096
\(690\) 0 0
\(691\) −19190.3 −1.05649 −0.528245 0.849092i \(-0.677150\pi\)
−0.528245 + 0.849092i \(0.677150\pi\)
\(692\) 0 0
\(693\) 34117.9 1.87018
\(694\) 0 0
\(695\) −3507.89 −0.191456
\(696\) 0 0
\(697\) −53235.8 −2.89304
\(698\) 0 0
\(699\) 28581.0 1.54654
\(700\) 0 0
\(701\) 12515.4 0.674322 0.337161 0.941447i \(-0.390533\pi\)
0.337161 + 0.941447i \(0.390533\pi\)
\(702\) 0 0
\(703\) 13322.5 0.714750
\(704\) 0 0
\(705\) −21650.7 −1.15661
\(706\) 0 0
\(707\) 685.909 0.0364870
\(708\) 0 0
\(709\) 13814.4 0.731752 0.365876 0.930664i \(-0.380769\pi\)
0.365876 + 0.930664i \(0.380769\pi\)
\(710\) 0 0
\(711\) −66049.0 −3.48387
\(712\) 0 0
\(713\) −7553.01 −0.396722
\(714\) 0 0
\(715\) −6785.80 −0.354929
\(716\) 0 0
\(717\) −33179.0 −1.72816
\(718\) 0 0
\(719\) 29419.8 1.52597 0.762985 0.646416i \(-0.223733\pi\)
0.762985 + 0.646416i \(0.223733\pi\)
\(720\) 0 0
\(721\) 1743.45 0.0900548
\(722\) 0 0
\(723\) 5056.83 0.260118
\(724\) 0 0
\(725\) 725.000 0.0371391
\(726\) 0 0
\(727\) −26045.8 −1.32873 −0.664364 0.747409i \(-0.731297\pi\)
−0.664364 + 0.747409i \(0.731297\pi\)
\(728\) 0 0
\(729\) −27257.7 −1.38483
\(730\) 0 0
\(731\) 55522.1 2.80925
\(732\) 0 0
\(733\) −24216.1 −1.22025 −0.610125 0.792305i \(-0.708881\pi\)
−0.610125 + 0.792305i \(0.708881\pi\)
\(734\) 0 0
\(735\) 2884.86 0.144775
\(736\) 0 0
\(737\) 27957.8 1.39734
\(738\) 0 0
\(739\) 8915.31 0.443782 0.221891 0.975071i \(-0.428777\pi\)
0.221891 + 0.975071i \(0.428777\pi\)
\(740\) 0 0
\(741\) −31013.8 −1.53754
\(742\) 0 0
\(743\) −22073.3 −1.08989 −0.544947 0.838470i \(-0.683450\pi\)
−0.544947 + 0.838470i \(0.683450\pi\)
\(744\) 0 0
\(745\) 6058.59 0.297946
\(746\) 0 0
\(747\) 37794.3 1.85117
\(748\) 0 0
\(749\) 33267.5 1.62292
\(750\) 0 0
\(751\) 27646.1 1.34330 0.671651 0.740867i \(-0.265585\pi\)
0.671651 + 0.740867i \(0.265585\pi\)
\(752\) 0 0
\(753\) 20413.9 0.987946
\(754\) 0 0
\(755\) −12579.5 −0.606379
\(756\) 0 0
\(757\) 32415.6 1.55636 0.778181 0.628040i \(-0.216143\pi\)
0.778181 + 0.628040i \(0.216143\pi\)
\(758\) 0 0
\(759\) 9698.71 0.463822
\(760\) 0 0
\(761\) 20254.3 0.964806 0.482403 0.875949i \(-0.339764\pi\)
0.482403 + 0.875949i \(0.339764\pi\)
\(762\) 0 0
\(763\) −470.806 −0.0223385
\(764\) 0 0
\(765\) −28271.0 −1.33613
\(766\) 0 0
\(767\) 24024.6 1.13100
\(768\) 0 0
\(769\) −14158.3 −0.663928 −0.331964 0.943292i \(-0.607711\pi\)
