Properties

Label 1160.4.a.j.1.10
Level $1160$
Weight $4$
Character 1160.1
Self dual yes
Analytic conductor $68.442$
Analytic rank $0$
Dimension $13$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1160,4,Mod(1,1160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1160.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1160 = 2^{3} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1160.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.4422156067\)
Analytic rank: \(0\)
Dimension: \(13\)
Coefficient field: \(\mathbb{Q}[x]/(x^{13} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{13} - 6 x^{12} - 231 x^{11} + 1278 x^{10} + 18973 x^{9} - 95838 x^{8} - 662972 x^{7} + 3060212 x^{6} + \cdots - 8760320 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{15} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(-3.96683\) of defining polynomial
Character \(\chi\) \(=\) 1160.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.96683 q^{3} +5.00000 q^{5} +23.5989 q^{7} -11.2642 q^{9} +19.1675 q^{11} +70.7812 q^{13} +19.8342 q^{15} +2.14027 q^{17} +53.0282 q^{19} +93.6131 q^{21} +58.6885 q^{23} +25.0000 q^{25} -151.788 q^{27} +29.0000 q^{29} -46.5724 q^{31} +76.0341 q^{33} +117.995 q^{35} -322.832 q^{37} +280.777 q^{39} -92.9979 q^{41} +212.070 q^{43} -56.3212 q^{45} +392.089 q^{47} +213.910 q^{49} +8.49011 q^{51} -72.6402 q^{53} +95.8373 q^{55} +210.354 q^{57} +443.474 q^{59} -584.193 q^{61} -265.824 q^{63} +353.906 q^{65} +980.440 q^{67} +232.808 q^{69} -808.253 q^{71} +963.185 q^{73} +99.1708 q^{75} +452.332 q^{77} -1254.62 q^{79} -297.983 q^{81} -86.1666 q^{83} +10.7014 q^{85} +115.038 q^{87} -1526.64 q^{89} +1670.36 q^{91} -184.745 q^{93} +265.141 q^{95} +587.479 q^{97} -215.907 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 13 q - 6 q^{3} + 65 q^{5} + 2 q^{7} + 147 q^{9} - 42 q^{11} + 100 q^{13} - 30 q^{15} + 136 q^{17} + 38 q^{19} + 376 q^{21} + 86 q^{23} + 325 q^{25} - 216 q^{27} + 377 q^{29} + 230 q^{31} + 512 q^{33} + 10 q^{35}+ \cdots - 846 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.96683 0.763417 0.381709 0.924283i \(-0.375336\pi\)
0.381709 + 0.924283i \(0.375336\pi\)
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 23.5989 1.27422 0.637111 0.770772i \(-0.280129\pi\)
0.637111 + 0.770772i \(0.280129\pi\)
\(8\) 0 0
\(9\) −11.2642 −0.417194
\(10\) 0 0
\(11\) 19.1675 0.525382 0.262691 0.964880i \(-0.415390\pi\)
0.262691 + 0.964880i \(0.415390\pi\)
\(12\) 0 0
\(13\) 70.7812 1.51009 0.755045 0.655673i \(-0.227615\pi\)
0.755045 + 0.655673i \(0.227615\pi\)
\(14\) 0 0
\(15\) 19.8342 0.341411
\(16\) 0 0
\(17\) 2.14027 0.0305349 0.0152674 0.999883i \(-0.495140\pi\)
0.0152674 + 0.999883i \(0.495140\pi\)
\(18\) 0 0
\(19\) 53.0282 0.640289 0.320145 0.947369i \(-0.396269\pi\)
0.320145 + 0.947369i \(0.396269\pi\)
\(20\) 0 0
\(21\) 93.6131 0.972764
\(22\) 0 0
\(23\) 58.6885 0.532061 0.266030 0.963965i \(-0.414288\pi\)
0.266030 + 0.963965i \(0.414288\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −151.788 −1.08191
\(28\) 0 0
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) −46.5724 −0.269827 −0.134914 0.990857i \(-0.543076\pi\)
−0.134914 + 0.990857i \(0.543076\pi\)
\(32\) 0 0
\(33\) 76.0341 0.401086
\(34\) 0 0
\(35\) 117.995 0.569850
\(36\) 0 0
\(37\) −322.832 −1.43441 −0.717205 0.696862i \(-0.754579\pi\)
−0.717205 + 0.696862i \(0.754579\pi\)
\(38\) 0 0
\(39\) 280.777 1.15283
\(40\) 0 0
\(41\) −92.9979 −0.354240 −0.177120 0.984189i \(-0.556678\pi\)
−0.177120 + 0.984189i \(0.556678\pi\)
\(42\) 0 0
\(43\) 212.070 0.752100 0.376050 0.926599i \(-0.377282\pi\)
0.376050 + 0.926599i \(0.377282\pi\)
\(44\) 0 0
\(45\) −56.3212 −0.186575
\(46\) 0 0
\(47\) 392.089 1.21685 0.608426 0.793611i \(-0.291801\pi\)
0.608426 + 0.793611i \(0.291801\pi\)
\(48\) 0 0
\(49\) 213.910 0.623644
\(50\) 0 0
\(51\) 8.49011 0.0233108
\(52\) 0 0
\(53\) −72.6402 −0.188262 −0.0941311 0.995560i \(-0.530007\pi\)
−0.0941311 + 0.995560i \(0.530007\pi\)
\(54\) 0 0
\(55\) 95.8373 0.234958
\(56\) 0 0
\(57\) 210.354 0.488808
\(58\) 0 0
\(59\) 443.474 0.978567 0.489283 0.872125i \(-0.337258\pi\)
0.489283 + 0.872125i \(0.337258\pi\)
\(60\) 0 0
\(61\) −584.193 −1.22620 −0.613100 0.790005i \(-0.710078\pi\)
