Properties

Label 1160.4.a.h.1.10
Level $1160$
Weight $4$
Character 1160.1
Self dual yes
Analytic conductor $68.442$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1160,4,Mod(1,1160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1160.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1160 = 2^{3} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1160.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.4422156067\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 3 x^{10} - 200 x^{9} + 418 x^{8} + 13211 x^{7} - 14353 x^{6} - 314463 x^{5} + 64817 x^{4} + \cdots + 712233 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{9}\cdot 3^{3}\cdot 43 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(-7.27289\) of defining polynomial
Character \(\chi\) \(=\) 1160.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.27289 q^{3} -5.00000 q^{5} -31.8915 q^{7} +41.4407 q^{9} -63.2476 q^{11} +12.2067 q^{13} -41.3644 q^{15} +46.6824 q^{17} +85.1852 q^{19} -263.835 q^{21} +114.108 q^{23} +25.0000 q^{25} +119.466 q^{27} +29.0000 q^{29} +249.909 q^{31} -523.240 q^{33} +159.457 q^{35} +60.5079 q^{37} +100.985 q^{39} -46.7949 q^{41} +399.796 q^{43} -207.203 q^{45} +28.9658 q^{47} +674.067 q^{49} +386.198 q^{51} -311.057 q^{53} +316.238 q^{55} +704.728 q^{57} +533.147 q^{59} +137.649 q^{61} -1321.60 q^{63} -61.0334 q^{65} +20.3883 q^{67} +944.004 q^{69} -875.918 q^{71} -549.269 q^{73} +206.822 q^{75} +2017.06 q^{77} +1142.94 q^{79} -130.570 q^{81} +1031.80 q^{83} -233.412 q^{85} +239.914 q^{87} +708.780 q^{89} -389.289 q^{91} +2067.47 q^{93} -425.926 q^{95} +1765.18 q^{97} -2621.02 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 8 q^{3} - 55 q^{5} + 16 q^{7} + 117 q^{9} + 26 q^{11} + 52 q^{13} - 40 q^{15} + 14 q^{17} + 146 q^{19} - 288 q^{21} - 80 q^{23} + 275 q^{25} + 224 q^{27} + 319 q^{29} - 38 q^{31} - 152 q^{33} - 80 q^{35}+ \cdots + 4690 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.27289 1.59212 0.796059 0.605219i \(-0.206915\pi\)
0.796059 + 0.605219i \(0.206915\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −31.8915 −1.72198 −0.860989 0.508623i \(-0.830155\pi\)
−0.860989 + 0.508623i \(0.830155\pi\)
\(8\) 0 0
\(9\) 41.4407 1.53484
\(10\) 0 0
\(11\) −63.2476 −1.73362 −0.866812 0.498635i \(-0.833835\pi\)
−0.866812 + 0.498635i \(0.833835\pi\)
\(12\) 0 0
\(13\) 12.2067 0.260425 0.130213 0.991486i \(-0.458434\pi\)
0.130213 + 0.991486i \(0.458434\pi\)
\(14\) 0 0
\(15\) −41.3644 −0.712017
\(16\) 0 0
\(17\) 46.6824 0.666009 0.333004 0.942925i \(-0.391938\pi\)
0.333004 + 0.942925i \(0.391938\pi\)
\(18\) 0 0
\(19\) 85.1852 1.02857 0.514285 0.857619i \(-0.328057\pi\)
0.514285 + 0.857619i \(0.328057\pi\)
\(20\) 0 0
\(21\) −263.835 −2.74159
\(22\) 0 0
\(23\) 114.108 1.03449 0.517243 0.855838i \(-0.326958\pi\)
0.517243 + 0.855838i \(0.326958\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 119.466 0.851527
\(28\) 0 0
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) 249.909 1.44790 0.723951 0.689852i \(-0.242324\pi\)
0.723951 + 0.689852i \(0.242324\pi\)
\(32\) 0 0
\(33\) −523.240 −2.76013
\(34\) 0 0
\(35\) 159.457 0.770092
\(36\) 0 0
\(37\) 60.5079 0.268850 0.134425 0.990924i \(-0.457081\pi\)
0.134425 + 0.990924i \(0.457081\pi\)
\(38\) 0 0
\(39\) 100.985 0.414627
\(40\) 0 0
\(41\) −46.7949 −0.178247 −0.0891235 0.996021i \(-0.528407\pi\)
−0.0891235 + 0.996021i \(0.528407\pi\)
\(42\) 0 0
\(43\) 399.796 1.41787 0.708935 0.705274i \(-0.249176\pi\)
0.708935 + 0.705274i \(0.249176\pi\)
\(44\) 0 0
\(45\) −207.203 −0.686401
\(46\) 0 0
\(47\) 28.9658 0.0898958 0.0449479 0.998989i \(-0.485688\pi\)
0.0449479 + 0.998989i \(0.485688\pi\)
\(48\) 0 0
\(49\) 674.067 1.96521
\(50\) 0 0
\(51\) 386.198 1.06036
\(52\) 0 0
\(53\) −311.057 −0.806170 −0.403085 0.915163i \(-0.632062\pi\)
−0.403085 + 0.915163i \(0.632062\pi\)
\(54\) 0 0
\(55\) 316.238 0.775300
\(56\) 0 0
\(57\) 704.728 1.63760
\(58\) 0 0
\(59\) 533.147 1.17644 0.588219 0.808702i \(-0.299829\pi\)
0.588219 + 0.808702i \(0.299829\pi\)
\(60\) 0 0
\(61\) 137.649 0.288921 0.144461 0.989511i \(-0.453855\pi\)
0.144461 + 0.989511i \(0.453855\pi\)
\(62\) 0 0
\(63\) −1321.60 −2.64296
\(64\) 0 0
