Properties

Label 117.3.u.a.68.7
Level $117$
Weight $3$
Character 117.68
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(68,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.68");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.u (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 68.7
Character \(\chi\) \(=\) 117.68
Dual form 117.3.u.a.74.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.11714 - 1.22233i) q^{2} +(2.89505 - 0.786578i) q^{3} +(0.988182 + 1.71158i) q^{4} +(2.73246 + 1.57759i) q^{5} +(-7.09067 - 1.87341i) q^{6} +7.65083 q^{7} +4.94710i q^{8} +(7.76259 - 4.55436i) q^{9} +(-3.85666 - 6.67994i) q^{10} +(-5.32659 - 3.07531i) q^{11} +(4.20712 + 4.17782i) q^{12} +(7.83575 + 10.3731i) q^{13} +(-16.1979 - 9.35184i) q^{14} +(9.15149 + 2.41789i) q^{15} +(9.99972 - 17.3200i) q^{16} +(-18.6707 - 10.7795i) q^{17} +(-22.0014 + 0.153762i) q^{18} +(15.0726 - 26.1066i) q^{19} +6.23577i q^{20} +(22.1495 - 6.01798i) q^{21} +(7.51808 + 13.0217i) q^{22} +8.21173i q^{23} +(3.89128 + 14.3221i) q^{24} +(-7.52244 - 13.0293i) q^{25} +(-3.91002 - 31.5391i) q^{26} +(18.8907 - 19.2910i) q^{27} +(7.56041 + 13.0950i) q^{28} +(-3.65390 - 2.10958i) q^{29} +(-16.4195 - 16.3052i) q^{30} +(-25.9263 + 44.9057i) q^{31} +(-25.2043 + 14.5517i) q^{32} +(-17.8397 - 4.71338i) q^{33} +(26.3523 + 45.6435i) q^{34} +(20.9056 + 12.0698i) q^{35} +(15.4660 + 8.78576i) q^{36} +(22.3585 + 38.7261i) q^{37} +(-63.8217 + 36.8475i) q^{38} +(30.8441 + 23.8672i) q^{39} +(-7.80448 + 13.5178i) q^{40} +55.3551i q^{41} +(-54.2495 - 14.3331i) q^{42} -51.5014 q^{43} -12.1558i q^{44} +(28.3959 - 0.198451i) q^{45} +(10.0374 - 17.3854i) q^{46} +(24.2699 - 14.0122i) q^{47} +(15.3261 - 58.0078i) q^{48} +9.53523 q^{49} +36.7796i q^{50} +(-62.5314 - 16.5213i) q^{51} +(-10.0112 + 23.6620i) q^{52} +0.382421i q^{53} +(-63.5741 + 17.7510i) q^{54} +(-9.70312 - 16.8063i) q^{55} +37.8495i q^{56} +(23.1011 - 87.4356i) q^{57} +(5.15721 + 8.93255i) q^{58} +(41.5363 - 23.9810i) q^{59} +(4.90492 + 18.0528i) q^{60} -51.3571 q^{61} +(109.779 - 63.3811i) q^{62} +(59.3903 - 34.8446i) q^{63} -8.84980 q^{64} +(5.04643 + 40.7056i) q^{65} +(32.0078 + 31.7848i) q^{66} +25.9108 q^{67} -42.6085i q^{68} +(6.45917 + 23.7733i) q^{69} +(-29.5067 - 51.1071i) q^{70} +(-7.07732 - 4.08609i) q^{71} +(22.5309 + 38.4023i) q^{72} -24.8357 q^{73} -109.318i q^{74} +(-32.0263 - 31.8033i) q^{75} +59.5780 q^{76} +(-40.7528 - 23.5286i) q^{77} +(-36.1277 - 88.2317i) q^{78} +(8.23711 + 14.2671i) q^{79} +(54.6477 - 31.5508i) q^{80} +(39.5156 - 70.7073i) q^{81} +(67.6622 - 117.194i) q^{82} +(-39.7129 + 22.9283i) q^{83} +(32.1880 + 31.9638i) q^{84} +(-34.0113 - 58.9092i) q^{85} +(109.036 + 62.9518i) q^{86} +(-12.2376 - 3.23326i) q^{87} +(15.2139 - 26.3512i) q^{88} +(-70.5240 + 40.7171i) q^{89} +(-60.3605 - 34.2890i) q^{90} +(59.9500 + 79.3628i) q^{91} +(-14.0550 + 8.11468i) q^{92} +(-39.7361 + 150.397i) q^{93} -68.5102 q^{94} +(82.3708 - 47.5568i) q^{95} +(-61.5216 + 61.9530i) q^{96} +46.9466 q^{97} +(-20.1874 - 11.6552i) q^{98} +(-55.3541 + 0.386854i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 3 q^{2} - q^{3} + 49 q^{4} - 6 q^{5} - 3 q^{6} + 2 q^{7} - 3 q^{9} - 6 q^{10} + 33 q^{11} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 28 q^{15} - 83 q^{16} + 34 q^{18} + 5 q^{19} - 91 q^{21} - 15 q^{22}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.11714 1.22233i −1.05857 0.611165i −0.133533 0.991044i \(-0.542632\pi\)
−0.925036 + 0.379879i \(0.875966\pi\)
\(3\) 2.89505 0.786578i 0.965016 0.262193i
\(4\) 0.988182 + 1.71158i 0.247045 + 0.427895i
\(5\) 2.73246 + 1.57759i 0.546492 + 0.315517i 0.747706 0.664030i \(-0.231155\pi\)
−0.201214 + 0.979547i \(0.564489\pi\)
\(6\) −7.09067 1.87341i −1.18178 0.312235i
\(7\) 7.65083 1.09298 0.546488 0.837467i \(-0.315964\pi\)
0.546488 + 0.837467i \(0.315964\pi\)
\(8\) 4.94710i 0.618388i
\(9\) 7.76259 4.55436i 0.862510 0.506040i
\(10\) −3.85666 6.67994i −0.385666 0.667994i
\(11\) −5.32659 3.07531i −0.484235 0.279573i 0.237945 0.971279i \(-0.423526\pi\)
−0.722180 + 0.691705i \(0.756860\pi\)
\(12\) 4.20712 + 4.17782i 0.350594 + 0.348152i
\(13\) 7.83575 + 10.3731i 0.602750 + 0.797930i
\(14\) −16.1979 9.35184i −1.15699 0.667989i
\(15\) 9.15149 + 2.41789i 0.610100 + 0.161193i
\(16\) 9.99972 17.3200i 0.624983 1.08250i
\(17\) −18.6707 10.7795i −1.09828 0.634090i −0.162508 0.986707i \(-0.551958\pi\)
−0.935768 + 0.352617i \(0.885292\pi\)
\(18\) −22.0014 + 0.153762i −1.22230 + 0.00854231i
\(19\) 15.0726 26.1066i 0.793297 1.37403i −0.130618 0.991433i \(-0.541696\pi\)
0.923915 0.382598i \(-0.124971\pi\)
\(20\) 6.23577i 0.311788i
\(21\) 22.1495 6.01798i 1.05474 0.286570i
\(22\) 7.51808 + 13.0217i 0.341731 + 0.591895i
\(23\) 8.21173i 0.357032i 0.983937 + 0.178516i \(0.0571296\pi\)
−0.983937 + 0.178516i \(0.942870\pi\)
\(24\) 3.89128 + 14.3221i 0.162137 + 0.596754i
\(25\) −7.52244 13.0293i −0.300898 0.521170i
\(26\) −3.91002 31.5391i −0.150386 1.21304i
\(27\) 18.8907 19.2910i 0.699656 0.714480i
\(28\) 7.56041 + 13.0950i 0.270015 + 0.467679i
\(29\) −3.65390 2.10958i −0.125997 0.0727442i 0.435677 0.900103i \(-0.356509\pi\)
−0.561674 + 0.827359i \(0.689842\pi\)
\(30\) −16.4195 16.3052i −0.547317 0.543505i
\(31\) −25.9263 + 44.9057i −0.836333 + 1.44857i 0.0566070 + 0.998397i \(0.481972\pi\)
−0.892940 + 0.450175i \(0.851362\pi\)
\(32\) −25.2043 + 14.5517i −0.787634 + 0.454741i
\(33\) −17.8397 4.71338i −0.540596 0.142830i
\(34\) 26.3523 + 45.6435i 0.775067 + 1.34246i
\(35\) 20.9056 + 12.0698i 0.597303 + 0.344853i