−0.613100 + 0.790005i \(0.710078\pi\)
\(62\) 0 0
\(63\) −265.824 −0.531598
\(64\) 0 0
\(65\) 353.906 0.675333
\(66\) 0 0
\(67\) 980.440 1.78776 0.893879 0.448308i \(-0.147973\pi\)
0.893879 + 0.448308i \(0.147973\pi\)
\(68\) 0 0
\(69\) 232.808 0.406185
\(70\) 0 0
\(71\) −808.253 −1.35101 −0.675507 0.737353i \(-0.736075\pi\)
−0.675507 + 0.737353i \(0.736075\pi\)
\(72\) 0 0
\(73\) 963.185 1.54428 0.772139 0.635454i \(-0.219187\pi\)
0.772139 + 0.635454i \(0.219187\pi\)
\(74\) 0 0
\(75\) 99.1708 0.152683
\(76\) 0 0
\(77\) 452.332 0.669454
\(78\) 0 0
\(79\) −1254.62 −1.78679 −0.893393 0.449276i \(-0.851682\pi\)
−0.893393 + 0.449276i \(0.851682\pi\)
\(80\) 0 0
\(81\) −297.983 −0.408755
\(82\) 0 0
\(83\) −86.1666 −0.113952 −0.0569760 0.998376i \(-0.518146\pi\)
−0.0569760 + 0.998376i \(0.518146\pi\)
\(84\) 0 0
\(85\) 10.7014 0.0136556
\(86\) 0 0
\(87\) 115.038 0.141763
\(88\) 0 0
\(89\) −1526.64 −1.81824 −0.909118 0.416538i \(-0.863243\pi\)
−0.909118 + 0.416538i \(0.863243\pi\)
\(90\) 0 0
\(91\) 1670.36 1.92419
\(92\) 0 0
\(93\) −184.745 −0.205991
\(94\) 0 0
\(95\) 265.141 0.286346
\(96\) 0 0
\(97\) 587.479 0.614943 0.307471 0.951557i \(-0.400517\pi\)
0.307471 + 0.951557i \(0.400517\pi\)
\(98\) 0 0
\(99\) −215.907 −0.219186
\(100\) 0 0
\(101\) 1236.16 1.21785 0.608923 0.793230i \(-0.291602\pi\)
0.608923 + 0.793230i \(0.291602\pi\)
\(102\) 0 0
\(103\) 522.160 0.499514 0.249757 0.968309i \(-0.419649\pi\)
0.249757 + 0.968309i \(0.419649\pi\)
\(104\) 0 0
\(105\) 468.065 0.435033
\(106\) 0 0
\(107\) 388.001 0.350556 0.175278 0.984519i \(-0.443918\pi\)
0.175278 + 0.984519i \(0.443918\pi\)
\(108\) 0 0
\(109\) 1279.79 1.12460 0.562299 0.826934i \(-0.309917\pi\)
0.562299 + 0.826934i \(0.309917\pi\)
\(110\) 0 0
\(111\) −1280.62 −1.09505
\(112\) 0 0
\(113\) −956.635 −0.796395 −0.398198 0.917300i \(-0.630364\pi\)
−0.398198 + 0.917300i \(0.630364\pi\)
\(114\) 0 0
\(115\) 293.443 0.237945
\(116\) 0 0
\(117\) −797.296 −0.630000
\(118\) 0 0
\(119\) 50.5082 0.0389082
\(120\) 0 0
\(121\) −963.609 −0.723974
\(122\) 0 0
\(123\) −368.907 −0.270433
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 1198.59 0.837459 0.418729 0.908111i \(-0.362476\pi\)
0.418729 + 0.908111i \(0.362476\pi\)
\(128\) 0 0
\(129\) 841.245 0.574166
\(130\) 0 0
\(131\) −1961.82 −1.30844 −0.654218 0.756306i \(-0.727002\pi\)
−0.654218 + 0.756306i \(0.727002\pi\)
\(132\) 0 0
\(133\) 1251.41 0.815871
\(134\) 0 0
\(135\) −758.939 −0.483845
\(136\) 0 0
\(137\) 1435.99 0.895508 0.447754 0.894157i \(-0.352224\pi\)
0.447754 + 0.894157i \(0.352224\pi\)
\(138\) 0 0
\(139\) 2284.28 1.39389 0.696944 0.717126i \(-0.254543\pi\)
0.696944 + 0.717126i \(0.254543\pi\)
\(140\) 0 0
\(141\) 1555.35 0.928966
\(142\) 0 0
\(143\) 1356.69 0.793374
\(144\) 0 0
\(145\) 145.000 0.0830455
\(146\) 0 0
\(147\) 848.545 0.476101
\(148\) 0 0
\(149\) −2060.94 −1.13315 −0.566574 0.824011i \(-0.691731\pi\)
−0.566574 + 0.824011i \(0.691731\pi\)
\(150\) 0 0
\(151\) −1559.66 −0.840555 −0.420277 0.907396i \(-0.638067\pi\)
−0.420277 + 0.907396i \(0.638067\pi\)
\(152\) 0 0
\(153\) −24.1086 −0.0127390
\(154\) 0 0
\(155\) −232.862 −0.120670
\(156\) 0 0
\(157\) −1090.99 −0.554591 −0.277295 0.960785i \(-0.589438\pi\)
−0.277295 + 0.960785i \(0.589438\pi\)
\(158\) 0 0
\(159\) −288.152 −0.143723
\(160\) 0 0
\(161\) 1384.99 0.677964
\(162\) 0 0
\(163\) −627.921 −0.301734 −0.150867 0.988554i \(-0.548206\pi\)
−0.150867 + 0.988554i \(0.548206\pi\)
\(164\) 0 0
\(165\) 380.170 0.179371
\(166\) 0 0
\(167\) −265.319 −0.122940 −0.0614701 0.998109i \(-0.519579\pi\)
−0.0614701 + 0.998109i \(0.519579\pi\)
\(168\) 0 0
\(169\) 2812.97 1.28037
\(170\) 0 0
\(171\) −597.322 −0.267125
\(172\) 0 0
\(173\) 3659.84 1.60840 0.804198 0.594362i \(-0.202595\pi\)
0.804198 + 0.594362i \(0.202595\pi\)
\(174\) 0 0
\(175\) 589.973 0.254845
\(176\) 0 0
\(177\) 1759.19 0.747055
\(178\) 0 0
\(179\) −2059.86 −0.860118 −0.430059 0.902801i \(-0.641507\pi\)
−0.430059 + 0.902801i \(0.641507\pi\)
\(180\) 0 0
\(181\) 1514.03 0.621753 0.310877 0.950450i \(-0.399377\pi\)
0.310877 + 0.950450i \(0.399377\pi\)
\(182\) 0 0
\(183\) −2317.39 −0.936102
\(184\) 0 0
\(185\) −1614.16 −0.641488
\(186\) 0 0