\(65\) −61.0334 −0.116466
\(66\) 0 0
\(67\) 20.3883 0.0371766 0.0185883 0.999827i \(-0.494083\pi\)
0.0185883 + 0.999827i \(0.494083\pi\)
\(68\) 0 0
\(69\) 944.004 1.64703
\(70\) 0 0
\(71\) −875.918 −1.46412 −0.732059 0.681241i \(-0.761440\pi\)
−0.732059 + 0.681241i \(0.761440\pi\)
\(72\) 0 0
\(73\) −549.269 −0.880645 −0.440323 0.897840i \(-0.645136\pi\)
−0.440323 + 0.897840i \(0.645136\pi\)
\(74\) 0 0
\(75\) 206.822 0.318424
\(76\) 0 0
\(77\) 2017.06 2.98526
\(78\) 0 0
\(79\) 1142.94 1.62773 0.813867 0.581051i \(-0.197358\pi\)
0.813867 + 0.581051i \(0.197358\pi\)
\(80\) 0 0
\(81\) −130.570 −0.179108
\(82\) 0 0
\(83\) 1031.80 1.36451 0.682257 0.731112i \(-0.260998\pi\)
0.682257 + 0.731112i \(0.260998\pi\)
\(84\) 0 0
\(85\) −233.412 −0.297848
\(86\) 0 0
\(87\) 239.914 0.295649
\(88\) 0 0
\(89\) 708.780 0.844164 0.422082 0.906558i \(-0.361299\pi\)
0.422082 + 0.906558i \(0.361299\pi\)
\(90\) 0 0
\(91\) −389.289 −0.448446
\(92\) 0 0
\(93\) 2067.47 2.30523
\(94\) 0 0
\(95\) −425.926 −0.459991
\(96\) 0 0
\(97\) 1765.18 1.84770 0.923851 0.382753i \(-0.125024\pi\)
0.923851 + 0.382753i \(0.125024\pi\)
\(98\) 0 0
\(99\) −2621.02 −2.66083
\(100\) 0 0
\(101\) 156.369 0.154053 0.0770263 0.997029i \(-0.475457\pi\)
0.0770263 + 0.997029i \(0.475457\pi\)
\(102\) 0 0
\(103\) −1137.89 −1.08854 −0.544270 0.838910i \(-0.683193\pi\)
−0.544270 + 0.838910i \(0.683193\pi\)
\(104\) 0 0
\(105\) 1319.17 1.22608
\(106\) 0 0
\(107\) 1477.41 1.33482 0.667412 0.744688i \(-0.267402\pi\)
0.667412 + 0.744688i \(0.267402\pi\)
\(108\) 0 0
\(109\) −1753.81 −1.54114 −0.770570 0.637355i \(-0.780028\pi\)
−0.770570 + 0.637355i \(0.780028\pi\)
\(110\) 0 0
\(111\) 500.575 0.428040
\(112\) 0 0
\(113\) −434.992 −0.362129 −0.181065 0.983471i \(-0.557954\pi\)
−0.181065 + 0.983471i \(0.557954\pi\)
\(114\) 0 0
\(115\) −570.541 −0.462637
\(116\) 0 0
\(117\) 505.853 0.399710
\(118\) 0 0
\(119\) −1488.77 −1.14685
\(120\) 0 0
\(121\) 2669.26 2.00545
\(122\) 0 0
\(123\) −387.129 −0.283790
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −100.068 −0.0699180 −0.0349590 0.999389i \(-0.511130\pi\)
−0.0349590 + 0.999389i \(0.511130\pi\)
\(128\) 0 0
\(129\) 3307.47 2.25742
\(130\) 0 0
\(131\) 1466.15 0.977850 0.488925 0.872326i \(-0.337389\pi\)
0.488925 + 0.872326i \(0.337389\pi\)
\(132\) 0 0
\(133\) −2716.68 −1.77118
\(134\) 0 0
\(135\) −597.330 −0.380814
\(136\) 0 0
\(137\) −1382.82 −0.862350 −0.431175 0.902268i \(-0.641901\pi\)
−0.431175 + 0.902268i \(0.641901\pi\)
\(138\) 0 0
\(139\) −1125.98 −0.687083 −0.343541 0.939138i \(-0.611627\pi\)
−0.343541 + 0.939138i \(0.611627\pi\)
\(140\) 0 0
\(141\) 239.631 0.143125
\(142\) 0 0
\(143\) −772.043 −0.451479
\(144\) 0 0
\(145\) −145.000 −0.0830455
\(146\) 0 0
\(147\) 5576.48 3.12885
\(148\) 0 0
\(149\) −2063.74 −1.13469 −0.567344 0.823481i \(-0.692029\pi\)
−0.567344 + 0.823481i \(0.692029\pi\)
\(150\) 0 0
\(151\) −271.065 −0.146086 −0.0730430 0.997329i \(-0.523271\pi\)
−0.0730430 + 0.997329i \(0.523271\pi\)
\(152\) 0 0
\(153\) 1934.55 1.02222
\(154\) 0 0
\(155\) −1249.54 −0.647521
\(156\) 0 0
\(157\) −231.948 −0.117907 −0.0589536 0.998261i \(-0.518776\pi\)
−0.0589536 + 0.998261i \(0.518776\pi\)
\(158\) 0 0
\(159\) −2573.34 −1.28352
\(160\) 0 0
\(161\) −3639.08 −1.78136
\(162\) 0 0
\(163\) 1875.15 0.901064 0.450532 0.892760i \(-0.351234\pi\)
0.450532 + 0.892760i \(0.351234\pi\)
\(164\) 0 0
\(165\) 2616.20 1.23437
\(166\) 0 0
\(167\) −2893.71 −1.34085 −0.670426 0.741977i \(-0.733888\pi\)
−0.670426 + 0.741977i \(0.733888\pi\)
\(168\) 0 0
\(169\) −2048.00 −0.932179
\(170\) 0 0
\(171\) 3530.13 1.57869
\(172\) 0 0
\(173\) 1232.03 0.541444 0.270722 0.962658i \(-0.412738\pi\)
0.270722 + 0.962658i \(0.412738\pi\)
\(174\) 0 0
\(175\) −797.287 −0.344396
\(176\) 0 0
\(177\) 4410.66 1.87303
\(178\) 0 0
\(179\) 1246.13 0.520338 0.260169 0.965563i \(-0.416222\pi\)
0.260169 + 0.965563i \(0.416222\pi\)
\(180\) 0 0
\(181\) −2785.61 −1.14394 −0.571968 0.820276i \(-0.693820\pi\)
−0.571968 + 0.820276i \(0.693820\pi\)
\(182\) 0 0
\(183\) 1138.76 0.459996
\(184\) 0 0
\(185\) −302.539 −0.120233
\(186\) 0 0
\(187\) −2952.55 −1.15461
\(188\) 0 0
\(189\) −3809.95 −1.46631
\(190\) 0 0