\(36\) 15.4660 + 8.78576i 0.429611 + 0.244049i
\(37\) 22.3585 + 38.7261i 0.604285 + 1.04665i 0.992164 + 0.124942i \(0.0398744\pi\)
−0.387879 + 0.921710i \(0.626792\pi\)
\(38\) −63.8217 + 36.8475i −1.67952 + 0.969671i
\(39\) 30.8441 + 23.8672i 0.790875 + 0.611978i
\(40\) −7.80448 + 13.5178i −0.195112 + 0.337944i
\(41\) 55.3551i 1.35012i 0.737761 + 0.675062i \(0.235883\pi\)
−0.737761 + 0.675062i \(0.764117\pi\)
\(42\) −54.2495 14.3331i −1.29166 0.341265i
\(43\) −51.5014 −1.19771 −0.598854 0.800858i \(-0.704377\pi\)
−0.598854 + 0.800858i \(0.704377\pi\)
\(44\) 12.1558i 0.276269i
\(45\) 28.3959 0.198451i 0.631019 0.00441001i
\(46\) 10.0374 17.3854i 0.218205 0.377943i
\(47\) 24.2699 14.0122i 0.516380 0.298132i −0.219072 0.975709i \(-0.570303\pi\)
0.735452 + 0.677577i \(0.236970\pi\)
\(48\) 15.3261 58.0078i 0.319294 1.20850i
\(49\) 9.53523 0.194596
\(50\) 36.7796i 0.735593i
\(51\) −62.5314 16.5213i −1.22611 0.323947i
\(52\) −10.0112 + 23.6620i −0.192524 + 0.455039i
\(53\) 0.382421i 0.00721549i 0.999993 + 0.00360774i \(0.00114838\pi\)
−0.999993 + 0.00360774i \(0.998852\pi\)
\(54\) −63.5741 + 17.7510i −1.17730 + 0.328722i
\(55\) −9.70312 16.8063i −0.176420 0.305569i
\(56\) 37.8495i 0.675883i
\(57\) 23.1011 87.4356i 0.405283 1.53396i
\(58\) 5.15721 + 8.93255i 0.0889175 + 0.154010i
\(59\) 41.5363 23.9810i 0.704005 0.406457i −0.104833 0.994490i \(-0.533431\pi\)
0.808837 + 0.588033i \(0.200097\pi\)
\(60\) 4.90492 + 18.0528i 0.0817486 + 0.300881i
\(61\) −51.3571 −0.841920 −0.420960 0.907079i \(-0.638307\pi\)
−0.420960 + 0.907079i \(0.638307\pi\)
\(62\) 109.779 63.3811i 1.77063 1.02228i
\(63\) 59.3903 34.8446i 0.942703 0.553090i
\(64\) −8.84980 −0.138278
\(65\) 5.04643 + 40.7056i 0.0776373 + 0.626240i
\(66\) 32.0078 + 31.7848i 0.484966 + 0.481589i
\(67\) 25.9108 0.386728 0.193364 0.981127i \(-0.438060\pi\)
0.193364 + 0.981127i \(0.438060\pi\)
\(68\) 42.6085i 0.626596i
\(69\) 6.45917 + 23.7733i 0.0936111 + 0.344541i
\(70\) −29.5067 51.1071i −0.421524 0.730101i
\(71\) −7.07732 4.08609i −0.0996806 0.0575506i 0.449331 0.893365i \(-0.351662\pi\)
−0.549012 + 0.835815i \(0.684996\pi\)
\(72\) 22.5309 + 38.4023i 0.312929 + 0.533366i
\(73\) −24.8357 −0.340215 −0.170107 0.985426i \(-0.554411\pi\)
−0.170107 + 0.985426i \(0.554411\pi\)
\(74\) 109.318i 1.47727i
\(75\) −32.0263 31.8033i −0.427018 0.424044i
\(76\) 59.5780 0.783922
\(77\) −40.7528 23.5286i −0.529257 0.305567i
\(78\) −36.1277 88.2317i −0.463176 1.13118i
\(79\) 8.23711 + 14.2671i 0.104267 + 0.180596i 0.913439 0.406977i \(-0.133417\pi\)
−0.809171 + 0.587573i \(0.800084\pi\)
\(80\) 54.6477 31.5508i 0.683096 0.394386i
\(81\) 39.5156 70.7073i 0.487847 0.872929i
\(82\) 67.6622 117.194i 0.825149 1.42920i
\(83\) −39.7129 + 22.9283i −0.478469 + 0.276244i −0.719778 0.694204i \(-0.755757\pi\)
0.241309 + 0.970448i \(0.422423\pi\)
\(84\) 32.1880 + 31.9638i 0.383190 + 0.380522i
\(85\) −34.0113 58.9092i −0.400133 0.693050i
\(86\) 109.036 + 62.9518i 1.26786 + 0.731997i
\(87\) −12.2376 3.23326i −0.140662 0.0371639i
\(88\) 15.2139 26.3512i 0.172885 0.299445i
\(89\) −70.5240 + 40.7171i −0.792405 + 0.457495i −0.840809 0.541333i \(-0.817920\pi\)
0.0484035 + 0.998828i \(0.484587\pi\)
\(90\) −60.3605 34.2890i −0.670672 0.380989i
\(91\) 59.9500 + 79.3628i 0.658791 + 0.872118i
\(92\) −14.0550 + 8.11468i −0.152772 + 0.0882030i
\(93\) −39.7361 + 150.397i −0.427270 + 1.61717i
\(94\) −68.5102 −0.728832
\(95\) 82.3708 47.5568i 0.867061 0.500598i
\(96\) −61.5216 + 61.9530i −0.640850 + 0.645344i
\(97\) 46.9466 0.483986 0.241993 0.970278i \(-0.422199\pi\)
0.241993 + 0.970278i \(0.422199\pi\)
\(98\) −20.1874 11.6552i −0.205994 0.118931i
\(99\) −55.3541 + 0.386854i −0.559133 + 0.00390762i
\(100\) 14.8671 25.7505i 0.148671 0.257505i
\(101\) −31.9723 18.4592i −0.316557 0.182764i 0.333300 0.942821i \(-0.391838\pi\)
−0.649857 + 0.760057i \(0.725171\pi\)
\(102\) 112.193 + 111.412i 1.09993 + 1.09227i
\(103\) −34.9957 + 60.6143i −0.339764 + 0.588488i −0.984388 0.176011i \(-0.943680\pi\)
0.644624 + 0.764500i \(0.277014\pi\)
\(104\) −51.3168 + 38.7643i −0.493430 + 0.372733i
\(105\) 70.0165 + 18.4989i 0.666824 + 0.176180i
\(106\) 0.467445 0.809638i 0.00440985 0.00763809i
\(107\) −97.4131 + 56.2415i −0.910403 + 0.525621i −0.880561 0.473933i \(-0.842834\pi\)
−0.0298423 + 0.999555i \(0.509500\pi\)
\(108\) 51.6855 + 13.2700i 0.478569 + 0.122870i
\(109\) −206.693 −1.89627 −0.948133 0.317875i \(-0.897031\pi\)
−0.948133 + 0.317875i \(0.897031\pi\)
\(110\) 47.4417i 0.431288i
\(111\) 95.1901 + 94.5272i 0.857569 + 0.851596i
\(112\) 76.5062 132.513i 0.683091 1.18315i
\(113\) 150.016 86.6115i 1.32757 0.766473i 0.342648 0.939464i \(-0.388676\pi\)
0.984923 + 0.172991i \(0.0553430\pi\)
\(114\) −155.783 + 156.876i −1.36652 + 1.37611i
\(115\) −12.9547 + 22.4382i −0.112650 + 0.195115i
\(116\) 8.33860i 0.0718845i
\(117\) 108.069 + 44.8352i 0.923663 + 0.383207i
\(118\) −117.251 −0.993650
\(119\) −142.846 82.4723i −1.20039 0.693045i
\(120\) −11.9616 + 45.2734i −0.0996797 + 0.377278i
\(121\) −41.5850 72.0273i −0.343678 0.595267i
\(122\) 108.730 + 62.7753i 0.891230 + 0.514552i
\(123\) 43.5411 + 160.256i 0.353993 + 1.30289i
\(124\) −102.480 −0.826449
\(125\) 126.349i 1.01079i
\(126\) −168.329 + 1.17640i −1.33594 + 0.00933654i
\(127\) 82.2784 + 142.510i 0.647862 + 1.12213i 0.983633 + 0.180186i \(0.0576699\pi\)
−0.335771 + 0.941944i \(0.608997\pi\)
\(128\) 119.553 + 69.0242i 0.934011 + 0.539252i
\(129\) −149.099 + 40.5099i −1.15581 + 0.314030i
\(130\) 39.0717 92.3478i 0.300552 0.710368i