−0.331964 + 0.943292i \(0.607711\pi\)
\(770\) 0 0
\(771\) 42706.7 1.99487
\(772\) 0 0
\(773\) 2423.96 0.112786 0.0563931 0.998409i \(-0.482040\pi\)
0.0563931 + 0.998409i \(0.482040\pi\)
\(774\) 0 0
\(775\) 5793.68 0.268536
\(776\) 0 0
\(777\) −26576.0 −1.22704
\(778\) 0 0
\(779\) −41468.6 −1.90727
\(780\) 0 0
\(781\) −24391.0 −1.11751
\(782\) 0 0
\(783\) −5745.68 −0.262240
\(784\) 0 0
\(785\) 4345.78 0.197589
\(786\) 0 0
\(787\) 9820.85 0.444823 0.222411 0.974953i \(-0.428607\pi\)
0.222411 + 0.974953i \(0.428607\pi\)
\(788\) 0 0
\(789\) −40451.6 −1.82524
\(790\) 0 0
\(791\) 21490.8 0.966024
\(792\) 0 0
\(793\) 13214.1 0.591735
\(794\) 0 0
\(795\) −17509.9 −0.781148
\(796\) 0 0
\(797\) 4153.45 0.184596 0.0922978 0.995731i \(-0.470579\pi\)
0.0922978 + 0.995731i \(0.470579\pi\)
\(798\) 0 0
\(799\) −56350.5 −2.49504
\(800\) 0 0
\(801\) 73620.8 3.24752
\(802\) 0 0
\(803\) −8294.49 −0.364516
\(804\) 0 0
\(805\) 3295.26 0.144276
\(806\) 0 0
\(807\) 15036.6 0.655902
\(808\) 0 0
\(809\) 6883.12 0.299132 0.149566 0.988752i \(-0.452212\pi\)
0.149566 + 0.988752i \(0.452212\pi\)
\(810\) 0 0
\(811\) 22778.1 0.986249 0.493125 0.869959i \(-0.335855\pi\)
0.493125 + 0.869959i \(0.335855\pi\)
\(812\) 0 0
\(813\) −10245.3 −0.441965
\(814\) 0 0
\(815\) −19325.5 −0.830603
\(816\) 0 0
\(817\) 43249.5 1.85203
\(818\) 0 0
\(819\) 40069.3 1.70956
\(820\) 0 0
\(821\) 9157.92 0.389298 0.194649 0.980873i \(-0.437643\pi\)
0.194649 + 0.980873i \(0.437643\pi\)
\(822\) 0 0
\(823\) −33128.1 −1.40313 −0.701564 0.712607i \(-0.747514\pi\)
−0.701564 + 0.712607i \(0.747514\pi\)
\(824\) 0 0
\(825\) −7439.58 −0.313955
\(826\) 0 0
\(827\) −33683.5 −1.41631 −0.708155 0.706057i \(-0.750472\pi\)
−0.708155 + 0.706057i \(0.750472\pi\)
\(828\) 0 0
\(829\) −22625.9 −0.947926 −0.473963 0.880545i \(-0.657177\pi\)
−0.473963 + 0.880545i \(0.657177\pi\)
\(830\) 0 0
\(831\) 8156.05 0.340470
\(832\) 0 0
\(833\) 7508.45 0.312308
\(834\) 0 0
\(835\) −17037.7 −0.706125
\(836\) 0 0
\(837\) −45915.4 −1.89614
\(838\) 0 0
\(839\) −32784.1 −1.34903 −0.674513 0.738263i \(-0.735646\pi\)
−0.674513 + 0.738263i \(0.735646\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 0 0
\(843\) −20533.7 −0.838930
\(844\) 0 0
\(845\) 3015.53 0.122766
\(846\) 0 0
\(847\) −3547.11 −0.143896
\(848\) 0 0
\(849\) 38601.3 1.56041
\(850\) 0 0