\(191\) −2977.04 −1.12781 −0.563903 0.825841i \(-0.690701\pi\)
−0.563903 + 0.825841i \(0.690701\pi\)
\(192\) 0 0
\(193\) −340.400 −0.126956 −0.0634781 0.997983i \(-0.520219\pi\)
−0.0634781 + 0.997983i \(0.520219\pi\)
\(194\) 0 0
\(195\) −504.923 −0.185427
\(196\) 0 0
\(197\) −3015.59 −1.09062 −0.545309 0.838235i \(-0.683588\pi\)
−0.545309 + 0.838235i \(0.683588\pi\)
\(198\) 0 0
\(199\) 3444.68 1.22707 0.613535 0.789668i \(-0.289747\pi\)
0.613535 + 0.789668i \(0.289747\pi\)
\(200\) 0 0
\(201\) 168.670 0.0591895
\(202\) 0 0
\(203\) −924.853 −0.319763
\(204\) 0 0
\(205\) 233.974 0.0797145
\(206\) 0 0
\(207\) 4728.72 1.58777
\(208\) 0 0
\(209\) −5387.76 −1.78315
\(210\) 0 0
\(211\) 5107.30 1.66635 0.833177 0.553006i \(-0.186519\pi\)
0.833177 + 0.553006i \(0.186519\pi\)
\(212\) 0 0
\(213\) −7246.37 −2.33105
\(214\) 0 0
\(215\) −1998.98 −0.634091
\(216\) 0 0
\(217\) −7969.96 −2.49325
\(218\) 0 0
\(219\) −4544.04 −1.40209
\(220\) 0 0
\(221\) 569.838 0.173445
\(222\) 0 0
\(223\) −2965.53 −0.890523 −0.445261 0.895401i \(-0.646889\pi\)
−0.445261 + 0.895401i \(0.646889\pi\)
\(224\) 0 0
\(225\) 1036.02 0.306968
\(226\) 0 0
\(227\) −3638.58 −1.06388 −0.531940 0.846782i \(-0.678537\pi\)
−0.531940 + 0.846782i \(0.678537\pi\)
\(228\) 0 0
\(229\) 2597.17 0.749458 0.374729 0.927134i \(-0.377736\pi\)
0.374729 + 0.927134i \(0.377736\pi\)
\(230\) 0 0
\(231\) 16686.9 4.75289
\(232\) 0 0
\(233\) 5145.83 1.44684 0.723422 0.690407i \(-0.242568\pi\)
0.723422 + 0.690407i \(0.242568\pi\)
\(234\) 0 0
\(235\) −144.829 −0.0402026
\(236\) 0 0
\(237\) 9455.43 2.59154
\(238\) 0 0
\(239\) 5260.87 1.42384 0.711919 0.702262i \(-0.247826\pi\)
0.711919 + 0.702262i \(0.247826\pi\)
\(240\) 0 0
\(241\) 1295.77 0.346339 0.173170 0.984892i \(-0.444599\pi\)
0.173170 + 0.984892i \(0.444599\pi\)
\(242\) 0 0
\(243\) −4305.77 −1.13669
\(244\) 0 0
\(245\) −3370.34 −0.878869
\(246\) 0 0
\(247\) 1039.83 0.267865
\(248\) 0 0
\(249\) 8535.96 2.17247
\(250\) 0 0
\(251\) 585.397 0.147211 0.0736055 0.997287i \(-0.476549\pi\)
0.0736055 + 0.997287i \(0.476549\pi\)
\(252\) 0 0
\(253\) −7217.07 −1.79341
\(254\) 0 0
\(255\) −1930.99 −0.474210
\(256\) 0 0
\(257\) 6985.74 1.69556 0.847779 0.530350i \(-0.177940\pi\)
0.847779 + 0.530350i \(0.177940\pi\)
\(258\) 0 0
\(259\) −1929.69 −0.462953
\(260\) 0 0
\(261\) 1201.78 0.285012
\(262\) 0 0
\(263\) 3903.02 0.915098 0.457549 0.889184i \(-0.348727\pi\)
0.457549 + 0.889184i \(0.348727\pi\)
\(264\) 0 0
\(265\) 1555.29 0.360530
\(266\) 0 0
\(267\) 5863.66 1.34401
\(268\) 0 0
\(269\) 5133.61 1.16358 0.581788 0.813341i \(-0.302353\pi\)
0.581788 + 0.813341i \(0.302353\pi\)
\(270\) 0 0
\(271\) 4957.05 1.11114 0.555571 0.831469i \(-0.312500\pi\)
0.555571 + 0.831469i \(0.312500\pi\)
\(272\) 0 0
\(273\) −3220.55 −0.713979
\(274\) 0 0
\(275\) −1581.19 −0.346725
\(276\) 0 0
\(277\) 6232.33 1.35186 0.675928 0.736968i \(-0.263743\pi\)
0.675928 + 0.736968i \(0.263743\pi\)
\(278\) 0 0
\(279\) 10356.4 2.22230
\(280\) 0 0
\(281\) 1108.22 0.235269 0.117635 0.993057i \(-0.462469\pi\)
0.117635 + 0.993057i \(0.462469\pi\)
\(282\) 0 0
\(283\) 3473.84 0.729677 0.364838 0.931071i \(-0.381124\pi\)
0.364838 + 0.931071i \(0.381124\pi\)
\(284\) 0 0
\(285\) −3523.64 −0.732359
\(286\) 0 0
\(287\) 1492.36 0.306938
\(288\) 0 0
\(289\) −2733.75 −0.556432
\(290\) 0 0
\(291\) 14603.1 2.94176
\(292\) 0 0
\(293\) −9239.71 −1.84229 −0.921143 0.389224i \(-0.872743\pi\)
−0.921143 + 0.389224i \(0.872743\pi\)
\(294\) 0 0
\(295\) −2665.74 −0.526119
\(296\) 0 0
\(297\) −7555.93 −1.47623
\(298\) 0 0
\(299\) 1392.88 0.269406
\(300\) 0 0
\(301\) −12750.1 −2.44154
\(302\) 0 0
\(303\) 1293.62 0.245270
\(304\) 0 0
\(305\) −688.246 −0.129209
\(306\) 0 0
\(307\) 78.6313 0.0146180 0.00730900 0.999973i \(-0.497673\pi\)
0.00730900 + 0.999973i \(0.497673\pi\)
\(308\) 0 0
\(309\) −9413.63 −1.73308
\(310\) 0 0
\(311\) 8512.12 1.55202 0.776010 0.630721i \(-0.217241\pi\)
0.776010 + 0.630721i \(0.217241\pi\)
\(312\) 0 0
\(313\) 7716.09 1.39342 0.696708 0.717355i \(-0.254647\pi\)
0.696708 + 0.717355i \(0.254647\pi\)
\(314\) 0 0
\(315\) 6608.02 1.18197
\(316\) 0 0
\(317\) 1661.19 0.294328 0.147164 0.989112i \(-0.452986\pi\)