\(131\) 143.908 + 83.0856i 1.09854 + 0.634241i 0.935836 0.352435i \(-0.114646\pi\)
0.162701 + 0.986675i \(0.447979\pi\)
\(132\) −9.56152 35.1917i −0.0724357 0.266604i
\(133\) 115.318 199.737i 0.867055 1.50178i
\(134\) −54.8567 31.6715i −0.409378 0.236355i
\(135\) 82.0512 22.9101i 0.607787 0.169704i
\(136\) 53.3274 92.3658i 0.392114 0.679161i
\(137\) 189.899i 1.38613i −0.720877 0.693063i \(-0.756261\pi\)
0.720877 0.693063i \(-0.243739\pi\)
\(138\) 15.3839 58.2267i 0.111478 0.421932i
\(139\) −1.96059 3.39584i −0.0141050 0.0244305i 0.858887 0.512166i \(-0.171157\pi\)
−0.872992 + 0.487735i \(0.837823\pi\)
\(140\) 47.7088i 0.340777i
\(141\) 59.2407 59.6561i 0.420147 0.423093i
\(142\) 9.98911 + 17.3016i 0.0703459 + 0.121843i
\(143\) −9.83737 79.3505i −0.0687928 0.554898i
\(144\) −1.25790 179.991i −0.00873544 1.24993i
\(145\) −6.65610 11.5287i −0.0459041 0.0795083i
\(146\) 52.5805 + 30.3574i 0.360141 + 0.207927i
\(147\) 27.6049 7.50020i 0.187789 0.0510218i
\(148\) −44.1886 + 76.5369i −0.298572 + 0.517141i
\(149\) −238.240 + 137.548i −1.59893 + 0.923141i −0.607232 + 0.794524i \(0.707720\pi\)
−0.991694 + 0.128616i \(0.958946\pi\)
\(150\) 28.9301 + 106.479i 0.192867 + 0.709858i
\(151\) −10.8588 18.8080i −0.0719127 0.124556i 0.827827 0.560984i \(-0.189577\pi\)
−0.899740 + 0.436427i \(0.856244\pi\)
\(152\) 129.152 + 74.5659i 0.849684 + 0.490565i
\(153\) −194.027 + 1.35600i −1.26815 + 0.00886273i
\(154\) 57.5195 + 99.6268i 0.373503 + 0.646927i
\(155\) −141.685 + 81.8021i −0.914099 + 0.527755i
\(156\) −10.3710 + 76.3773i −0.0664806 + 0.489598i
\(157\) 31.9519 55.3422i 0.203515 0.352498i −0.746144 0.665785i \(-0.768097\pi\)
0.949659 + 0.313287i \(0.101430\pi\)
\(158\) 40.2738i 0.254898i
\(159\) 0.300804 + 1.10713i 0.00189185 + 0.00696306i
\(160\) −91.8263 −0.573914
\(161\) 62.8266i 0.390227i
\(162\) −170.088 + 101.396i −1.04992 + 0.625901i
\(163\) −88.7596 + 153.736i −0.544537 + 0.943166i 0.454098 + 0.890952i \(0.349961\pi\)
−0.998636 + 0.0522150i \(0.983372\pi\)
\(164\) −94.7447 + 54.7009i −0.577712 + 0.333542i
\(165\) −41.3104 41.0227i −0.250366 0.248623i
\(166\) 112.104 0.675323
\(167\) 63.8495i 0.382332i −0.981558 0.191166i \(-0.938773\pi\)
0.981558 0.191166i \(-0.0612269\pi\)
\(168\) 29.7716 + 109.576i 0.177212 + 0.652238i
\(169\) −46.2020 + 162.562i −0.273385 + 0.961905i
\(170\) 166.292i 0.978188i
\(171\) −1.89605 271.301i −0.0110880 1.58656i
\(172\) −50.8928 88.1489i −0.295888 0.512493i
\(173\) 245.835i 1.42101i −0.703693 0.710505i \(-0.748467\pi\)
0.703693 0.710505i \(-0.251533\pi\)
\(174\) 21.9565 + 21.8036i 0.126187 + 0.125308i
\(175\) −57.5529 99.6846i −0.328874 0.569626i
\(176\) −106.529 + 61.5044i −0.605277 + 0.349457i
\(177\) 101.387 102.098i 0.572805 0.576822i
\(178\) 199.079 1.11842
\(179\) 101.540 58.6239i 0.567260 0.327508i −0.188794 0.982017i \(-0.560458\pi\)
0.756054 + 0.654509i \(0.227124\pi\)
\(180\) 28.3999 + 48.4057i 0.157777 + 0.268921i
\(181\) 260.434 1.43886 0.719431 0.694564i \(-0.244403\pi\)
0.719431 + 0.694564i \(0.244403\pi\)
\(182\) −29.9149 241.301i −0.164368 1.32583i
\(183\) −148.681 + 40.3964i −0.812466 + 0.220745i
\(184\) −40.6243 −0.220784
\(185\) 141.090i 0.762649i
\(186\) 267.962 269.841i 1.44066 1.45076i
\(187\) 66.3007 + 114.836i 0.354549 + 0.614097i
\(188\) 47.9661 + 27.6932i 0.255139 + 0.147304i
\(189\) 144.530 147.592i 0.764707 0.780910i
\(190\) −232.520 −1.22379
\(191\) 349.637i 1.83056i 0.402818 + 0.915280i \(0.368031\pi\)
−0.402818 + 0.915280i \(0.631969\pi\)
\(192\) −25.6206 + 6.96106i −0.133440 + 0.0362555i
\(193\) −297.412 −1.54100 −0.770499 0.637442i \(-0.779993\pi\)
−0.770499 + 0.637442i \(0.779993\pi\)
\(194\) −99.3924 57.3843i −0.512332 0.295795i
\(195\) 46.6278 + 113.875i 0.239117 + 0.583976i
\(196\) 9.42254 + 16.3203i 0.0480742 + 0.0832669i
\(197\) 301.201 173.899i 1.52894 0.882734i 0.529534 0.848289i \(-0.322367\pi\)
0.999407 0.0344457i \(-0.0109666\pi\)
\(198\) 117.665 + 66.8420i 0.594269 + 0.337586i
\(199\) 32.5912 56.4496i 0.163775 0.283666i −0.772445 0.635082i \(-0.780966\pi\)
0.936220 + 0.351416i \(0.114300\pi\)
\(200\) 64.4571 37.2143i 0.322285 0.186072i
\(201\) 75.0129 20.3808i 0.373198 0.101397i
\(202\) 45.1265 + 78.1613i 0.223398 + 0.386937i
\(203\) −27.9554 16.1401i −0.137711 0.0795077i
\(204\) −33.5149 123.354i −0.164289 0.604675i
\(205\) −87.3274 + 151.256i −0.425987 + 0.737832i
\(206\) 148.181 85.5525i 0.719327 0.415304i
\(207\) 37.3992 + 63.7443i 0.180672 + 0.307943i
\(208\) 258.018 31.9874i 1.24047 0.153786i
\(209\) −160.571 + 92.7060i −0.768284 + 0.443569i
\(210\) −125.623 124.748i −0.598204 0.594038i
\(211\) −93.2505 −0.441945 −0.220973 0.975280i \(-0.570923\pi\)
−0.220973 + 0.975280i \(0.570923\pi\)
\(212\) −0.654544 + 0.377901i −0.00308747 + 0.00178255i
\(213\) −23.7032 6.26257i −0.111283 0.0294017i
\(214\) 274.983 1.28497
\(215\) −140.726 81.2480i −0.654538 0.377898i
\(216\) 95.4344 + 93.4543i 0.441826 + 0.432659i
\(217\) −198.358 + 343.566i −0.914092 + 1.58325i
\(218\) 437.597 + 252.647i 2.00733 + 1.15893i
\(219\) −71.9004 + 19.5352i −0.328312 + 0.0892018i
\(220\) 19.1769 33.2153i 0.0871677 0.150979i
\(221\) −34.4818 278.138i −0.156026 1.25854i
\(222\) −85.9872 316.481i −0.387330 1.42559i
\(223\) 123.122 213.253i 0.552115 0.956291i −0.446007 0.895030i \(-0.647154\pi\)
0.998122 0.0612615i \(-0.0195124\pi\)
\(224\) −192.834 + 111.333i −0.860865 + 0.497021i
\(225\) −117.734 66.8808i −0.523260 0.297248i
\(226\) −423.471 −1.87377
\(227\) 189.843i 0.836313i 0.908375 + 0.418156i \(0.137324\pi\)
−0.908375 + 0.418156i \(0.862676\pi\)