\(851\) −4892.99 −0.197097
\(852\) 0 0
\(853\) −30236.5 −1.21369 −0.606846 0.794820i \(-0.707565\pi\)
−0.606846 + 0.794820i \(0.707565\pi\)
\(854\) 0 0
\(855\) −22022.0 −0.880860
\(856\) 0 0
\(857\) −35600.8 −1.41902 −0.709510 0.704695i \(-0.751084\pi\)
−0.709510 + 0.704695i \(0.751084\pi\)
\(858\) 0 0
\(859\) −41550.4 −1.65038 −0.825192 0.564852i \(-0.808933\pi\)
−0.825192 + 0.564852i \(0.808933\pi\)
\(860\) 0 0
\(861\) 82722.1 3.27429
\(862\) 0 0
\(863\) −26752.2 −1.05522 −0.527609 0.849487i \(-0.676912\pi\)
−0.527609 + 0.849487i \(0.676912\pi\)
\(864\) 0 0
\(865\) 3981.22 0.156492
\(866\) 0 0
\(867\) −70600.6 −2.76554
\(868\) 0 0
\(869\) −45237.6 −1.76591
\(870\) 0 0
\(871\) 32834.6 1.27733
\(872\) 0 0
\(873\) −66595.9 −2.58182
\(874\) 0 0
\(875\) −2527.69 −0.0976588
\(876\) 0 0
\(877\) 40055.1 1.54226 0.771131 0.636676i \(-0.219691\pi\)
0.771131 + 0.636676i \(0.219691\pi\)
\(878\) 0 0
\(879\) −50091.2 −1.92211
\(880\) 0 0
\(881\) −6192.02 −0.236793 −0.118396 0.992966i \(-0.537775\pi\)
−0.118396 + 0.992966i \(0.537775\pi\)
\(882\) 0 0
\(883\) 49830.2 1.89912 0.949559 0.313589i \(-0.101531\pi\)
0.949559 + 0.313589i \(0.101531\pi\)
\(884\) 0 0
\(885\) 26339.2 1.00043
\(886\) 0 0
\(887\) 4553.13 0.172355 0.0861776 0.996280i \(-0.472535\pi\)
0.0861776 + 0.996280i \(0.472535\pi\)
\(888\) 0 0
\(889\) −7472.33 −0.281905
\(890\) 0 0
\(891\) 13404.6 0.504007
\(892\) 0 0
\(893\) −43894.8 −1.64489
\(894\) 0 0
\(895\) 4793.24 0.179017
\(896\) 0 0
\(897\) 11390.5 0.423988
\(898\) 0 0
\(899\) 6720.67 0.249329
\(900\) 0 0
\(901\) −45573.2 −1.68509
\(902\) 0 0
\(903\) −86274.8 −3.17945
\(904\) 0 0
\(905\) 23397.6 0.859408
\(906\) 0 0
\(907\) 24108.9 0.882606 0.441303 0.897358i \(-0.354516\pi\)
0.441303 + 0.897358i \(0.354516\pi\)
\(908\) 0 0
\(909\) 1683.53 0.0614293
\(910\) 0 0
\(911\) 18934.6 0.688619 0.344309 0.938856i \(-0.388113\pi\)
0.344309 + 0.938856i \(0.388113\pi\)
\(912\) 0 0
\(913\) 25885.7 0.938327
\(914\) 0 0
\(915\) 14487.2 0.523423
\(916\) 0 0
\(917\) −35867.9 −1.29167
\(918\) 0 0
\(919\) 14881.3 0.534155 0.267078 0.963675i \(-0.413942\pi\)
0.267078 + 0.963675i \(0.413942\pi\)
\(920\) 0 0
\(921\) 74792.3 2.67588
\(922\) 0 0
\(923\) −28645.6 −1.02154
\(924\) 0 0
\(925\) 3753.26 0.133412
\(926\) 0 0
\(927\) 4279.22 0.151616
\(928\) 0 0
\(929\) 21932.9 0.774592 0.387296 0.921955i \(-0.373409\pi\)