0.147164 + 0.989112i \(0.452986\pi\)
\(318\) 0 0
\(319\) −1834.18 −0.321926
\(320\) 0 0
\(321\) 12222.4 2.12520
\(322\) 0 0
\(323\) 3976.65 0.685037
\(324\) 0 0
\(325\) 305.167 0.0520850
\(326\) 0 0
\(327\) −14509.0 −2.45368
\(328\) 0 0
\(329\) −923.764 −0.154799
\(330\) 0 0
\(331\) 4244.71 0.704866 0.352433 0.935837i \(-0.385355\pi\)
0.352433 + 0.935837i \(0.385355\pi\)
\(332\) 0 0
\(333\) 2507.49 0.412641
\(334\) 0 0
\(335\) −101.942 −0.0166259
\(336\) 0 0
\(337\) −7770.04 −1.25597 −0.627984 0.778226i \(-0.716120\pi\)
−0.627984 + 0.778226i \(0.716120\pi\)
\(338\) 0 0
\(339\) −3598.64 −0.576552
\(340\) 0 0
\(341\) −15806.1 −2.51012
\(342\) 0 0
\(343\) −10558.2 −1.66207
\(344\) 0 0
\(345\) −4720.02 −0.736572
\(346\) 0 0
\(347\) −1004.11 −0.155341 −0.0776707 0.996979i \(-0.524748\pi\)
−0.0776707 + 0.996979i \(0.524748\pi\)
\(348\) 0 0
\(349\) 4944.98 0.758449 0.379225 0.925305i \(-0.376191\pi\)
0.379225 + 0.925305i \(0.376191\pi\)
\(350\) 0 0
\(351\) 1458.28 0.221759
\(352\) 0 0
\(353\) 4651.17 0.701294 0.350647 0.936508i \(-0.385962\pi\)
0.350647 + 0.936508i \(0.385962\pi\)
\(354\) 0 0
\(355\) 4379.59 0.654773
\(356\) 0 0
\(357\) −12316.4 −1.82593
\(358\) 0 0
\(359\) 7607.30 1.11838 0.559190 0.829040i \(-0.311112\pi\)
0.559190 + 0.829040i \(0.311112\pi\)
\(360\) 0 0
\(361\) 397.523 0.0579565
\(362\) 0 0
\(363\) 22082.5 3.19292
\(364\) 0 0
\(365\) 2746.35 0.393837
\(366\) 0 0
\(367\) −11709.5 −1.66548 −0.832739 0.553666i \(-0.813229\pi\)
−0.832739 + 0.553666i \(0.813229\pi\)
\(368\) 0 0
\(369\) −1939.21 −0.273581
\(370\) 0 0
\(371\) 9920.08 1.38821
\(372\) 0 0
\(373\) −2294.53 −0.318515 −0.159258 0.987237i \(-0.550910\pi\)
−0.159258 + 0.987237i \(0.550910\pi\)
\(374\) 0 0
\(375\) −1034.11 −0.142403
\(376\) 0 0
\(377\) 353.994 0.0483597
\(378\) 0 0
\(379\) −10194.9 −1.38173 −0.690866 0.722983i \(-0.742771\pi\)
−0.690866 + 0.722983i \(0.742771\pi\)
\(380\) 0 0
\(381\) −827.850 −0.111318
\(382\) 0 0
\(383\) 3389.41 0.452196 0.226098 0.974105i \(-0.427403\pi\)
0.226098 + 0.974105i \(0.427403\pi\)
\(384\) 0 0
\(385\) −10085.3 −1.33505
\(386\) 0 0
\(387\) 16567.8 2.17620
\(388\) 0 0
\(389\) −13231.5 −1.72459 −0.862293 0.506410i \(-0.830972\pi\)
−0.862293 + 0.506410i \(0.830972\pi\)
\(390\) 0 0
\(391\) 5326.85 0.688978
\(392\) 0 0
\(393\) 12129.3 1.55685
\(394\) 0 0
\(395\) −5714.71 −0.727945
\(396\) 0 0
\(397\) 10910.3 1.37927 0.689635 0.724157i \(-0.257771\pi\)
0.689635 + 0.724157i \(0.257771\pi\)
\(398\) 0 0
\(399\) −22474.8 −2.81992
\(400\) 0 0
\(401\) −2012.31 −0.250599 −0.125299 0.992119i \(-0.539989\pi\)
−0.125299 + 0.992119i \(0.539989\pi\)
\(402\) 0 0
\(403\) 3050.56 0.377070
\(404\) 0 0
\(405\) 652.848 0.0800995
\(406\) 0 0
\(407\) −3826.98 −0.466084
\(408\) 0 0
\(409\) 14586.3 1.76344 0.881718 0.471777i \(-0.156387\pi\)
0.881718 + 0.471777i \(0.156387\pi\)
\(410\) 0 0
\(411\) −11439.9 −1.37296
\(412\) 0 0
\(413\) −17002.9 −2.02580
\(414\) 0 0
\(415\) −5159.00 −0.610229
\(416\) 0 0
\(417\) −9315.12 −1.09392
\(418\) 0 0
\(419\) 925.500 0.107908 0.0539542 0.998543i \(-0.482817\pi\)
0.0539542 + 0.998543i \(0.482817\pi\)
\(420\) 0 0
\(421\) 6443.92 0.745979 0.372990 0.927835i \(-0.378333\pi\)
0.372990 + 0.927835i \(0.378333\pi\)
\(422\) 0 0
\(423\) 1200.36 0.137976
\(424\) 0 0
\(425\) 1167.06 0.133202
\(426\) 0 0
\(427\) −4389.84 −0.497516
\(428\) 0 0
\(429\) −6387.03 −0.718808
\(430\) 0 0
\(431\) −15826.4 −1.76875 −0.884373 0.466782i \(-0.845413\pi\)
−0.884373 + 0.466782i \(0.845413\pi\)
\(432\) 0 0
\(433\) −860.751 −0.0955313 −0.0477656 0.998859i \(-0.515210\pi\)
−0.0477656 + 0.998859i \(0.515210\pi\)
\(434\) 0 0
\(435\) −1199.57 −0.132218
\(436\) 0 0
\(437\) 9720.33 1.06404
\(438\) 0 0
\(439\) −122.829 −0.0133537 −0.00667687 0.999978i \(-0.502125\pi\)
−0.00667687 + 0.999978i \(0.502125\pi\)
\(440\) 0 0
\(441\) 27933.8 3.01628
\(442\) 0 0
\(443\) 11937.0 1.28024 0.640118 0.768277i \(-0.278886\pi\)
0.640118 + 0.768277i \(0.278886\pi\)
\(444\) 0 0
\(445\) −3543.90 −0.377522
\(446\) 0 0
\(447\) −17073.1 −1.80656
\(448\) 0 0
\(449\) −664.050 −0.0697961 −0.0348981 0.999391i \(-0.511111\pi\)
−0.0348981 + 0.999391i \(0.511111\pi\)
\(450\) 0 0
\(451\) 2959.66 0.309013