\(187\) 41.0236 0.0160425
\(188\) 0 0
\(189\) −3582.03 −1.37860
\(190\) 0 0
\(191\) 842.762 0.319268 0.159634 0.987176i \(-0.448969\pi\)
0.159634 + 0.987176i \(0.448969\pi\)
\(192\) 0 0
\(193\) 4440.20 1.65602 0.828012 0.560711i \(-0.189472\pi\)
0.828012 + 0.560711i \(0.189472\pi\)
\(194\) 0 0
\(195\) 1403.89 0.515561
\(196\) 0 0
\(197\) 4057.24 1.46734 0.733671 0.679505i \(-0.237805\pi\)
0.733671 + 0.679505i \(0.237805\pi\)
\(198\) 0 0
\(199\) 1777.04 0.633020 0.316510 0.948589i \(-0.397489\pi\)
0.316510 + 0.948589i \(0.397489\pi\)
\(200\) 0 0
\(201\) 3889.24 1.36481
\(202\) 0 0
\(203\) 684.369 0.236617
\(204\) 0 0
\(205\) −464.990 −0.158421
\(206\) 0 0
\(207\) −661.081 −0.221973
\(208\) 0 0
\(209\) 1016.41 0.336396
\(210\) 0 0
\(211\) 2180.83 0.711537 0.355769 0.934574i \(-0.384219\pi\)
0.355769 + 0.934574i \(0.384219\pi\)
\(212\) 0 0
\(213\) −3206.21 −1.03139
\(214\) 0 0
\(215\) 1060.35 0.336349
\(216\) 0 0
\(217\) −1099.06 −0.343820
\(218\) 0 0
\(219\) 3820.79 1.17893
\(220\) 0 0
\(221\) 151.491 0.0461104
\(222\) 0 0
\(223\) −2778.56 −0.834379 −0.417189 0.908820i \(-0.636985\pi\)
−0.417189 + 0.908820i \(0.636985\pi\)
\(224\) 0 0
\(225\) −281.606 −0.0834388
\(226\) 0 0
\(227\) −1366.77 −0.399629 −0.199814 0.979834i \(-0.564034\pi\)
−0.199814 + 0.979834i \(0.564034\pi\)
\(228\) 0 0
\(229\) 829.004 0.239223 0.119612 0.992821i \(-0.461835\pi\)
0.119612 + 0.992821i \(0.461835\pi\)
\(230\) 0 0
\(231\) 1794.32 0.511073
\(232\) 0 0
\(233\) −6605.62 −1.85729 −0.928645 0.370968i \(-0.879026\pi\)
−0.928645 + 0.370968i \(0.879026\pi\)
\(234\) 0 0
\(235\) 1960.44 0.544193
\(236\) 0 0
\(237\) −4976.88 −1.36406
\(238\) 0 0
\(239\) 6536.17 1.76900 0.884498 0.466545i \(-0.154501\pi\)
0.884498 + 0.466545i \(0.154501\pi\)
\(240\) 0 0
\(241\) −5623.06 −1.50296 −0.751480 0.659756i \(-0.770660\pi\)
−0.751480 + 0.659756i \(0.770660\pi\)
\(242\) 0 0
\(243\) 2916.22 0.769859
\(244\) 0 0
\(245\) 1069.55 0.278902
\(246\) 0 0
\(247\) 3753.39 0.966894
\(248\) 0 0
\(249\) −341.808 −0.0869929
\(250\) 0 0
\(251\) −6063.17 −1.52472 −0.762359 0.647155i \(-0.775959\pi\)
−0.762359 + 0.647155i \(0.775959\pi\)
\(252\) 0 0
\(253\) 1124.91 0.279535
\(254\) 0 0
\(255\) 42.4506 0.0104249
\(256\) 0 0
\(257\) 4690.99 1.13858 0.569292 0.822136i \(-0.307218\pi\)
0.569292 + 0.822136i \(0.307218\pi\)
\(258\) 0 0
\(259\) −7618.48 −1.82776
\(260\) 0 0
\(261\) −326.663 −0.0774710
\(262\) 0 0
\(263\) −7251.18 −1.70010 −0.850051 0.526701i \(-0.823429\pi\)
−0.850051 + 0.526701i \(0.823429\pi\)
\(264\) 0 0
\(265\) −363.201 −0.0841934
\(266\) 0 0
\(267\) −6055.91 −1.38807
\(268\) 0 0
\(269\) 1971.03 0.446751 0.223375 0.974733i \(-0.428292\pi\)
0.223375 + 0.974733i \(0.428292\pi\)
\(270\) 0 0
\(271\) −4998.08 −1.12034 −0.560170 0.828378i \(-0.689264\pi\)
−0.560170 + 0.828378i \(0.689264\pi\)
\(272\) 0 0
\(273\) 6626.04 1.46896
\(274\) 0 0
\(275\) 479.186 0.105076
\(276\) 0 0
\(277\) 2912.82 0.631822 0.315911 0.948789i \(-0.397690\pi\)
0.315911 + 0.948789i \(0.397690\pi\)
\(278\) 0 0
\(279\) 524.602 0.112570
\(280\) 0 0
\(281\) −1094.80 −0.232421 −0.116210 0.993225i \(-0.537075\pi\)
−0.116210 + 0.993225i \(0.537075\pi\)
\(282\) 0 0
\(283\) 1672.22 0.351247 0.175624 0.984457i \(-0.443806\pi\)
0.175624 + 0.984457i \(0.443806\pi\)
\(284\) 0 0
\(285\) 1051.77 0.218602
\(286\) 0 0
\(287\) −2194.65 −0.451380
\(288\) 0 0
\(289\) −4908.42 −0.999068
\(290\) 0 0
\(291\) 2330.43 0.469458
\(292\) 0 0
\(293\) 1679.59 0.334889 0.167445 0.985881i \(-0.446448\pi\)
0.167445 + 0.985881i \(0.446448\pi\)
\(294\) 0 0
\(295\) 2217.37 0.437628
\(296\) 0 0
\(297\) −2909.39 −0.568416
\(298\) 0 0
\(299\) 4154.04 0.803460
\(300\) 0 0
\(301\) 5004.62 0.958343
\(302\) 0 0
\(303\) 4903.64 0.929724
\(304\) 0 0
\(305\) −2920.96 −0.548373
\(306\) 0 0
\(307\) −9564.56 −1.77810 −0.889052 0.457806i \(-0.848636\pi\)
−0.889052 + 0.457806i \(0.848636\pi\)
\(308\) 0 0
\(309\) 2071.32 0.381338
\(310\) 0 0
\(311\) 3504.65 0.639005 0.319502 0.947585i \(-0.396484\pi\)
0.319502 + 0.947585i \(0.396484\pi\)
\(312\) 0 0
\(313\) 7739.98 1.39773 0.698865 0.715254i \(-0.253689\pi\)
0.698865 + 0.715254i \(0.253689\pi\)
\(314\) 0 0
\(315\) −1329.12 −0.237738
\(316\) 0 0