0.387296 + 0.921955i \(0.373409\pi\)
\(930\) 0 0
\(931\) 5848.78 0.205893
\(932\) 0 0
\(933\) 64604.3 2.26693
\(934\) 0 0
\(935\) −19363.1 −0.677262
\(936\) 0 0
\(937\) 14132.3 0.492722 0.246361 0.969178i \(-0.420765\pi\)
0.246361 + 0.969178i \(0.420765\pi\)
\(938\) 0 0
\(939\) 45259.2 1.57292
\(940\) 0 0
\(941\) 19998.9 0.692821 0.346411 0.938083i \(-0.387400\pi\)
0.346411 + 0.938083i \(0.387400\pi\)
\(942\) 0 0
\(943\) 15230.2 0.525943
\(944\) 0 0
\(945\) 20032.1 0.689572
\(946\) 0 0
\(947\) 26226.6 0.899948 0.449974 0.893042i \(-0.351433\pi\)
0.449974 + 0.893042i \(0.351433\pi\)
\(948\) 0 0
\(949\) −9741.32 −0.333210
\(950\) 0 0
\(951\) 46382.4 1.58155
\(952\) 0 0
\(953\) 12989.1 0.441510 0.220755 0.975329i \(-0.429148\pi\)
0.220755 + 0.975329i \(0.429148\pi\)
\(954\) 0 0
\(955\) 6718.61 0.227653
\(956\) 0 0
\(957\) −8629.91 −0.291500
\(958\) 0 0
\(959\) 1179.13 0.0397039
\(960\) 0 0
\(961\) 23915.8 0.802787
\(962\) 0 0
\(963\) 81653.4 2.73234
\(964\) 0 0
\(965\) −14479.3 −0.483011
\(966\) 0 0
\(967\) −3837.04 −0.127602 −0.0638008 0.997963i \(-0.520322\pi\)
−0.0638008 + 0.997963i \(0.520322\pi\)
\(968\) 0 0
\(969\) −88496.9 −2.93388
\(970\) 0 0
\(971\) −9063.90 −0.299562 −0.149781 0.988719i \(-0.547857\pi\)
−0.149781 + 0.988719i \(0.547857\pi\)
\(972\) 0 0
\(973\) 14187.0 0.467434
\(974\) 0 0
\(975\) −8737.29 −0.286992
\(976\) 0 0
\(977\) 5605.42 0.183555 0.0917775 0.995780i \(-0.470745\pi\)
0.0917775 + 0.995780i \(0.470745\pi\)
\(978\) 0 0
\(979\) 50423.6 1.64611
\(980\) 0 0
\(981\) −1155.57 −0.0376091
\(982\) 0 0
\(983\) −18475.9 −0.599480 −0.299740 0.954021i \(-0.596900\pi\)
−0.299740 + 0.954021i \(0.596900\pi\)
\(984\) 0 0
\(985\) 15756.8 0.509698
\(986\) 0 0
\(987\) 87561.9 2.82384
\(988\) 0 0
\(989\) −15884.3 −0.510710
\(990\) 0 0
\(991\) −41350.4 −1.32547 −0.662733 0.748855i \(-0.730604\pi\)
−0.662733 + 0.748855i \(0.730604\pi\)
\(992\) 0 0
\(993\) −24155.8 −0.771964
\(994\) 0 0
\(995\) −14613.8 −0.465618
\(996\) 0 0
\(997\) −25636.3 −0.814354 −0.407177 0.913349i \(-0.633487\pi\)
−0.407177 + 0.913349i \(0.633487\pi\)
\(998\) 0 0
\(999\) −29744.9 −0.942029
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1160.4.a.h.1.1 11
4.3 odd 2 2320.4.a.z.1.11 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.4.a.h.1.1 11 1.1 even 1 trivial
2320.4.a.z.1.11 11 4.3 odd 2