\(452\) 0 0
\(453\) −2242.49 −0.232586
\(454\) 0 0
\(455\) 1946.45 0.200551
\(456\) 0 0
\(457\) −8173.19 −0.836599 −0.418300 0.908309i \(-0.637374\pi\)
−0.418300 + 0.908309i \(0.637374\pi\)
\(458\) 0 0
\(459\) 5576.96 0.567125
\(460\) 0 0
\(461\) 5415.29 0.547104 0.273552 0.961857i \(-0.411801\pi\)
0.273552 + 0.961857i \(0.411801\pi\)
\(462\) 0 0
\(463\) −4748.17 −0.476601 −0.238301 0.971191i \(-0.576590\pi\)
−0.238301 + 0.971191i \(0.576590\pi\)
\(464\) 0 0
\(465\) −10337.3 −1.03093
\(466\) 0 0
\(467\) 1607.01 0.159236 0.0796182 0.996825i \(-0.474630\pi\)
0.0796182 + 0.996825i \(0.474630\pi\)
\(468\) 0 0
\(469\) −650.214 −0.0640173
\(470\) 0 0
\(471\) −1918.88 −0.187722
\(472\) 0 0
\(473\) −25286.2 −2.45805
\(474\) 0 0
\(475\) 2129.63 0.205714
\(476\) 0 0
\(477\) −12890.4 −1.23734
\(478\) 0 0
\(479\) 14479.4 1.38117 0.690586 0.723250i \(-0.257353\pi\)
0.690586 + 0.723250i \(0.257353\pi\)
\(480\) 0 0
\(481\) 738.601 0.0700152
\(482\) 0 0
\(483\) −30105.7 −2.83614
\(484\) 0 0
\(485\) −8825.91 −0.826317
\(486\) 0 0
\(487\) 13683.1 1.27318 0.636591 0.771201i \(-0.280344\pi\)
0.636591 + 0.771201i \(0.280344\pi\)
\(488\) 0 0
\(489\) 15512.9 1.43460
\(490\) 0 0
\(491\) −11077.8 −1.01820 −0.509099 0.860708i \(-0.670021\pi\)
−0.509099 + 0.860708i \(0.670021\pi\)
\(492\) 0 0
\(493\) 1353.79 0.123675
\(494\) 0 0
\(495\) 13105.1 1.18996
\(496\) 0 0
\(497\) 27934.3 2.52118
\(498\) 0 0
\(499\) 1972.33 0.176941 0.0884704 0.996079i \(-0.471802\pi\)
0.0884704 + 0.996079i \(0.471802\pi\)
\(500\) 0 0
\(501\) −23939.4 −2.13479
\(502\) 0 0
\(503\) 19211.7 1.70300 0.851500 0.524355i \(-0.175694\pi\)
0.851500 + 0.524355i \(0.175694\pi\)
\(504\) 0 0
\(505\) −781.845 −0.0688944
\(506\) 0 0
\(507\) −16942.8 −1.48414
\(508\) 0 0
\(509\) −12040.6 −1.04851 −0.524254 0.851562i \(-0.675656\pi\)
−0.524254 + 0.851562i \(0.675656\pi\)
\(510\) 0 0
\(511\) 17517.0 1.51645
\(512\) 0 0
\(513\) 10176.7 0.875855
\(514\) 0 0
\(515\) 5689.45 0.486810
\(516\) 0 0
\(517\) −1832.02 −0.155846
\(518\) 0 0
\(519\) 10192.5 0.862043
\(520\) 0 0
\(521\) −16908.5 −1.42183 −0.710917 0.703276i \(-0.751720\pi\)
−0.710917 + 0.703276i \(0.751720\pi\)
\(522\) 0 0
\(523\) −19177.5 −1.60339 −0.801695 0.597733i \(-0.796068\pi\)
−0.801695 + 0.597733i \(0.796068\pi\)
\(524\) 0 0
\(525\) −6595.87 −0.548319
\(526\) 0 0
\(527\) 11666.3 0.964315
\(528\) 0 0
\(529\) 853.675 0.0701631
\(530\) 0 0
\(531\) 22094.0 1.80564
\(532\) 0 0
\(533\) −571.210 −0.0464200
\(534\) 0 0
\(535\) −7387.03 −0.596952
\(536\) 0 0
\(537\) 10309.1 0.828439
\(538\) 0 0
\(539\) −42633.1 −3.40694
\(540\) 0 0
\(541\) 1919.78 0.152565 0.0762826 0.997086i \(-0.475695\pi\)
0.0762826 + 0.997086i \(0.475695\pi\)
\(542\) 0 0
\(543\) −23045.0 −1.82128
\(544\) 0 0
\(545\) 8769.04 0.689219
\(546\) 0 0
\(547\) 9321.37 0.728616 0.364308 0.931279i \(-0.381306\pi\)
0.364308 + 0.931279i \(0.381306\pi\)
\(548\) 0 0
\(549\) 5704.28 0.443447
\(550\) 0 0
\(551\) 2470.37 0.191001
\(552\) 0 0
\(553\) −36450.1 −2.80292
\(554\) 0 0
\(555\) −2502.87 −0.191425
\(556\) 0 0
\(557\) −4970.29 −0.378093 −0.189047 0.981968i \(-0.560540\pi\)
−0.189047 + 0.981968i \(0.560540\pi\)
\(558\) 0 0
\(559\) 4880.19 0.369249
\(560\) 0 0
\(561\) −24426.1 −1.83827
\(562\) 0 0
\(563\) 9771.90 0.731503 0.365752 0.930712i \(-0.380812\pi\)
0.365752 + 0.930712i \(0.380812\pi\)
\(564\) 0 0
\(565\) 2174.96 0.161949
\(566\) 0 0
\(567\) 4164.06 0.308420
\(568\) 0 0
\(569\) 6481.43 0.477532 0.238766 0.971077i \(-0.423257\pi\)
0.238766 + 0.971077i \(0.423257\pi\)
\(570\) 0 0
\(571\) 537.118 0.0393655 0.0196827 0.999806i \(-0.493734\pi\)
0.0196827 + 0.999806i \(0.493734\pi\)
\(572\) 0 0
\(573\) −24628.7 −1.79560
\(574\) 0 0
\(575\) 2852.70 0.206897
\(576\) 0 0
\(577\) −9078.66 −0.655025 −0.327513 0.944847i \(-0.606210\pi\)
−0.327513 + 0.944847i \(0.606210\pi\)
\(578\) 0 0
\(579\) −2816.09 −0.202129
\(580\) 0 0
\(581\) −32905.6 −2.34966
\(582\) 0 0
\(583\) 19673.6 1.39760
\(584\) 0 0
\(585\) −2529.27 −0.178756
\(586\) 0 0
\(587\) 13313.2 0.936107 0.468054 0.883700i \(-0.344955\pi\)
0.468054 + 0.883700i \(0.344955\pi\)
\(588\) 0 0
\(589\) 21288.5 1.48927
\(590\) 0 0
\(591\) −24947.6 −1.73639
\(592\) 0 0