\(317\) −5176.08 −0.917090 −0.458545 0.888671i \(-0.651629\pi\)
−0.458545 + 0.888671i \(0.651629\pi\)
\(318\) 0 0
\(319\) 555.856 0.0975610
\(320\) 0 0
\(321\) 1539.13 0.267620
\(322\) 0 0
\(323\) 113.495 0.0195511
\(324\) 0 0
\(325\) 1769.53 0.302018
\(326\) 0 0
\(327\) 5076.69 0.858538
\(328\) 0 0
\(329\) 9252.88 1.55054
\(330\) 0 0
\(331\) 8390.95 1.39338 0.696690 0.717373i \(-0.254656\pi\)
0.696690 + 0.717373i \(0.254656\pi\)
\(332\) 0 0
\(333\) 3636.45 0.598427
\(334\) 0 0
\(335\) 4902.20 0.799510
\(336\) 0 0
\(337\) 5357.63 0.866020 0.433010 0.901389i \(-0.357451\pi\)
0.433010 + 0.901389i \(0.357451\pi\)
\(338\) 0 0
\(339\) −3794.81 −0.607982
\(340\) 0 0
\(341\) −892.674 −0.141762
\(342\) 0 0
\(343\) −3046.39 −0.479561
\(344\) 0 0
\(345\) 1164.04 0.181651
\(346\) 0 0
\(347\) −3084.25 −0.477150 −0.238575 0.971124i \(-0.576680\pi\)
−0.238575 + 0.971124i \(0.576680\pi\)
\(348\) 0 0
\(349\) 4693.21 0.719833 0.359916 0.932985i \(-0.382805\pi\)
0.359916 + 0.932985i \(0.382805\pi\)
\(350\) 0 0
\(351\) −10743.7 −1.63378
\(352\) 0 0
\(353\) 9479.76 1.42934 0.714670 0.699462i \(-0.246577\pi\)
0.714670 + 0.699462i \(0.246577\pi\)
\(354\) 0 0
\(355\) −4041.27 −0.604192
\(356\) 0 0
\(357\) 200.358 0.0297032
\(358\) 0 0
\(359\) 284.925 0.0418879 0.0209440 0.999781i \(-0.493333\pi\)
0.0209440 + 0.999781i \(0.493333\pi\)
\(360\) 0 0
\(361\) −4047.01 −0.590030
\(362\) 0 0
\(363\) −3822.48 −0.552694
\(364\) 0 0
\(365\) 4815.92 0.690622
\(366\) 0 0
\(367\) −10974.1 −1.56088 −0.780440 0.625230i \(-0.785005\pi\)
−0.780440 + 0.625230i \(0.785005\pi\)
\(368\) 0 0
\(369\) 1047.55 0.147787
\(370\) 0 0
\(371\) −1714.23 −0.239888
\(372\) 0 0
\(373\) 2571.23 0.356925 0.178463 0.983947i \(-0.442888\pi\)
0.178463 + 0.983947i \(0.442888\pi\)
\(374\) 0 0
\(375\) 495.854 0.0682821
\(376\) 0 0
\(377\) 2052.65 0.280417
\(378\) 0 0
\(379\) 7053.33 0.955950 0.477975 0.878373i \(-0.341371\pi\)
0.477975 + 0.878373i \(0.341371\pi\)
\(380\) 0 0
\(381\) 4754.59 0.639331
\(382\) 0 0
\(383\) 706.482 0.0942547 0.0471273 0.998889i \(-0.484993\pi\)
0.0471273 + 0.998889i \(0.484993\pi\)
\(384\) 0 0
\(385\) 2261.66 0.299389
\(386\) 0 0
\(387\) −2388.80 −0.313772
\(388\) 0 0
\(389\) 3573.96 0.465828 0.232914 0.972497i \(-0.425174\pi\)
0.232914 + 0.972497i \(0.425174\pi\)
\(390\) 0 0
\(391\) 125.610 0.0162464
\(392\) 0 0
\(393\) −7782.21 −0.998882
\(394\) 0 0
\(395\) −6273.11 −0.799075
\(396\) 0 0
\(397\) −3291.08 −0.416057 −0.208028 0.978123i \(-0.566705\pi\)
−0.208028 + 0.978123i \(0.566705\pi\)
\(398\) 0 0
\(399\) 4964.13 0.622850
\(400\) 0 0
\(401\) −12674.7 −1.57841 −0.789206 0.614128i \(-0.789508\pi\)
−0.789206 + 0.614128i \(0.789508\pi\)
\(402\) 0 0
\(403\) −3296.45 −0.407463
\(404\) 0 0
\(405\) −1489.91 −0.182801
\(406\) 0 0
\(407\) −6187.86 −0.753614
\(408\) 0 0
\(409\) 8132.39 0.983180 0.491590 0.870827i \(-0.336416\pi\)
0.491590 + 0.870827i \(0.336416\pi\)
\(410\) 0 0
\(411\) 5696.32 0.683646
\(412\) 0 0
\(413\) 10465.5 1.24691
\(414\) 0 0
\(415\) −430.833 −0.0509608
\(416\) 0 0
\(417\) 9061.37 1.06412
\(418\) 0 0
\(419\) −5662.84 −0.660258 −0.330129 0.943936i \(-0.607092\pi\)
−0.330129 + 0.943936i \(0.607092\pi\)
\(420\) 0 0
\(421\) −10559.3 −1.22239 −0.611196 0.791480i \(-0.709311\pi\)
−0.611196 + 0.791480i \(0.709311\pi\)
\(422\) 0 0
\(423\) −4416.58 −0.507663
\(424\) 0 0
\(425\) 53.5069 0.00610697
\(426\) 0 0
\(427\) −13786.3 −1.56245
\(428\) 0 0
\(429\) 5381.78 0.605676
\(430\) 0 0
\(431\) −5997.30 −0.670255 −0.335127 0.942173i \(-0.608779\pi\)
−0.335127 + 0.942173i \(0.608779\pi\)
\(432\) 0 0
\(433\) 4309.43 0.478286 0.239143 0.970984i \(-0.423134\pi\)
0.239143 + 0.970984i \(0.423134\pi\)
\(434\) 0 0
\(435\) 575.191 0.0633984
\(436\) 0 0
\(437\) 3112.14 0.340673
\(438\) 0 0
\(439\) −5441.67 −0.591610 −0.295805 0.955248i \(-0.595588\pi\)
−0.295805 + 0.955248i \(0.595588\pi\)
\(440\) 0 0
\(441\) −2409.53 −0.260181
\(442\) 0 0
\(443\) −11293.4 −1.21121 −0.605605 0.795766i \(-0.707069\pi\)
−0.605605 + 0.795766i \(0.707069\pi\)
\(444\) 0 0
\(445\) −7633.18 −0.813140
\(446\) 0 0
\(447\) −8175.42 −0.865065
\(448\) 0 0
\(449\) −2462.85 −0.258862 −0.129431 0.991588i \(-0.541315\pi\)
−0.129431 + 0.991588i \(0.541315\pi\)
\(450\) 0 0