\(228\) 172.481 46.8628i 0.756496 0.205539i
\(229\) 21.0010 36.3747i 0.0917072 0.158842i −0.816522 0.577314i \(-0.804101\pi\)
0.908230 + 0.418472i \(0.137434\pi\)
\(230\) 54.8538 31.6699i 0.238495 0.137695i
\(231\) −136.488 36.0613i −0.590859 0.156109i
\(232\) 10.4363 18.0762i 0.0449842 0.0779148i
\(233\) 151.808i 0.651536i −0.945450 0.325768i \(-0.894377\pi\)
0.945450 0.325768i \(-0.105623\pi\)
\(234\) −173.993 227.018i −0.743558 0.970161i
\(235\) 88.4219 0.376263
\(236\) 82.0908 + 47.3951i 0.347842 + 0.200827i
\(237\) 35.0690 + 34.8247i 0.147970 + 0.146940i
\(238\) 201.617 + 349.211i 0.847130 + 1.46727i
\(239\) 171.028 + 98.7429i 0.715597 + 0.413150i 0.813130 0.582082i \(-0.197762\pi\)
−0.0975330 + 0.995232i \(0.531095\pi\)
\(240\) 133.390 134.326i 0.555793 0.559691i
\(241\) −8.10289 −0.0336220 −0.0168110 0.999859i \(-0.505351\pi\)
−0.0168110 + 0.999859i \(0.505351\pi\)
\(242\) 203.322i 0.840175i
\(243\) 58.7827 235.783i 0.241904 0.970300i
\(244\) −50.7502 87.9018i −0.207992 0.360253i
\(245\) 26.0546 + 15.0426i 0.106345 + 0.0613985i
\(246\) 103.703 392.505i 0.421556 1.59555i
\(247\) 388.911 48.2148i 1.57454 0.195202i
\(248\) −222.153 128.260i −0.895779 0.517178i
\(249\) −96.9359 + 97.6157i −0.389301 + 0.392031i
\(250\) −154.440 + 267.497i −0.617758 + 1.06999i
\(251\) −95.8522 55.3403i −0.381881 0.220479i 0.296755 0.954954i \(-0.404095\pi\)
−0.678636 + 0.734474i \(0.737429\pi\)
\(252\) 118.328 + 67.2184i 0.469555 + 0.266740i
\(253\) 25.2536 43.7405i 0.0998165 0.172887i
\(254\) 402.286i 1.58380i
\(255\) −144.801 143.792i −0.567847 0.563892i
\(256\) −151.041 261.611i −0.590004 1.02192i
\(257\) 502.733i 1.95616i −0.208229 0.978080i \(-0.566770\pi\)
0.208229 0.978080i \(-0.433230\pi\)
\(258\) 365.180 + 96.4832i 1.41543 + 0.373966i
\(259\) 171.061 + 296.287i 0.660469 + 1.14397i
\(260\) −64.6842 + 48.8619i −0.248785 + 0.187930i
\(261\) −37.9716 + 0.265372i −0.145485 + 0.00101675i
\(262\) −203.116 351.807i −0.775252 1.34278i
\(263\) 174.851 + 100.950i 0.664831 + 0.383840i 0.794115 0.607767i \(-0.207935\pi\)
−0.129284 + 0.991608i \(0.541268\pi\)
\(264\) 23.3176 88.2548i 0.0883241 0.334298i
\(265\) −0.603302 + 1.04495i −0.00227661 + 0.00394321i
\(266\) −488.289 + 281.914i −1.83567 + 1.05983i
\(267\) −172.143 + 173.351i −0.644731 + 0.649253i
\(268\) 25.6045 + 44.3484i 0.0955393 + 0.165479i
\(269\) −241.432 139.391i −0.897515 0.518180i −0.0211218 0.999777i \(-0.506724\pi\)
−0.876393 + 0.481596i \(0.840057\pi\)
\(270\) −201.717 51.7899i −0.747102 0.191814i
\(271\) −58.8505 101.932i −0.217161 0.376133i 0.736778 0.676135i \(-0.236346\pi\)
−0.953939 + 0.300001i \(0.903013\pi\)
\(272\) −373.403 + 215.584i −1.37281 + 0.792590i
\(273\) 235.983 + 182.604i 0.864407 + 0.668877i
\(274\) −232.119 + 402.043i −0.847151 + 1.46731i
\(275\) 92.5352i 0.336492i
\(276\) −34.3072 + 34.5478i −0.124301 + 0.125173i
\(277\) 110.305 0.398211 0.199106 0.979978i \(-0.436196\pi\)
0.199106 + 0.979978i \(0.436196\pi\)
\(278\) 9.58595i 0.0344818i
\(279\) 3.26137 + 466.663i 0.0116895 + 1.67263i
\(280\) −59.7108 + 103.422i −0.213253 + 0.369365i
\(281\) −15.0724 + 8.70203i −0.0536383 + 0.0309681i −0.526579 0.850126i \(-0.676526\pi\)
0.472941 + 0.881094i \(0.343192\pi\)
\(282\) −198.340 + 53.8886i −0.703334 + 0.191094i
\(283\) 492.929 1.74180 0.870900 0.491460i \(-0.163537\pi\)
0.870900 + 0.491460i \(0.163537\pi\)
\(284\) 16.1512i 0.0568705i
\(285\) 201.060 202.470i 0.705474 0.710422i
\(286\) −76.1654 + 180.020i −0.266313 + 0.629442i
\(287\) 423.512i 1.47565i
\(288\) −129.377 + 227.748i −0.449225 + 0.790793i
\(289\) 87.8963 + 152.241i 0.304140 + 0.526785i
\(290\) 32.5438i 0.112220i
\(291\) 135.913 36.9272i 0.467054 0.126898i
\(292\) −24.5422 42.5083i −0.0840485 0.145576i
\(293\) −299.742 + 173.056i −1.02301 + 0.590636i −0.914975 0.403511i \(-0.867790\pi\)
−0.108036 + 0.994147i \(0.534456\pi\)
\(294\) −67.6112 17.8634i −0.229970 0.0607598i
\(295\) 151.328 0.512977
\(296\) −191.582 + 110.610i −0.647237 + 0.373682i
\(297\) −159.949 + 44.6603i −0.538547 + 0.150371i
\(298\) 672.516 2.25677
\(299\) −85.1810 + 64.3451i −0.284886 + 0.215201i
\(300\) 22.7861 86.2431i 0.0759536 0.287477i
\(301\) −394.029 −1.30907
\(302\) 53.0923i 0.175802i
\(303\) −107.081 28.2915i −0.353402 0.0933714i
\(304\) −301.444 522.117i −0.991594 1.71749i
\(305\) −140.331 81.0203i −0.460102 0.265640i
\(306\) 412.439 + 234.294i 1.34784 + 0.765666i
\(307\) 446.987 1.45598 0.727992 0.685586i \(-0.240454\pi\)
0.727992 + 0.685586i \(0.240454\pi\)
\(308\) 93.0023i 0.301955i
\(309\) −53.6362 + 203.008i −0.173580 + 0.656984i
\(310\) 399.956 1.29018
\(311\) 76.2524 + 44.0243i 0.245184 + 0.141557i 0.617557 0.786526i \(-0.288122\pi\)
−0.372373 + 0.928083i \(0.621456\pi\)
\(312\) −118.073 + 152.589i −0.378440 + 0.489067i
\(313\) −171.445 296.951i −0.547747 0.948726i −0.998428 0.0560413i \(-0.982152\pi\)
0.450681 0.892685i \(-0.351181\pi\)
\(314\) −135.293 + 78.1114i −0.430869 + 0.248763i
\(315\) 217.252 1.51831i 0.689689 0.00482004i
\(316\) −16.2795 + 28.1969i −0.0515174 + 0.0892308i
\(317\) 290.108 167.494i 0.915166 0.528371i 0.0330763 0.999453i \(-0.489470\pi\)
0.882090 + 0.471081i \(0.156136\pi\)
\(318\) 0.716431 2.71162i 0.00225293 0.00852711i
\(319\) 12.9752 + 22.4737i 0.0406747 + 0.0704506i
\(320\) −24.1817 13.9613i −0.0755678 0.0436291i
\(321\) −237.777 + 239.445i −0.740739 + 0.745934i
\(322\) 76.7948 133.012i 0.238493 0.413082i
\(323\) −562.833 + 324.952i −1.74252 + 1.00604i
\(324\) 160.070 2.23747i 0.494043 0.00690578i
\(325\) 76.2096 180.125i 0.234491 0.554231i