\(593\) 12396.4 0.858447 0.429223 0.903198i \(-0.358787\pi\)
0.429223 + 0.903198i \(0.358787\pi\)
\(594\) 0 0
\(595\) 7443.86 0.512888
\(596\) 0 0
\(597\) 28497.4 1.95364
\(598\) 0 0
\(599\) −23782.7 −1.62226 −0.811130 0.584865i \(-0.801147\pi\)
−0.811130 + 0.584865i \(0.801147\pi\)
\(600\) 0 0
\(601\) 1671.44 0.113444 0.0567218 0.998390i \(-0.481935\pi\)
0.0567218 + 0.998390i \(0.481935\pi\)
\(602\) 0 0
\(603\) 844.906 0.0570601
\(604\) 0 0
\(605\) −13346.3 −0.896866
\(606\) 0 0
\(607\) 1471.65 0.0984063 0.0492031 0.998789i \(-0.484332\pi\)
0.0492031 + 0.998789i \(0.484332\pi\)
\(608\) 0 0
\(609\) −7651.21 −0.509101
\(610\) 0 0
\(611\) 353.577 0.0234111
\(612\) 0 0
\(613\) 15383.8 1.01362 0.506808 0.862059i \(-0.330825\pi\)
0.506808 + 0.862059i \(0.330825\pi\)
\(614\) 0 0
\(615\) 1935.64 0.126915
\(616\) 0 0
\(617\) −26786.3 −1.74777 −0.873887 0.486129i \(-0.838408\pi\)
−0.873887 + 0.486129i \(0.838408\pi\)
\(618\) 0 0
\(619\) −2144.28 −0.139234 −0.0696170 0.997574i \(-0.522178\pi\)
−0.0696170 + 0.997574i \(0.522178\pi\)
\(620\) 0 0
\(621\) 13632.0 0.880893
\(622\) 0 0
\(623\) −22604.1 −1.45363
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −44572.3 −2.83899
\(628\) 0 0
\(629\) 2824.66 0.179056
\(630\) 0 0
\(631\) 9241.81 0.583059 0.291530 0.956562i \(-0.405836\pi\)
0.291530 + 0.956562i \(0.405836\pi\)
\(632\) 0 0
\(633\) 42252.1 2.65303
\(634\) 0 0
\(635\) 500.339 0.0312683
\(636\) 0 0
\(637\) 8228.12 0.511790
\(638\) 0 0
\(639\) −36298.6 −2.24719
\(640\) 0 0
\(641\) −26606.6 −1.63947 −0.819733 0.572746i \(-0.805878\pi\)
−0.819733 + 0.572746i \(0.805878\pi\)
\(642\) 0 0
\(643\) −23626.5 −1.44905 −0.724525 0.689249i \(-0.757941\pi\)
−0.724525 + 0.689249i \(0.757941\pi\)
\(644\) 0 0
\(645\) −16537.4 −1.00955
\(646\) 0 0
\(647\) −14404.0 −0.875241 −0.437621 0.899160i \(-0.644179\pi\)
−0.437621 + 0.899160i \(0.644179\pi\)
\(648\) 0 0
\(649\) −33720.3 −2.03950
\(650\) 0 0
\(651\) −65934.6 −3.96956
\(652\) 0 0
\(653\) 20501.0 1.22858 0.614292 0.789079i \(-0.289442\pi\)
0.614292 + 0.789079i \(0.289442\pi\)
\(654\) 0 0
\(655\) −7330.76 −0.437308
\(656\) 0 0
\(657\) −22762.1 −1.35165
\(658\) 0 0
\(659\) −11621.0 −0.686932 −0.343466 0.939165i \(-0.611601\pi\)
−0.343466 + 0.939165i \(0.611601\pi\)
\(660\) 0 0
\(661\) 956.471 0.0562820 0.0281410 0.999604i \(-0.491041\pi\)
0.0281410 + 0.999604i \(0.491041\pi\)
\(662\) 0 0
\(663\) 4714.20 0.276145
\(664\) 0 0
\(665\) 13583.4 0.792094
\(666\) 0 0
\(667\) 3309.14 0.192099
\(668\) 0 0
\(669\) −24533.5 −1.41782
\(670\) 0 0
\(671\) −8705.99 −0.500881
\(672\) 0 0
\(673\) 19146.6 1.09666 0.548328 0.836264i \(-0.315265\pi\)
0.548328 + 0.836264i \(0.315265\pi\)
\(674\) 0 0
\(675\) 2986.65 0.170305
\(676\) 0 0
\(677\) −19087.3 −1.08358 −0.541791 0.840513i \(-0.682254\pi\)
−0.541791 + 0.840513i \(0.682254\pi\)
\(678\) 0 0
\(679\) −56294.3 −3.18170
\(680\) 0 0
\(681\) −30101.5 −1.69382
\(682\) 0 0
\(683\) −2378.73 −0.133264 −0.0666322 0.997778i \(-0.521225\pi\)
−0.0666322 + 0.997778i \(0.521225\pi\)
\(684\) 0 0
\(685\) 6914.08 0.385655
\(686\) 0 0
\(687\) 21486.1 1.19323
\(688\) 0 0
\(689\) −3796.98 −0.209947
\(690\) 0 0
\(691\) −31752.8 −1.74810 −0.874049 0.485838i \(-0.838514\pi\)
−0.874049 + 0.485838i \(0.838514\pi\)
\(692\) 0 0
\(693\) 83588.3 4.58190
\(694\) 0 0
\(695\) 5629.91 0.307273
\(696\) 0 0
\(697\) −2184.50 −0.118714
\(698\) 0 0
\(699\) 42570.9 2.30354
\(700\) 0 0
\(701\) −29863.3 −1.60902 −0.804508 0.593942i \(-0.797571\pi\)
−0.804508 + 0.593942i \(0.797571\pi\)
\(702\) 0 0
\(703\) 5154.38 0.276531
\(704\) 0 0
\(705\) −1198.16 −0.0640073
\(706\) 0 0
\(707\) −4986.84 −0.265275
\(708\) 0 0
\(709\) −18195.9 −0.963841 −0.481920 0.876215i \(-0.660061\pi\)
−0.481920 + 0.876215i \(0.660061\pi\)
\(710\) 0 0
\(711\) 47364.3 2.49831
\(712\) 0 0
\(713\) 28516.6 1.49783
\(714\) 0 0
\(715\) 3860.22 0.201908
\(716\) 0 0
\(717\) 43522.6 2.26692
\(718\) 0 0
\(719\) 12156.8 0.630561 0.315280 0.948999i \(-0.397901\pi\)
0.315280 + 0.948999i \(0.397901\pi\)
\(720\) 0 0
\(721\) 36289.0 1.87444
\(722\) 0 0
\(723\) 10719.7 0.551413
\(724\) 0 0
\(725\) 725.000 0.0371391
\(726\) 0 0
\(727\) 33816.2 1.72514 0.862569 0.505940i \(-0.168854\pi\)