\(451\) −1782.53 −0.186111
\(452\) 0 0
\(453\) −6186.93 −0.641694
\(454\) 0 0
\(455\) 8351.80 0.860524
\(456\) 0 0
\(457\) 3887.80 0.397951 0.198975 0.980005i \(-0.436239\pi\)
0.198975 + 0.980005i \(0.436239\pi\)
\(458\) 0 0
\(459\) −324.868 −0.0330360
\(460\) 0 0
\(461\) −14181.7 −1.43277 −0.716386 0.697704i \(-0.754205\pi\)
−0.716386 + 0.697704i \(0.754205\pi\)
\(462\) 0 0
\(463\) −448.093 −0.0449777 −0.0224888 0.999747i \(-0.507159\pi\)
−0.0224888 + 0.999747i \(0.507159\pi\)
\(464\) 0 0
\(465\) −923.724 −0.0921219
\(466\) 0 0
\(467\) 452.628 0.0448504 0.0224252 0.999749i \(-0.492861\pi\)
0.0224252 + 0.999749i \(0.492861\pi\)
\(468\) 0 0
\(469\) 23137.3 2.27800
\(470\) 0 0
\(471\) −4327.79 −0.423384
\(472\) 0 0
\(473\) 4064.83 0.395140
\(474\) 0 0
\(475\) 1325.70 0.128058
\(476\) 0 0
\(477\) 818.236 0.0785419
\(478\) 0 0
\(479\) −18089.3 −1.72552 −0.862759 0.505616i \(-0.831265\pi\)
−0.862759 + 0.505616i \(0.831265\pi\)
\(480\) 0 0
\(481\) −22850.4 −2.16609
\(482\) 0 0
\(483\) 5494.01 0.517570
\(484\) 0 0
\(485\) 2937.40 0.275011
\(486\) 0 0
\(487\) −9117.33 −0.848348 −0.424174 0.905581i \(-0.639436\pi\)
−0.424174 + 0.905581i \(0.639436\pi\)
\(488\) 0 0
\(489\) −2490.86 −0.230349
\(490\) 0 0
\(491\) −7019.77 −0.645209 −0.322605 0.946534i \(-0.604558\pi\)
−0.322605 + 0.946534i \(0.604558\pi\)
\(492\) 0 0
\(493\) 62.0680 0.00567018
\(494\) 0 0
\(495\) −1079.53 −0.0980231
\(496\) 0 0
\(497\) −19073.9 −1.72149
\(498\) 0 0
\(499\) −18234.2 −1.63582 −0.817912 0.575344i \(-0.804868\pi\)
−0.817912 + 0.575344i \(0.804868\pi\)
\(500\) 0 0
\(501\) −1052.48 −0.0938547
\(502\) 0 0
\(503\) −12432.7 −1.10208 −0.551039 0.834479i \(-0.685769\pi\)
−0.551039 + 0.834479i \(0.685769\pi\)
\(504\) 0 0
\(505\) 6180.79 0.544637
\(506\) 0 0
\(507\) 11158.6 0.977457
\(508\) 0 0
\(509\) 8000.10 0.696656 0.348328 0.937373i \(-0.386750\pi\)
0.348328 + 0.937373i \(0.386750\pi\)
\(510\) 0 0
\(511\) 22730.1 1.96775
\(512\) 0 0
\(513\) −8049.03 −0.692735
\(514\) 0 0
\(515\) 2610.80 0.223389
\(516\) 0 0
\(517\) 7515.34 0.639312
\(518\) 0 0
\(519\) 14518.0 1.22788
\(520\) 0 0
\(521\) −18899.7 −1.58927 −0.794635 0.607087i \(-0.792338\pi\)
−0.794635 + 0.607087i \(0.792338\pi\)
\(522\) 0 0
\(523\) −18571.8 −1.55275 −0.776374 0.630273i \(-0.782943\pi\)
−0.776374 + 0.630273i \(0.782943\pi\)
\(524\) 0 0
\(525\) 2340.33 0.194553
\(526\) 0 0
\(527\) −99.6777 −0.00823914
\(528\) 0 0
\(529\) −8722.66 −0.716911
\(530\) 0 0
\(531\) −4995.40 −0.408252
\(532\) 0 0
\(533\) −6582.50 −0.534934
\(534\) 0 0
\(535\) 1940.00 0.156773
\(536\) 0 0
\(537\) −8171.12 −0.656629
\(538\) 0 0
\(539\) 4100.11 0.327652
\(540\) 0 0
\(541\) 13942.1 1.10798 0.553990 0.832523i \(-0.313105\pi\)
0.553990 + 0.832523i \(0.313105\pi\)
\(542\) 0 0
\(543\) 6005.92 0.474657
\(544\) 0 0
\(545\) 6398.93 0.502936
\(546\) 0 0
\(547\) −8368.97 −0.654171 −0.327085 0.944995i \(-0.606066\pi\)
−0.327085 + 0.944995i \(0.606066\pi\)
\(548\) 0 0
\(549\) 6580.48 0.511563
\(550\) 0 0
\(551\) 1537.82 0.118899
\(552\) 0 0
\(553\) −29607.8 −2.27676
\(554\) 0 0
\(555\) −6403.10 −0.489723
\(556\) 0 0
\(557\) −5976.94 −0.454670 −0.227335 0.973817i \(-0.573001\pi\)
−0.227335 + 0.973817i \(0.573001\pi\)
\(558\) 0 0
\(559\) 15010.5 1.13574
\(560\) 0 0
\(561\) 162.734 0.0122471
\(562\) 0 0
\(563\) −12376.7 −0.926496 −0.463248 0.886229i \(-0.653316\pi\)
−0.463248 + 0.886229i \(0.653316\pi\)
\(564\) 0 0
\(565\) −4783.18 −0.356159
\(566\) 0 0
\(567\) −7032.07 −0.520845
\(568\) 0 0
\(569\) −12847.3 −0.946549 −0.473274 0.880915i \(-0.656928\pi\)
−0.473274 + 0.880915i \(0.656928\pi\)
\(570\) 0 0
\(571\) −21342.6 −1.56420 −0.782102 0.623151i \(-0.785852\pi\)
−0.782102 + 0.623151i \(0.785852\pi\)
\(572\) 0 0
\(573\) 3343.10 0.243734
\(574\) 0 0
\(575\) 1467.21 0.106412
\(576\) 0 0
\(577\) 13579.1 0.979731 0.489866 0.871798i \(-0.337046\pi\)
0.489866 + 0.871798i \(0.337046\pi\)
\(578\) 0 0
\(579\) 17613.5 1.26424
\(580\) 0 0
\(581\) −2033.44 −0.145200
\(582\) 0 0
\(583\) −1392.33 −0.0989096
\(584\) 0 0
\(585\) −3986.48 −0.281745
\(586\) 0 0
\(587\) 10153.3 0.713924 0.356962 0.934119i \(-0.383813\pi\)
0.356962 + 0.934119i \(0.383813\pi\)
\(588\) 0 0
\(589\) −2469.65 −0.172767
\(590\) 0 0