\(326\) 375.833 216.987i 1.15286 0.665604i
\(327\) −598.386 + 162.580i −1.82993 + 0.497187i
\(328\) −273.847 −0.834901
\(329\) 185.685 107.205i 0.564391 0.325851i
\(330\) 37.3166 + 137.346i 0.113081 + 0.416199i
\(331\) −54.8197 −0.165618 −0.0828092 0.996565i \(-0.526389\pi\)
−0.0828092 + 0.996565i \(0.526389\pi\)
\(332\) −78.4872 45.3146i −0.236407 0.136490i
\(333\) 349.933 + 198.786i 1.05085 + 0.596955i
\(334\) −78.0451 + 135.178i −0.233668 + 0.404725i
\(335\) 70.8001 + 40.8765i 0.211344 + 0.122019i
\(336\) 117.257 443.808i 0.348981 1.32086i
\(337\) −93.3550 + 161.696i −0.277018 + 0.479809i −0.970642 0.240528i \(-0.922679\pi\)
0.693624 + 0.720337i \(0.256013\pi\)
\(338\) 296.520 287.692i 0.877279 0.851159i
\(339\) 366.175 368.743i 1.08016 1.08774i
\(340\) 67.2186 116.426i 0.197702 0.342430i
\(341\) 276.198 159.463i 0.809964 0.467633i
\(342\) −327.605 + 576.699i −0.957910 + 1.68625i
\(343\) −301.938 −0.880287
\(344\) 254.783i 0.740648i
\(345\) −19.8551 + 75.1496i −0.0575510 + 0.217825i
\(346\) −300.491 + 520.466i −0.868471 + 1.50424i
\(347\) −135.831 + 78.4220i −0.391444 + 0.226000i −0.682785 0.730619i \(-0.739232\pi\)
0.291342 + 0.956619i \(0.405898\pi\)
\(348\) −6.55896 24.1406i −0.0188476 0.0693697i
\(349\) 10.9673 18.9959i 0.0314250 0.0544296i −0.849885 0.526968i \(-0.823329\pi\)
0.881310 + 0.472538i \(0.156662\pi\)
\(350\) 281.395i 0.803985i
\(351\) 348.130 + 44.7957i 0.991823 + 0.127623i
\(352\) 179.004 0.508534
\(353\) 463.677 + 267.704i 1.31353 + 0.758368i 0.982679 0.185315i \(-0.0593304\pi\)
0.330853 + 0.943682i \(0.392664\pi\)
\(354\) −339.446 + 92.2268i −0.958887 + 0.260528i
\(355\) −12.8923 22.3302i −0.0363164 0.0629019i
\(356\) −139.381 80.4717i −0.391520 0.226044i
\(357\) −478.418 126.402i −1.34011 0.354066i
\(358\) −286.631 −0.800646
\(359\) 100.858i 0.280941i −0.990085 0.140471i \(-0.955138\pi\)
0.990085 0.140471i \(-0.0448615\pi\)
\(360\) 0.981756 + 140.477i 0.00272710 + 0.390215i
\(361\) −273.869 474.355i −0.758641 1.31400i
\(362\) −551.375 318.336i −1.52314 0.879382i
\(363\) −177.046 175.813i −0.487729 0.484332i
\(364\) −76.5943 + 181.034i −0.210424 + 0.497346i
\(365\) −67.8625 39.1804i −0.185925 0.107344i
\(366\) 364.156 + 96.2128i 0.994963 + 0.262877i
\(367\) 286.890 496.909i 0.781718 1.35397i −0.149223 0.988804i \(-0.547677\pi\)
0.930940 0.365171i \(-0.118990\pi\)
\(368\) 142.227 + 82.1150i 0.386487 + 0.223139i
\(369\) 252.107 + 429.699i 0.683217 + 1.16450i
\(370\) 172.459 298.707i 0.466104 0.807317i
\(371\) 2.92584i 0.00788636i
\(372\) −296.683 + 80.6083i −0.797536 + 0.216689i
\(373\) 146.457 + 253.672i 0.392647 + 0.680085i 0.992798 0.119802i \(-0.0382261\pi\)
−0.600151 + 0.799887i \(0.704893\pi\)
\(374\) 324.165i 0.866752i
\(375\) −99.3830 365.785i −0.265021 0.975426i
\(376\) 69.3199 + 120.066i 0.184361 + 0.319323i
\(377\) −6.74819 54.4324i −0.0178997 0.144383i
\(378\) −486.395 + 135.810i −1.28676 + 0.359285i
\(379\) 111.262 + 192.712i 0.293568 + 0.508475i 0.974651 0.223731i \(-0.0718238\pi\)
−0.681082 + 0.732207i \(0.738491\pi\)
\(380\) 162.795 + 93.9895i 0.428407 + 0.247341i
\(381\) 350.295 + 347.856i 0.919411 + 0.913008i
\(382\) 427.372 740.230i 1.11877 1.93777i
\(383\) 491.491 283.762i 1.28327 0.740894i 0.305822 0.952089i \(-0.401069\pi\)
0.977444 + 0.211195i \(0.0677355\pi\)
\(384\) 400.406 + 105.790i 1.04272 + 0.275495i
\(385\) −74.2369 128.582i −0.192823 0.333980i
\(386\) 629.663 + 363.536i 1.63125 + 0.941804i
\(387\) −399.785 + 234.556i −1.03303 + 0.606088i
\(388\) 46.3918 + 80.3529i 0.119566 + 0.207095i
\(389\) 192.834 111.333i 0.495718 0.286203i −0.231225 0.972900i \(-0.574273\pi\)
0.726944 + 0.686697i \(0.240940\pi\)
\(390\) 40.4757 298.084i 0.103784 0.764318i
\(391\) 88.5185 153.319i 0.226390 0.392119i
\(392\) 47.1718i 0.120336i
\(393\) 481.975 + 127.341i 1.22640 + 0.324024i
\(394\) −850.246 −2.15799
\(395\) 51.9790i 0.131592i
\(396\) −55.3621 94.3608i −0.139803 0.238285i
\(397\) 54.6826 94.7131i 0.137740 0.238572i −0.788901 0.614520i \(-0.789350\pi\)
0.926641 + 0.375948i \(0.122683\pi\)
\(398\) −138.000 + 79.6744i −0.346734 + 0.200187i
\(399\) 176.743 668.955i 0.442965 1.67658i
\(400\) −300.889 −0.752223
\(401\) 165.394i 0.412454i 0.978504 + 0.206227i \(0.0661186\pi\)
−0.978504 + 0.206227i \(0.933881\pi\)
\(402\) −183.725 48.5415i −0.457027 0.120750i
\(403\) −668.963 + 82.9339i −1.65996 + 0.205791i
\(404\) 72.9641i 0.180604i
\(405\) 219.522 130.865i 0.542029 0.323125i
\(406\) 39.4570 + 68.3415i 0.0971846 + 0.168329i
\(407\) 275.037i 0.675767i
\(408\) 81.7325 309.350i 0.200325 0.758210i
\(409\) −22.7676 39.4346i −0.0556665 0.0964172i 0.836849 0.547433i \(-0.184395\pi\)
−0.892516 + 0.451016i \(0.851062\pi\)
\(410\) 369.768 213.486i 0.901874 0.520697i
\(411\) −149.370 549.767i −0.363432 1.33763i
\(412\) −138.328 −0.335748
\(413\) 317.787 183.474i 0.769460 0.444248i
\(414\) −1.26265 180.670i −0.00304988 0.436400i
\(415\) −144.685 −0.348639
\(416\) −348.441 147.423i −0.837598 0.354382i
\(417\) −8.34709 8.28896i −0.0200170 0.0198776i
\(418\) 453.269 1.08438
\(419\) 391.475i 0.934308i −0.884176 0.467154i \(-0.845279\pi\)
0.884176 0.467154i \(-0.154721\pi\)
\(420\) 37.5267 + 138.119i 0.0893493 + 0.328855i
\(421\) 111.844 + 193.719i 0.265662 + 0.460140i 0.967737 0.251963i \(-0.0810762\pi\)
−0.702075 + 0.712103i \(0.747743\pi\)
\(422\) 197.424 + 113.983i 0.467830 + 0.270102i
\(423\) 124.580 219.305i 0.294516 0.518451i
\(424\) −1.89188 −0.00446197
\(425\) 324.353i 0.763185i
\(426\) 42.5280 + 42.2319i 0.0998311 + 0.0991358i
\(427\) −392.925 −0.920198