0.862569 + 0.505940i \(0.168854\pi\)
\(728\) 0 0
\(729\) −32095.8 −1.63063
\(730\) 0 0
\(731\) 18663.5 0.944314
\(732\) 0 0
\(733\) 19607.4 0.988019 0.494009 0.869457i \(-0.335531\pi\)
0.494009 + 0.869457i \(0.335531\pi\)
\(734\) 0 0
\(735\) −27882.4 −1.39926
\(736\) 0 0
\(737\) −1289.51 −0.0644502
\(738\) 0 0
\(739\) 13056.1 0.649902 0.324951 0.945731i \(-0.394652\pi\)
0.324951 + 0.945731i \(0.394652\pi\)
\(740\) 0 0
\(741\) 8602.39 0.426473
\(742\) 0 0
\(743\) 4228.03 0.208764 0.104382 0.994537i \(-0.466714\pi\)
0.104382 + 0.994537i \(0.466714\pi\)
\(744\) 0 0
\(745\) 10318.7 0.507448
\(746\) 0 0
\(747\) 42758.4 2.09431
\(748\) 0 0
\(749\) −47116.7 −2.29854
\(750\) 0 0
\(751\) 566.117 0.0275072 0.0137536 0.999905i \(-0.495622\pi\)
0.0137536 + 0.999905i \(0.495622\pi\)
\(752\) 0 0
\(753\) 4842.93 0.234377
\(754\) 0 0
\(755\) 1355.33 0.0653317
\(756\) 0 0
\(757\) 38158.6 1.83210 0.916049 0.401066i \(-0.131360\pi\)
0.916049 + 0.401066i \(0.131360\pi\)
\(758\) 0 0
\(759\) −59706.0 −2.85532
\(760\) 0 0
\(761\) −15151.0 −0.721711 −0.360856 0.932622i \(-0.617515\pi\)
−0.360856 + 0.932622i \(0.617515\pi\)
\(762\) 0 0
\(763\) 55931.5 2.65381
\(764\) 0 0
\(765\) −9672.75 −0.457149
\(766\) 0 0
\(767\) 6507.96 0.306374
\(768\) 0 0
\(769\) 39802.6 1.86647 0.933236 0.359264i \(-0.116972\pi\)
0.933236 + 0.359264i \(0.116972\pi\)
\(770\) 0 0
\(771\) 57792.2 2.69953
\(772\) 0 0
\(773\) 21828.3 1.01566 0.507832 0.861456i \(-0.330447\pi\)
0.507832 + 0.861456i \(0.330447\pi\)
\(774\) 0 0
\(775\) 6247.72 0.289580
\(776\) 0 0
\(777\) −15964.1 −0.737076
\(778\) 0 0
\(779\) −3986.23 −0.183340
\(780\) 0 0
\(781\) 55399.7 2.53823
\(782\) 0 0
\(783\) 3464.51 0.158125
\(784\) 0 0
\(785\) 1159.74 0.0527297
\(786\) 0 0
\(787\) −11785.6 −0.533815 −0.266908 0.963722i \(-0.586002\pi\)
−0.266908 + 0.963722i \(0.586002\pi\)
\(788\) 0 0
\(789\) 32289.3 1.45694
\(790\) 0 0
\(791\) 13872.5 0.623579
\(792\) 0 0
\(793\) 1680.24 0.0752423
\(794\) 0 0
\(795\) 12866.7 0.574006
\(796\) 0 0
\(797\) 14512.6 0.644996 0.322498 0.946570i \(-0.395477\pi\)
0.322498 + 0.946570i \(0.395477\pi\)
\(798\) 0 0
\(799\) 1352.20 0.0598714
\(800\) 0 0
\(801\) 29372.3 1.29566
\(802\) 0 0
\(803\) 34740.0 1.52671
\(804\) 0 0
\(805\) 18195.4 0.796650
\(806\) 0 0
\(807\) 42469.8 1.85255
\(808\) 0 0
\(809\) −33761.5 −1.46723 −0.733617 0.679564i \(-0.762169\pi\)
−0.733617 + 0.679564i \(0.762169\pi\)
\(810\) 0 0
\(811\) 19758.2 0.855491 0.427745 0.903899i \(-0.359308\pi\)
0.427745 + 0.903899i \(0.359308\pi\)
\(812\) 0 0
\(813\) 41009.1 1.76907
\(814\) 0 0
\(815\) −9375.77 −0.402968
\(816\) 0 0
\(817\) 34056.8 1.45838
\(818\) 0 0
\(819\) −16132.4 −0.688293
\(820\) 0 0
\(821\) −26419.7 −1.12308 −0.561542 0.827448i \(-0.689792\pi\)
−0.561542 + 0.827448i \(0.689792\pi\)
\(822\) 0 0
\(823\) 7250.84 0.307106 0.153553 0.988140i \(-0.450928\pi\)
0.153553 + 0.988140i \(0.450928\pi\)
\(824\) 0 0
\(825\) −13081.0 −0.552027
\(826\) 0 0
\(827\) −24562.2 −1.03278 −0.516392 0.856353i \(-0.672725\pi\)
−0.516392 + 0.856353i \(0.672725\pi\)
\(828\) 0 0
\(829\) −27935.0 −1.17035 −0.585177 0.810906i \(-0.698975\pi\)
−0.585177 + 0.810906i \(0.698975\pi\)
\(830\) 0 0
\(831\) 51559.3 2.15231
\(832\) 0 0
\(833\) 31467.1 1.30885
\(834\) 0 0
\(835\) 14468.6 0.599647
\(836\) 0 0
\(837\) 29855.6 1.23293
\(838\) 0 0
\(839\) 45395.0 1.86795 0.933975 0.357338i \(-0.116316\pi\)
0.933975 + 0.357338i \(0.116316\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 0 0
\(843\) 9168.15 0.374576
\(844\) 0 0
\(845\) 10240.0 0.416883
\(846\) 0 0
\(847\) −85126.6 −3.45335
\(848\) 0 0
\(849\) 28738.7 1.16173
\(850\) 0 0
\(851\) 6904.45 0.278121
\(852\) 0 0
\(853\) 17380.4 0.697647 0.348824 0.937188i \(-0.386581\pi\)
0.348824 + 0.937188i \(0.386581\pi\)
\(854\) 0 0
\(855\) −17650.7 −0.706011
\(856\) 0 0
\(857\) −617.644 −0.0246188 −0.0123094 0.999924i \(-0.503918\pi\)
−0.0123094 + 0.999924i \(0.503918\pi\)
\(858\) 0 0
\(859\) −9097.11 −0.361338 −0.180669 0.983544i \(-0.557826\pi\)
−0.180669 + 0.983544i \(0.557826\pi\)
\(860\) 0 0
\(861\) 12346.1 0.488681
\(862\) 0 0
\(863\) −31046.4 −1.22460 −0.612302 0.790624i \(-0.709756\pi\)