\(591\) 16094.4 1.12019
\(592\) 0 0
\(593\) 12148.1 0.841254 0.420627 0.907234i \(-0.361810\pi\)
0.420627 + 0.907234i \(0.361810\pi\)
\(594\) 0 0
\(595\) 252.541 0.0174003
\(596\) 0 0
\(597\) 7049.22 0.483259
\(598\) 0 0
\(599\) 10234.8 0.698135 0.349067 0.937098i \(-0.386498\pi\)
0.349067 + 0.937098i \(0.386498\pi\)
\(600\) 0 0
\(601\) −2380.59 −0.161574 −0.0807871 0.996731i \(-0.525743\pi\)
−0.0807871 + 0.996731i \(0.525743\pi\)
\(602\) 0 0
\(603\) −11043.9 −0.745842
\(604\) 0 0
\(605\) −4818.04 −0.323771
\(606\) 0 0
\(607\) −9305.61 −0.622246 −0.311123 0.950370i \(-0.600705\pi\)
−0.311123 + 0.950370i \(0.600705\pi\)
\(608\) 0 0
\(609\) 2714.78 0.180638
\(610\) 0 0
\(611\) 27752.5 1.83756
\(612\) 0 0
\(613\) −18136.0 −1.19495 −0.597475 0.801887i \(-0.703829\pi\)
−0.597475 + 0.801887i \(0.703829\pi\)
\(614\) 0 0
\(615\) −1844.54 −0.120941
\(616\) 0 0
\(617\) −10399.0 −0.678520 −0.339260 0.940693i \(-0.610177\pi\)
−0.339260 + 0.940693i \(0.610177\pi\)
\(618\) 0 0
\(619\) 4286.80 0.278354 0.139177 0.990268i \(-0.455554\pi\)
0.139177 + 0.990268i \(0.455554\pi\)
\(620\) 0 0
\(621\) −8908.20 −0.575642
\(622\) 0 0
\(623\) −36027.0 −2.31684
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 4031.95 0.256811
\(628\) 0 0
\(629\) −690.948 −0.0437995
\(630\) 0 0
\(631\) 3077.17 0.194137 0.0970683 0.995278i \(-0.469053\pi\)
0.0970683 + 0.995278i \(0.469053\pi\)
\(632\) 0 0
\(633\) 8650.98 0.543200
\(634\) 0 0
\(635\) 5992.93 0.374523
\(636\) 0 0
\(637\) 15140.8 0.941759
\(638\) 0 0
\(639\) 9104.35 0.563635
\(640\) 0 0
\(641\) −20569.8 −1.26749 −0.633744 0.773543i \(-0.718483\pi\)
−0.633744 + 0.773543i \(0.718483\pi\)
\(642\) 0 0
\(643\) −16825.3 −1.03192 −0.515962 0.856612i \(-0.672565\pi\)
−0.515962 + 0.856612i \(0.672565\pi\)
\(644\) 0 0
\(645\) 4206.22 0.256775
\(646\) 0 0
\(647\) 15753.1 0.957213 0.478607 0.878029i \(-0.341142\pi\)
0.478607 + 0.878029i \(0.341142\pi\)
\(648\) 0 0
\(649\) 8500.27 0.514122
\(650\) 0 0
\(651\) −4359.78 −0.262478
\(652\) 0 0
\(653\) −4653.09 −0.278850 −0.139425 0.990233i \(-0.544525\pi\)
−0.139425 + 0.990233i \(0.544525\pi\)
\(654\) 0 0
\(655\) −9809.10 −0.585150
\(656\) 0 0
\(657\) −10849.5 −0.644263
\(658\) 0 0
\(659\) −17024.0 −1.00631 −0.503157 0.864195i \(-0.667828\pi\)
−0.503157 + 0.864195i \(0.667828\pi\)
\(660\) 0 0
\(661\) 31266.5 1.83983 0.919914 0.392121i \(-0.128259\pi\)
0.919914 + 0.392121i \(0.128259\pi\)
\(662\) 0 0
\(663\) 600.940 0.0352015
\(664\) 0 0
\(665\) 6257.04 0.364869
\(666\) 0 0
\(667\) 1701.97 0.0988012
\(668\) 0 0
\(669\) −11022.1 −0.636979
\(670\) 0 0
\(671\) −11197.5 −0.644224
\(672\) 0 0
\(673\) −21149.7 −1.21138 −0.605691 0.795700i \(-0.707103\pi\)
−0.605691 + 0.795700i \(0.707103\pi\)
\(674\) 0 0
\(675\) −3794.70 −0.216382
\(676\) 0 0
\(677\) −23156.0 −1.31456 −0.657280 0.753646i \(-0.728293\pi\)
−0.657280 + 0.753646i \(0.728293\pi\)
\(678\) 0 0
\(679\) 13863.9 0.783574
\(680\) 0 0
\(681\) −5421.75 −0.305084
\(682\) 0 0
\(683\) 22444.1 1.25739 0.628696 0.777651i \(-0.283589\pi\)
0.628696 + 0.777651i \(0.283589\pi\)
\(684\) 0 0
\(685\) 7179.93 0.400483
\(686\) 0 0
\(687\) 3288.52 0.182627
\(688\) 0 0
\(689\) −5141.56 −0.284293
\(690\) 0 0
\(691\) 2399.87 0.132121 0.0660604 0.997816i \(-0.478957\pi\)
0.0660604 + 0.997816i \(0.478957\pi\)
\(692\) 0 0
\(693\) −5095.17 −0.279292
\(694\) 0 0
\(695\) 11421.4 0.623366
\(696\) 0 0
\(697\) −199.041 −0.0108167
\(698\) 0 0
\(699\) −26203.4 −1.41789
\(700\) 0 0
\(701\) −17664.6 −0.951759 −0.475880 0.879510i \(-0.657870\pi\)
−0.475880 + 0.879510i \(0.657870\pi\)
\(702\) 0 0
\(703\) −17119.2 −0.918438
\(704\) 0 0
\(705\) 7776.76 0.415446
\(706\) 0 0
\(707\) 29172.0 1.55181
\(708\) 0 0
\(709\) −5982.89 −0.316914 −0.158457 0.987366i \(-0.550652\pi\)
−0.158457 + 0.987366i \(0.550652\pi\)
\(710\) 0 0
\(711\) 14132.4 0.745436
\(712\) 0 0
\(713\) −2733.26 −0.143565
\(714\) 0 0
\(715\) 6783.47 0.354808
\(716\) 0 0
\(717\) 25927.9 1.35048
\(718\) 0 0
\(719\) 7405.01 0.384089 0.192045 0.981386i \(-0.438488\pi\)
0.192045 + 0.981386i \(0.438488\pi\)
\(720\) 0 0
\(721\) 12322.4 0.636492
\(722\) 0 0
\(723\) −22305.7 −1.14739
\(724\) 0 0
\(725\) 725.000 0.0371391
\(726\) 0 0
\(727\) 24400.6 1.24480 0.622399 0.782700i \(-0.286158\pi\)