\(428\) −192.524 111.154i −0.449822 0.259705i
\(429\) −90.8950 221.985i −0.211876 0.517449i
\(430\) 198.624 + 344.026i 0.461915 + 0.800061i
\(431\) 210.330 121.434i 0.488006 0.281750i −0.235741 0.971816i \(-0.575752\pi\)
0.723747 + 0.690066i \(0.242418\pi\)
\(432\) −145.218 520.092i −0.336154 1.20392i
\(433\) −31.9975 + 55.4212i −0.0738972 + 0.127994i −0.900606 0.434636i \(-0.856877\pi\)
0.826709 + 0.562630i \(0.190210\pi\)
\(434\) 839.902 484.918i 1.93526 1.11732i
\(435\) −28.3379 28.1406i −0.0651447 0.0646910i
\(436\) −204.250 353.772i −0.468464 0.811403i
\(437\) 214.380 + 123.772i 0.490573 + 0.283232i
\(438\) 176.102 + 46.5274i 0.402058 + 0.106227i
\(439\) 121.693 210.779i 0.277205 0.480134i −0.693484 0.720472i \(-0.743925\pi\)
0.970689 + 0.240338i \(0.0772584\pi\)
\(440\) 83.1425 48.0023i 0.188960 0.109096i
\(441\) 74.0181 43.4269i 0.167841 0.0984736i
\(442\) −266.974 + 631.006i −0.604014 + 1.42761i
\(443\) −8.10700 + 4.68058i −0.0183002 + 0.0105656i −0.509122 0.860694i \(-0.670030\pi\)
0.490822 + 0.871260i \(0.336697\pi\)
\(444\) −67.7258 + 256.336i −0.152536 + 0.577332i
\(445\) −256.939 −0.577391
\(446\) −521.331 + 300.991i −1.16890 + 0.674867i
\(447\) −581.524 + 585.602i −1.30095 + 1.31007i
\(448\) −67.7083 −0.151135
\(449\) 351.048 + 202.678i 0.781844 + 0.451398i 0.837083 0.547075i \(-0.184259\pi\)
−0.0552392 + 0.998473i \(0.517592\pi\)
\(450\) 167.508 + 285.505i 0.372239 + 0.634456i
\(451\) 170.234 294.854i 0.377459 0.653777i
\(452\) 296.485 + 171.176i 0.655941 + 0.378707i
\(453\) −46.2308 45.9088i −0.102055 0.101344i
\(454\) 232.051 401.924i 0.511125 0.885295i
\(455\) 38.6094 + 311.432i 0.0848557 + 0.684466i
\(456\) 432.553 + 114.284i 0.948581 + 0.250622i
\(457\) −4.84651 + 8.39440i −0.0106050 + 0.0183685i −0.871279 0.490788i \(-0.836709\pi\)
0.860674 + 0.509156i \(0.170042\pi\)
\(458\) −88.9238 + 51.3402i −0.194157 + 0.112097i
\(459\) −560.650 + 156.543i −1.22146 + 0.341052i
\(460\) −51.2064 −0.111318
\(461\) 340.965i 0.739620i 0.929107 + 0.369810i \(0.120577\pi\)
−0.929107 + 0.369810i \(0.879423\pi\)
\(462\) 244.886 + 243.181i 0.530056 + 0.526365i
\(463\) 235.726 408.289i 0.509127 0.881834i −0.490817 0.871263i \(-0.663302\pi\)
0.999944 0.0105715i \(-0.00336507\pi\)
\(464\) −73.0760 + 42.1905i −0.157491 + 0.0909277i
\(465\) −345.842 + 348.267i −0.743746 + 0.748962i
\(466\) −185.559 + 321.398i −0.398196 + 0.689696i
\(467\) 766.744i 1.64185i 0.571036 + 0.820925i \(0.306542\pi\)
−0.571036 + 0.820925i \(0.693458\pi\)
\(468\) 30.0522 + 229.273i 0.0642142 + 0.489900i
\(469\) 198.239 0.422684
\(470\) −187.201 108.081i −0.398301 0.229959i
\(471\) 48.9711 185.351i 0.103973 0.393527i
\(472\) 118.636 + 205.484i 0.251348 + 0.435348i
\(473\) 274.327 + 158.383i 0.579972 + 0.334847i
\(474\) −31.6785 116.595i −0.0668323 0.245980i
\(475\) −453.532 −0.954805
\(476\) 325.991i 0.684854i
\(477\) 1.74168 + 2.96858i 0.00365133 + 0.00622343i
\(478\) −241.393 418.105i −0.505006 0.874696i
\(479\) 195.853 + 113.075i 0.408878 + 0.236066i 0.690307 0.723516i \(-0.257475\pi\)
−0.281430 + 0.959582i \(0.590809\pi\)
\(480\) −265.841 + 72.2286i −0.553836 + 0.150476i
\(481\) −226.514 + 535.375i −0.470922 + 1.11305i
\(482\) 17.1549 + 9.90441i 0.0355912 + 0.0205486i
\(483\) 49.4180 + 181.886i 0.102315 + 0.376575i
\(484\) 82.1871 142.352i 0.169808 0.294116i
\(485\) 128.280 + 74.0623i 0.264494 + 0.152706i
\(486\) −412.656 + 427.333i −0.849086 + 0.879286i
\(487\) 313.254 542.572i 0.643232 1.11411i −0.341475 0.939891i \(-0.610926\pi\)
0.984707 0.174220i \(-0.0557403\pi\)
\(488\) 254.069i 0.520633i
\(489\) −136.038 + 514.890i −0.278196 + 1.05294i
\(490\) −36.7742 63.6947i −0.0750493 0.129989i
\(491\) 388.719i 0.791689i 0.918317 + 0.395845i \(0.129548\pi\)
−0.918317 + 0.395845i \(0.870452\pi\)
\(492\) −231.264 + 232.886i −0.470048 + 0.473345i
\(493\) 45.4806 + 78.7747i 0.0922527 + 0.159786i
\(494\) −882.314 373.301i −1.78606 0.755670i
\(495\) −151.863 86.2689i −0.306794 0.174281i
\(496\) 518.512 + 898.089i 1.04539 + 1.81066i
\(497\) −54.1474 31.2620i −0.108948 0.0629014i
\(498\) 324.545 88.1783i 0.651697 0.177065i
\(499\) 16.1707 28.0084i 0.0324062 0.0561291i −0.849367 0.527802i \(-0.823016\pi\)
0.881774 + 0.471673i \(0.156350\pi\)
\(500\) 216.256 124.855i 0.432511 0.249711i
\(501\) −50.2226 184.847i −0.100245 0.368956i
\(502\) 135.288 + 234.326i 0.269498 + 0.466785i
\(503\) −431.726 249.257i −0.858302 0.495541i 0.00514126 0.999987i \(-0.498363\pi\)
−0.863443 + 0.504446i \(0.831697\pi\)
\(504\) 172.380 + 293.810i 0.342024 + 0.582956i
\(505\) −58.2419 100.878i −0.115331 0.199758i
\(506\) −106.931 + 61.7364i −0.211325 + 0.122009i
\(507\) −5.88936 + 506.966i −0.0116161 + 0.999933i
\(508\) −162.612 + 281.652i −0.320102 + 0.554434i
\(509\) 915.918i 1.79945i 0.436462 + 0.899723i \(0.356231\pi\)
−0.436462 + 0.899723i \(0.643769\pi\)
\(510\) 130.802 + 481.423i 0.256474 + 0.943967i
\(511\) −190.014 −0.371847
\(512\) 186.295i 0.363857i
\(513\) −218.889 783.938i −0.426683 1.52814i
\(514\) −614.506 + 1064.36i −1.19554 + 2.07073i
\(515\) −191.249 + 110.417i −0.371356 + 0.214403i
\(516\) −216.673 215.164i −0.419909 0.416984i
\(517\) −172.367 −0.333399
\(518\) 836.374i 1.61462i
\(519\) −193.368 711.703i −0.372578 1.37130i
\(520\) −201.375 + 24.9652i −0.387260 + 0.0480100i
\(521\) 62.7872i 0.120513i 0.998183 + 0.0602564i \(0.0191918\pi\)
−0.998183 + 0.0602564i \(0.980808\pi\)
\(522\) 80.7154 + 45.8519i 0.154627 + 0.0878390i
\(523\) 77.4887 + 134.214i 0.148162 + 0.256624i 0.930548 0.366169i \(-0.119331\pi\)