−0.612302 + 0.790624i \(0.709756\pi\)
\(864\) 0 0
\(865\) −6160.17 −0.242141
\(866\) 0 0
\(867\) −22616.0 −0.885905
\(868\) 0 0
\(869\) −72288.3 −2.82188
\(870\) 0 0
\(871\) 248.874 0.00968171
\(872\) 0 0
\(873\) 73150.3 2.83592
\(874\) 0 0
\(875\) 3986.44 0.154018
\(876\) 0 0
\(877\) −11910.1 −0.458581 −0.229290 0.973358i \(-0.573641\pi\)
−0.229290 + 0.973358i \(0.573641\pi\)
\(878\) 0 0
\(879\) −76439.1 −2.93314
\(880\) 0 0
\(881\) −38773.3 −1.48275 −0.741377 0.671088i \(-0.765827\pi\)
−0.741377 + 0.671088i \(0.765827\pi\)
\(882\) 0 0
\(883\) −27665.8 −1.05439 −0.527197 0.849743i \(-0.676757\pi\)
−0.527197 + 0.849743i \(0.676757\pi\)
\(884\) 0 0
\(885\) −22053.3 −0.837643
\(886\) 0 0
\(887\) 1907.89 0.0722219 0.0361109 0.999348i \(-0.488503\pi\)
0.0361109 + 0.999348i \(0.488503\pi\)
\(888\) 0 0
\(889\) 3191.31 0.120397
\(890\) 0 0
\(891\) 8258.22 0.310506
\(892\) 0 0
\(893\) 2467.46 0.0924641
\(894\) 0 0
\(895\) −6230.67 −0.232702
\(896\) 0 0
\(897\) 11523.2 0.428926
\(898\) 0 0
\(899\) 7247.35 0.268868
\(900\) 0 0
\(901\) −14520.9 −0.536916
\(902\) 0 0
\(903\) −105480. −3.88722
\(904\) 0 0
\(905\) 13928.0 0.511584
\(906\) 0 0
\(907\) 30501.0 1.11661 0.558307 0.829634i \(-0.311451\pi\)
0.558307 + 0.829634i \(0.311451\pi\)
\(908\) 0 0
\(909\) 6480.04 0.236446
\(910\) 0 0
\(911\) −11978.4 −0.435635 −0.217818 0.975989i \(-0.569894\pi\)
−0.217818 + 0.975989i \(0.569894\pi\)
\(912\) 0 0
\(913\) −65258.8 −2.36556
\(914\) 0 0
\(915\) −5693.78 −0.205717
\(916\) 0 0
\(917\) −46757.8 −1.68384
\(918\) 0 0
\(919\) 14637.5 0.525404 0.262702 0.964877i \(-0.415386\pi\)
0.262702 + 0.964877i \(0.415386\pi\)
\(920\) 0 0
\(921\) 650.508 0.0232736
\(922\) 0 0
\(923\) −10692.1 −0.381293
\(924\) 0 0
\(925\) 1512.70 0.0537699
\(926\) 0 0
\(927\) −47154.9 −1.67073
\(928\) 0 0
\(929\) −42459.2 −1.49951 −0.749754 0.661717i \(-0.769828\pi\)
−0.749754 + 0.661717i \(0.769828\pi\)
\(930\) 0 0
\(931\) 57420.6 2.02136
\(932\) 0 0
\(933\) 70419.8 2.47100
\(934\) 0 0
\(935\) 14762.8 0.516357
\(936\) 0 0
\(937\) −47339.8 −1.65051 −0.825253 0.564764i \(-0.808967\pi\)
−0.825253 + 0.564764i \(0.808967\pi\)
\(938\) 0 0
\(939\) 63834.4 2.21848
\(940\) 0 0
\(941\) 17460.4 0.604881 0.302441 0.953168i \(-0.402199\pi\)
0.302441 + 0.953168i \(0.402199\pi\)
\(942\) 0 0
\(943\) −5339.68 −0.184394
\(944\) 0 0
\(945\) 19049.7 0.655754
\(946\) 0 0
\(947\) −54969.2 −1.88623 −0.943115 0.332467i \(-0.892119\pi\)
−0.943115 + 0.332467i \(0.892119\pi\)
\(948\) 0 0
\(949\) −6704.76 −0.229342
\(950\) 0 0
\(951\) 13742.9 0.468604
\(952\) 0 0
\(953\) 4867.82 0.165461 0.0827305 0.996572i \(-0.473636\pi\)
0.0827305 + 0.996572i \(0.473636\pi\)
\(954\) 0 0
\(955\) 14885.2 0.504370
\(956\) 0 0
\(957\) −15174.0 −0.512544
\(958\) 0 0
\(959\) 44100.1 1.48495
\(960\) 0 0
\(961\) 32663.4 1.09642
\(962\) 0 0
\(963\) 61224.7 2.04874
\(964\) 0 0
\(965\) 1702.00 0.0567766
\(966\) 0 0
\(967\) 26258.4 0.873231 0.436616 0.899648i \(-0.356177\pi\)
0.436616 + 0.899648i \(0.356177\pi\)
\(968\) 0 0
\(969\) 32898.4 1.09066
\(970\) 0 0
\(971\) 20712.4 0.684543 0.342272 0.939601i \(-0.388804\pi\)
0.342272 + 0.939601i \(0.388804\pi\)
\(972\) 0 0
\(973\) 35909.2 1.18314
\(974\) 0 0
\(975\) 2524.61 0.0829255
\(976\) 0 0
\(977\) 36164.9 1.18426 0.592128 0.805844i \(-0.298288\pi\)
0.592128 + 0.805844i \(0.298288\pi\)
\(978\) 0 0
\(979\) −44828.7 −1.46346
\(980\) 0 0
\(981\) −72678.9 −2.36540
\(982\) 0 0
\(983\) −6013.98 −0.195134 −0.0975668 0.995229i \(-0.531106\pi\)
−0.0975668 + 0.995229i \(0.531106\pi\)
\(984\) 0 0
\(985\) 15077.9 0.487739
\(986\) 0 0
\(987\) −7642.19 −0.246458
\(988\) 0 0
\(989\) 45620.0 1.46677
\(990\) 0 0
\(991\) −24940.8 −0.799467 −0.399734 0.916631i \(-0.630897\pi\)
−0.399734 + 0.916631i \(0.630897\pi\)
\(992\) 0 0
\(993\) 35116.0 1.12223
\(994\) 0 0
\(995\) −17223.4 −0.548762
\(996\) 0 0
\(997\) 51877.1 1.64791 0.823954 0.566657i \(-0.191763\pi\)
0.823954 + 0.566657i \(0.191763\pi\)
\(998\) 0 0
\(999\) 7228.63 0.228933
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1160.4.a.h.1.10 11
4.3 odd 2 2320.4.a.z.1.2 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.4.a.h.1.10 11 1.1 even 1 trivial
2320.4.a.z.1.2 11 4.3 odd 2