0.622399 + 0.782700i \(0.286158\pi\)
\(728\) 0 0
\(729\) 19613.7 0.996480
\(730\) 0 0
\(731\) 453.887 0.0229653
\(732\) 0 0
\(733\) −1339.06 −0.0674750 −0.0337375 0.999431i \(-0.510741\pi\)
−0.0337375 + 0.999431i \(0.510741\pi\)
\(734\) 0 0
\(735\) 4242.73 0.212919
\(736\) 0 0
\(737\) 18792.5 0.939256
\(738\) 0 0
\(739\) −12325.3 −0.613523 −0.306762 0.951786i \(-0.599245\pi\)
−0.306762 + 0.951786i \(0.599245\pi\)
\(740\) 0 0
\(741\) 14889.1 0.738144
\(742\) 0 0
\(743\) −2735.59 −0.135073 −0.0675364 0.997717i \(-0.521514\pi\)
−0.0675364 + 0.997717i \(0.521514\pi\)
\(744\) 0 0
\(745\) −10304.7 −0.506759
\(746\) 0 0
\(747\) 970.600 0.0475400
\(748\) 0 0
\(749\) 9156.40 0.446686
\(750\) 0 0
\(751\) −9673.48 −0.470027 −0.235014 0.971992i \(-0.575513\pi\)
−0.235014 + 0.971992i \(0.575513\pi\)
\(752\) 0 0
\(753\) −24051.6 −1.16400
\(754\) 0 0
\(755\) −7798.32 −0.375907
\(756\) 0 0
\(757\) −26460.3 −1.27043 −0.635215 0.772336i \(-0.719088\pi\)
−0.635215 + 0.772336i \(0.719088\pi\)
\(758\) 0 0
\(759\) 4462.33 0.213402
\(760\) 0 0
\(761\) −21093.9 −1.00480 −0.502399 0.864636i \(-0.667549\pi\)
−0.502399 + 0.864636i \(0.667549\pi\)
\(762\) 0 0
\(763\) 30201.6 1.43299
\(764\) 0 0
\(765\) −120.543 −0.00569704
\(766\) 0 0
\(767\) 31389.6 1.47772
\(768\) 0 0
\(769\) 31006.9 1.45402 0.727008 0.686629i \(-0.240910\pi\)
0.727008 + 0.686629i \(0.240910\pi\)
\(770\) 0 0
\(771\) 18608.4 0.869214
\(772\) 0 0
\(773\) −21013.1 −0.977735 −0.488867 0.872358i \(-0.662590\pi\)
−0.488867 + 0.872358i \(0.662590\pi\)
\(774\) 0 0
\(775\) −1164.31 −0.0539655
\(776\) 0 0
\(777\) −30221.3 −1.39534
\(778\) 0 0
\(779\) −4931.51 −0.226816
\(780\) 0 0
\(781\) −15492.2 −0.709799
\(782\) 0 0
\(783\) −4401.85 −0.200906
\(784\) 0 0
\(785\) −5454.96 −0.248020
\(786\) 0 0
\(787\) 22061.2 0.999236 0.499618 0.866246i \(-0.333474\pi\)
0.499618 + 0.866246i \(0.333474\pi\)
\(788\) 0 0
\(789\) −28764.2 −1.29789
\(790\) 0 0
\(791\) −22575.6 −1.01479
\(792\) 0 0
\(793\) −41349.8 −1.85167
\(794\) 0 0
\(795\) −1440.76 −0.0642747
\(796\) 0 0
\(797\) 15748.3 0.699916 0.349958 0.936765i \(-0.386196\pi\)
0.349958 + 0.936765i \(0.386196\pi\)
\(798\) 0 0
\(799\) 839.178 0.0371564
\(800\) 0 0
\(801\) 17196.4 0.758557
\(802\) 0 0
\(803\) 18461.8 0.811336
\(804\) 0 0
\(805\) 6924.93 0.303195
\(806\) 0 0
\(807\) 7818.76 0.341057
\(808\) 0 0
\(809\) −10312.6 −0.448174 −0.224087 0.974569i \(-0.571940\pi\)
−0.224087 + 0.974569i \(0.571940\pi\)
\(810\) 0 0
\(811\) 11608.5 0.502627 0.251314 0.967906i \(-0.419137\pi\)
0.251314 + 0.967906i \(0.419137\pi\)
\(812\) 0 0
\(813\) −19826.6 −0.855286
\(814\) 0 0
\(815\) −3139.61 −0.134939
\(816\) 0 0
\(817\) 11245.7 0.481562
\(818\) 0 0
\(819\) −18815.3 −0.802761
\(820\) 0 0
\(821\) 32578.0 1.38487 0.692436 0.721479i \(-0.256537\pi\)
0.692436 + 0.721479i \(0.256537\pi\)
\(822\) 0 0
\(823\) 17164.6 0.726999 0.363500 0.931594i \(-0.381582\pi\)
0.363500 + 0.931594i \(0.381582\pi\)
\(824\) 0 0
\(825\) 1900.85 0.0802172
\(826\) 0 0
\(827\) −17509.0 −0.736214 −0.368107 0.929783i \(-0.619994\pi\)
−0.368107 + 0.929783i \(0.619994\pi\)
\(828\) 0 0
\(829\) 18328.0 0.767862 0.383931 0.923362i \(-0.374570\pi\)
0.383931 + 0.923362i \(0.374570\pi\)
\(830\) 0 0
\(831\) 11554.7 0.482344
\(832\) 0 0
\(833\) 457.826 0.0190429
\(834\) 0 0
\(835\) −1326.60 −0.0549806
\(836\) 0 0
\(837\) 7069.12 0.291929
\(838\) 0 0
\(839\) 28719.4 1.18177 0.590884 0.806757i \(-0.298779\pi\)
0.590884 + 0.806757i \(0.298779\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 0 0
\(843\) −4342.88 −0.177434
\(844\) 0 0
\(845\) 14064.9 0.572599
\(846\) 0 0
\(847\) −22740.1 −0.922504
\(848\) 0 0
\(849\) 6633.40 0.268148
\(850\) 0 0
\(851\) −18946.5 −0.763194
\(852\) 0 0
\(853\) 8729.75 0.350411 0.175206 0.984532i \(-0.443941\pi\)
0.175206 + 0.984532i \(0.443941\pi\)
\(854\) 0 0
\(855\) −2986.61 −0.119462
\(856\) 0 0
\(857\) 22846.3 0.910634 0.455317 0.890329i \(-0.349526\pi\)
0.455317 + 0.890329i \(0.349526\pi\)
\(858\) 0 0
\(859\) 34370.5 1.36520 0.682599 0.730793i \(-0.260849\pi\)
0.682599 + 0.730793i \(0.260849\pi\)
\(860\) 0 0
\(861\) −8705.82 −0.344592
\(862\) 0 0
\(863\) 43981.1 1.73480 0.867402 0.497608i \(-0.165788\pi\)