−0.782386 + 0.622794i \(0.785998\pi\)
\(524\) 328.414i 0.626745i
\(525\) −245.028 243.322i −0.466720 0.463470i
\(526\) −246.789 427.450i −0.469180 0.812643i
\(527\) 968.125 558.947i 1.83705 1.06062i
\(528\) −260.028 + 261.851i −0.492477 + 0.495930i
\(529\) 461.568 0.872528
\(530\) 2.55455 1.47487i 0.00481990 0.00278277i
\(531\) 213.211 375.326i 0.401527 0.706828i
\(532\) 455.822 0.856807
\(533\) −574.203 + 433.749i −1.07730 + 0.813787i
\(534\) 576.343 156.591i 1.07929 0.293242i
\(535\) −354.903 −0.663371
\(536\) 128.183i 0.239148i
\(537\) 247.850 249.588i 0.461545 0.464782i
\(538\) 340.763 + 590.218i 0.633388 + 1.09706i
\(539\) −50.7902 29.3237i −0.0942304 0.0544040i
\(540\) 120.294 + 117.798i 0.222767 + 0.218144i
\(541\) −849.273 −1.56982 −0.784910 0.619609i \(-0.787291\pi\)
−0.784910 + 0.619609i \(0.787291\pi\)
\(542\) 287.739i 0.530884i
\(543\) 753.969 204.852i 1.38852 0.377259i
\(544\) 627.442 1.15339
\(545\) −564.780 326.076i −1.03629 0.598304i
\(546\) −276.407 675.046i −0.506240 1.23635i
\(547\) −167.503 290.123i −0.306221 0.530390i 0.671312 0.741175i \(-0.265731\pi\)
−0.977532 + 0.210785i \(0.932398\pi\)
\(548\) 325.028 187.655i 0.593116 0.342436i
\(549\) −398.664 + 233.899i −0.726164 + 0.426045i
\(550\) 113.109 195.910i 0.205652 0.356200i
\(551\) −110.148 + 63.5940i −0.199906 + 0.115416i
\(552\) −117.609 + 31.9542i −0.213060 + 0.0578880i
\(553\) 63.0207 + 109.155i 0.113961 + 0.197387i
\(554\) −233.530 134.829i −0.421534 0.243373i
\(555\) 110.978 + 408.462i 0.199961 + 0.735968i
\(556\) 3.87484 6.71141i 0.00696913 0.0120709i
\(557\) −291.748 + 168.441i −0.523785 + 0.302407i −0.738482 0.674273i \(-0.764457\pi\)
0.214697 + 0.976681i \(0.431124\pi\)
\(558\) 563.511 991.975i 1.00988 1.77773i
\(559\) −403.552 534.229i −0.721919 0.955687i
\(560\) 418.100 241.390i 0.746607 0.431054i
\(561\) 282.271 + 280.305i 0.503157 + 0.499653i
\(562\) 42.5470 0.0757064
\(563\) −789.550 + 455.847i −1.40240 + 0.809675i −0.994638 0.103414i \(-0.967023\pi\)
−0.407760 + 0.913089i \(0.633690\pi\)
\(564\) 160.647 + 42.4441i 0.284835 + 0.0752555i
\(565\) 546.548 0.967342
\(566\) −1043.60 602.522i −1.84382 1.06453i
\(567\) 302.327 540.969i 0.533205 0.954091i
\(568\) 20.2143 35.0123i 0.0355886 0.0616413i
\(569\) 368.892 + 212.980i 0.648316 + 0.374306i 0.787811 0.615917i \(-0.211214\pi\)
−0.139495 + 0.990223i \(0.544548\pi\)
\(570\) −673.157 + 182.895i −1.18098 + 0.320869i
\(571\) 383.824 664.803i 0.672196 1.16428i −0.305084 0.952325i \(-0.598685\pi\)
0.977280 0.211952i \(-0.0679822\pi\)
\(572\) 126.094 95.2501i 0.220443 0.166521i
\(573\) 275.017 + 1012.22i 0.479959 + 1.76652i
\(574\) 517.672 896.634i 0.901868 1.56208i
\(575\) 106.993 61.7723i 0.186074 0.107430i
\(576\) −68.6973 + 40.3052i −0.119266 + 0.0699742i
\(577\) −535.973 −0.928895 −0.464448 0.885601i \(-0.653747\pi\)
−0.464448 + 0.885601i \(0.653747\pi\)
\(578\) 429.753i 0.743518i
\(579\) −861.023 + 233.938i −1.48709 + 0.404038i
\(580\) 13.1549 22.7849i 0.0226808 0.0392843i
\(581\) −303.837 + 175.420i −0.522955 + 0.301928i
\(582\) −332.883 87.9502i −0.571964 0.151117i
\(583\) 1.17606 2.03700i 0.00201726 0.00349399i
\(584\) 122.865i 0.210385i
\(585\) 224.561 + 292.998i 0.383866 + 0.500851i
\(586\) 846.127 1.44390
\(587\) −14.5571 8.40452i −0.0247991 0.0143178i 0.487549 0.873096i \(-0.337891\pi\)
−0.512348 + 0.858778i \(0.671224\pi\)
\(588\) 40.1159 + 39.8365i 0.0682243 + 0.0677491i
\(589\) 781.557 + 1353.70i 1.32692 + 2.29830i
\(590\) −320.383 184.973i −0.543022 0.313514i
\(591\) 735.207 740.363i 1.24401 1.25273i
\(592\) 894.316 1.51067
\(593\) 363.547i 0.613065i −0.951860 0.306532i \(-0.900831\pi\)
0.951860 0.306532i \(-0.0991688\pi\)
\(594\) 393.223 + 100.958i 0.661991 + 0.169963i
\(595\) −260.214 450.705i −0.437335 0.757487i
\(596\) −470.849 271.845i −0.790015 0.456115i
\(597\) 49.9510 189.060i 0.0836700 0.316683i
\(598\) 258.991 32.1081i 0.433095 0.0536924i
\(599\) −808.916 467.028i −1.35044 0.779679i −0.362132 0.932127i \(-0.617951\pi\)
−0.988312 + 0.152448i \(0.951284\pi\)
\(600\) 157.334 158.438i 0.262224 0.264063i
\(601\) 100.771 174.540i 0.167672 0.290416i −0.769929 0.638130i \(-0.779708\pi\)
0.937601 + 0.347713i \(0.113042\pi\)
\(602\) 834.213 + 481.633i 1.38574 + 0.800055i
\(603\) 201.135 118.007i 0.333557 0.195700i
\(604\) 21.4610 37.1715i 0.0355314 0.0615422i
\(605\) 262.416i 0.433745i
\(606\) 192.123 + 190.785i 0.317035 + 0.314827i
\(607\) −338.910 587.010i −0.558337 0.967068i −0.997636 0.0687265i \(-0.978106\pi\)
0.439299 0.898341i \(-0.355227\pi\)
\(608\) 877.331i 1.44298i
\(609\) −93.6276 24.7371i −0.153740 0.0406192i
\(610\) 198.067 + 343.062i 0.324700 + 0.562397i
\(611\) 335.522 + 141.957i 0.549137 + 0.232336i
\(612\) −194.055 330.752i −0.317083 0.540445i
\(613\) −314.267 544.326i −0.512671 0.887971i −0.999892 0.0146930i \(-0.995323\pi\)
0.487222 0.873278i \(-0.338010\pi\)
\(614\) −946.333 546.366i −1.54126 0.889846i
\(615\) −133.843 + 506.582i −0.217630 + 0.823710i
\(616\) 116.399 201.608i 0.188959 0.327286i
\(617\) 845.672 488.249i 1.37062 0.791327i 0.379613 0.925145i \(-0.376057\pi\)
0.991006 + 0.133818i \(0.0427239\pi\)
\(618\) 361.698 364.235i 0.585272 0.589377i
\(619\) 337.425 + 584.436i 0.545112 + 0.944162i 0.998600 + 0.0528997i \(0.0168464\pi\)
−0.453487 + 0.891263i \(0.649820\pi\)
\(620\) −280.022 161.671i −0.451648 0.260759i
\(621\) 158.412 + 155.125i 0.255092 + 0.249799i
\(622\) −107.625 186.411i −0.173030 0.299696i
\(623\) −539.568 + 311.520i −0.866080 + 0.500031i
\(624\) 721.812 295.556i 1.15675 0.473647i