0.867402 + 0.497608i \(0.165788\pi\)
\(864\) 0 0
\(865\) 18299.2 0.719297
\(866\) 0 0
\(867\) −19470.9 −0.762706
\(868\) 0 0
\(869\) −24047.9 −0.938746
\(870\) 0 0
\(871\) 69396.7 2.69967
\(872\) 0 0
\(873\) −6617.50 −0.256550
\(874\) 0 0
\(875\) 2949.87 0.113970
\(876\) 0 0
\(877\) −19543.7 −0.752501 −0.376250 0.926518i \(-0.622787\pi\)
−0.376250 + 0.926518i \(0.622787\pi\)
\(878\) 0 0
\(879\) 6662.64 0.255660
\(880\) 0 0
\(881\) −22684.2 −0.867481 −0.433740 0.901038i \(-0.642806\pi\)
−0.433740 + 0.901038i \(0.642806\pi\)
\(882\) 0 0
\(883\) 5394.00 0.205575 0.102787 0.994703i \(-0.467224\pi\)
0.102787 + 0.994703i \(0.467224\pi\)
\(884\) 0 0
\(885\) 8795.94 0.334093
\(886\) 0 0
\(887\) −17358.4 −0.657091 −0.328545 0.944488i \(-0.606558\pi\)
−0.328545 + 0.944488i \(0.606558\pi\)
\(888\) 0 0
\(889\) 28285.3 1.06711
\(890\) 0 0
\(891\) −5711.57 −0.214753
\(892\) 0 0
\(893\) 20791.7 0.779137
\(894\) 0 0
\(895\) −10299.3 −0.384656
\(896\) 0 0
\(897\) 16478.4 0.613375
\(898\) 0 0
\(899\) −1350.60 −0.0501057
\(900\) 0 0
\(901\) −155.470 −0.00574856
\(902\) 0 0
\(903\) 19852.5 0.731616
\(904\) 0 0
\(905\) 7570.17 0.278056
\(906\) 0 0
\(907\) 13260.5 0.485455 0.242728 0.970094i \(-0.421958\pi\)
0.242728 + 0.970094i \(0.421958\pi\)
\(908\) 0 0
\(909\) −13924.4 −0.508078
\(910\) 0 0
\(911\) 8277.28 0.301030 0.150515 0.988608i \(-0.451907\pi\)
0.150515 + 0.988608i \(0.451907\pi\)
\(912\) 0 0
\(913\) −1651.59 −0.0598683
\(914\) 0 0
\(915\) −11587.0 −0.418638
\(916\) 0 0
\(917\) −46296.9 −1.66724
\(918\) 0 0
\(919\) 18282.0 0.656223 0.328111 0.944639i \(-0.393588\pi\)
0.328111 + 0.944639i \(0.393588\pi\)
\(920\) 0 0
\(921\) −37941.0 −1.35744
\(922\) 0 0
\(923\) −57209.1 −2.04015
\(924\) 0 0
\(925\) −8070.79 −0.286882
\(926\) 0 0
\(927\) −5881.73 −0.208394
\(928\) 0 0
\(929\) 30690.7 1.08389 0.541943 0.840415i \(-0.317689\pi\)
0.541943 + 0.840415i \(0.317689\pi\)
\(930\) 0 0
\(931\) 11343.2 0.399313
\(932\) 0 0
\(933\) 13902.4 0.487827
\(934\) 0 0
\(935\) 205.118 0.00717441
\(936\) 0 0
\(937\) 25526.2 0.889972 0.444986 0.895537i \(-0.353209\pi\)
0.444986 + 0.895537i \(0.353209\pi\)
\(938\) 0 0
\(939\) 30703.2 1.06705
\(940\) 0 0
\(941\) −9533.59 −0.330272 −0.165136 0.986271i \(-0.552806\pi\)
−0.165136 + 0.986271i \(0.552806\pi\)
\(942\) 0 0
\(943\) −5457.91 −0.188477
\(944\) 0 0
\(945\) −17910.2 −0.616526
\(946\) 0 0
\(947\) −11431.0 −0.392247 −0.196123 0.980579i \(-0.562835\pi\)
−0.196123 + 0.980579i \(0.562835\pi\)
\(948\) 0 0
\(949\) 68175.3 2.33200
\(950\) 0 0
\(951\) −20532.6 −0.700123
\(952\) 0 0
\(953\) −22865.7 −0.777222 −0.388611 0.921402i \(-0.627045\pi\)
−0.388611 + 0.921402i \(0.627045\pi\)
\(954\) 0 0
\(955\) 4213.81 0.142781
\(956\) 0 0
\(957\) 2204.99 0.0744798
\(958\) 0 0
\(959\) 33887.8 1.14108
\(960\) 0 0
\(961\) −27622.0 −0.927193
\(962\) 0 0
\(963\) −4370.53 −0.146250
\(964\) 0 0
\(965\) 22201.0 0.740596
\(966\) 0 0
\(967\) 34059.5 1.13266 0.566329 0.824179i \(-0.308363\pi\)
0.566329 + 0.824179i \(0.308363\pi\)
\(968\) 0 0
\(969\) 450.215 0.0149257
\(970\) 0 0
\(971\) 22831.8 0.754589 0.377294 0.926093i \(-0.376854\pi\)
0.377294 + 0.926093i \(0.376854\pi\)
\(972\) 0 0
\(973\) 53906.7 1.77612
\(974\) 0 0
\(975\) 7019.43 0.230566
\(976\) 0 0
\(977\) 21776.8 0.713103 0.356551 0.934276i \(-0.383952\pi\)
0.356551 + 0.934276i \(0.383952\pi\)
\(978\) 0 0
\(979\) −29261.7 −0.955269
\(980\) 0 0
\(981\) −14415.8 −0.469175
\(982\) 0 0
\(983\) −21311.1 −0.691472 −0.345736 0.938332i \(-0.612371\pi\)
−0.345736 + 0.938332i \(0.612371\pi\)
\(984\) 0 0
\(985\) 20286.2 0.656215
\(986\) 0 0
\(987\) 36704.6 1.18371
\(988\) 0 0
\(989\) 12446.0 0.400163
\(990\) 0 0
\(991\) 30304.7 0.971404 0.485702 0.874125i \(-0.338564\pi\)
0.485702 + 0.874125i \(0.338564\pi\)
\(992\) 0 0
\(993\) 33285.5 1.06373
\(994\) 0 0
\(995\) 8885.20 0.283095
\(996\) 0 0
\(997\) −17844.3 −0.566835 −0.283418 0.958997i \(-0.591468\pi\)
−0.283418 + 0.958997i \(0.591468\pi\)
\(998\) 0 0
\(999\) 49001.9 1.55190
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1160.4.a.j.1.10 13
4.3 odd 2 2320.4.a.bc.1.4 13
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.4.a.j.1.10 13 1.1 even 1 trivial
2320.4.a.bc.1.4 13 4.3 odd 2