\(625\) 11.2646 19.5109i 0.0180234 0.0312175i
\(626\) 838.249i 1.33906i
\(627\) −391.941 + 394.690i −0.625106 + 0.629490i
\(628\) 126.297 0.201110
\(629\) 964.058i 1.53268i
\(630\) −461.808 262.339i −0.733029 0.416411i
\(631\) −425.578 + 737.123i −0.674451 + 1.16818i 0.302178 + 0.953251i \(0.402286\pi\)
−0.976629 + 0.214932i \(0.931047\pi\)
\(632\) −70.5808 + 40.7498i −0.111678 + 0.0644776i
\(633\) −269.965 + 73.3488i −0.426484 + 0.115875i
\(634\) −818.930 −1.29169
\(635\) 519.205i 0.817646i
\(636\) −1.59769 + 1.60889i −0.00251209 + 0.00252970i
\(637\) 74.7157 + 98.9098i 0.117293 + 0.155274i
\(638\) 63.4400i 0.0994357i
\(639\) −73.5479 + 0.514005i −0.115098 + 0.000804390i
\(640\) 217.783 + 377.212i 0.340286 + 0.589393i
\(641\) 198.537i 0.309730i −0.987936 0.154865i \(-0.950506\pi\)
0.987936 0.154865i \(-0.0494943\pi\)
\(642\) 796.088 216.295i 1.24001 0.336909i
\(643\) 600.731 + 1040.50i 0.934263 + 1.61819i 0.775943 + 0.630803i \(0.217274\pi\)
0.158319 + 0.987388i \(0.449392\pi\)
\(644\) −107.533 + 62.0840i −0.166976 + 0.0964038i
\(645\) −471.315 124.525i −0.730721 0.193062i
\(646\) 1588.79 2.45943
\(647\) −951.412 + 549.298i −1.47050 + 0.848993i −0.999452 0.0331157i \(-0.989457\pi\)
−0.471047 + 0.882108i \(0.656124\pi\)
\(648\) 349.796 + 195.488i 0.539809 + 0.301679i
\(649\) −294.995 −0.454538
\(650\) −381.518 + 288.196i −0.586951 + 0.443379i
\(651\) −304.014 + 1150.66i −0.466995 + 1.76753i
\(652\) −350.842 −0.538102
\(653\) 92.5624i 0.141749i 0.997485 + 0.0708747i \(0.0225791\pi\)
−0.997485 + 0.0708747i \(0.977421\pi\)
\(654\) 1465.59 + 387.220i 2.24097 + 0.592080i
\(655\) 262.149 + 454.056i 0.400228 + 0.693215i
\(656\) 958.751 + 553.535i 1.46151 + 0.843804i
\(657\) −192.789 + 113.111i −0.293439 + 0.172162i
\(658\) −524.160 −0.796595
\(659\) 611.542i 0.927986i −0.885839 0.463993i \(-0.846416\pi\)
0.885839 0.463993i \(-0.153584\pi\)
\(660\) 29.3915 111.244i 0.0445326 0.168552i
\(661\) −584.830 −0.884765 −0.442383 0.896826i \(-0.645867\pi\)
−0.442383 + 0.896826i \(0.645867\pi\)
\(662\) 116.061 + 67.0078i 0.175319 + 0.101220i
\(663\) −318.604 778.101i −0.480549 1.17361i
\(664\) −113.429 196.464i −0.170826 0.295879i
\(665\) 630.205 363.849i 0.947677 0.547141i
\(666\) −497.874 848.591i −0.747558 1.27416i
\(667\) 17.3233 30.0049i 0.0259720 0.0449848i
\(668\) 109.284 63.0949i 0.163598 0.0944534i
\(669\) 188.703 714.222i 0.282067 1.06760i
\(670\) −99.9291 173.082i −0.149148 0.258332i
\(671\) 273.558 + 157.939i 0.407687 + 0.235378i
\(672\) −470.691 + 473.992i −0.700433 + 0.705346i
\(673\) 144.560 250.385i 0.214799 0.372043i −0.738411 0.674351i \(-0.764424\pi\)
0.953210 + 0.302308i \(0.0977570\pi\)
\(674\) 395.291 228.221i 0.586485 0.338607i
\(675\) −393.451 101.016i −0.582891 0.149654i
\(676\) −323.894 + 81.5622i −0.479133 + 0.120654i
\(677\) −963.176 + 556.090i −1.42271 + 0.821403i −0.996530 0.0832338i \(-0.973475\pi\)
−0.426182 + 0.904637i \(0.640142\pi\)
\(678\) −1225.97 + 333.093i −1.80821 + 0.491288i
\(679\) 359.181 0.528985
\(680\) 291.430 168.257i 0.428574 0.247437i
\(681\) 149.326 + 549.604i 0.219275 + 0.807055i
\(682\) −779.665 −1.14320
\(683\) −943.198 544.556i −1.38096 0.797300i −0.388690 0.921369i \(-0.627072\pi\)
−0.992274 + 0.124069i \(0.960406\pi\)
\(684\) 462.480 271.340i 0.676140 0.396696i
\(685\) 299.582 518.892i 0.437346 0.757506i
\(686\) 639.245 + 369.068i 0.931844 + 0.538000i
\(687\) 32.1872 121.825i 0.0468518 0.177330i
\(688\) −515.000 + 892.006i −0.748547 + 1.29652i
\(689\) −3.96689 + 2.99656i −0.00575746 + 0.00434914i
\(690\) 133.894 134.833i 0.194049 0.195409i
\(691\) 66.7244 115.570i 0.0965621 0.167250i −0.813697 0.581289i \(-0.802549\pi\)
0.910259 + 0.414038i \(0.135882\pi\)
\(692\) 420.766 242.929i 0.608043 0.351054i
\(693\) −423.505 + 2.95976i −0.611119 + 0.00427094i
\(694\) 383.430 0.552493
\(695\) 12.3720i 0.0178014i
\(696\) 15.9953 60.5406i 0.0229817 0.0869836i
\(697\) 596.702 1033.52i 0.856100 1.48281i
\(698\) −46.4386 + 26.8114i −0.0665310 + 0.0384117i
\(699\) −119.409 439.491i −0.170828 0.628742i
\(700\) 113.746 197.013i 0.162494 0.281447i
\(701\) 693.561i 0.989388i −0.869067 0.494694i \(-0.835280\pi\)
0.869067 0.494694i \(-0.164720\pi\)
\(702\) −682.284 520.368i −0.971914 0.741265i
\(703\) 1348.01 1.91751
\(704\) 47.1392 + 27.2158i 0.0669591 + 0.0386588i
\(705\) 255.985 69.5507i 0.363100 0.0986535i
\(706\) −654.445 1133.53i −0.926976 1.60557i
\(707\) −244.614 141.228i −0.345989 0.199757i
\(708\) 274.937 + 72.6403i 0.388328 + 0.102599i
\(709\) 156.542 0.220793 0.110397 0.993888i \(-0.464788\pi\)
0.110397 + 0.993888i \(0.464788\pi\)
\(710\) 63.0347i 0.0887813i
\(711\) 128.919 + 73.2348i 0.181320 + 0.103003i
\(712\) −201.432 348.890i −0.282910 0.490014i
\(713\) −368.754 212.900i −0.517186 0.298597i
\(714\) 858.372 + 852.394i 1.20220 + 1.19383i
\(715\) 98.3020 232.341i 0.137485 0.324953i
\(716\) 200.679 + 115.862i 0.280278 + 0.161819i
\(717\) 572.802 + 151.339i 0.798887 + 0.211072i
\(718\) −123.282 + 213.530i −0.171701 + 0.297396i
\(719\) 105.238 + 60.7593i 0.146367 + 0.0845053i 0.571395 0.820675i \(-0.306402\pi\)
−0.425028 + 0.905180i \(0.639736\pi\)
\(720\) 280.514 493.801i 0.389602 0.685835i
\(721\) −267.746 + 463.750i −0.371354 + 0.643204i
\(722\) 1339.03i 1.85462i
\(723\) −23.4582 + 6.37356i −0.0324457 + 0.00881543i
\(724\) 257.356 + 445.754i 0.355464 + 0.615682i
\(725\) 63.4769i 0.0875543i
\(726\) 159.929 + 588.628i 0.220288 + 0.810782i
\(727\) 343.562 + 595.068i 0.472576 + 0.818525i 0.999507 0.0313826i \(-0.00999103\pi\)
−0.526932 + 0.849908i \(0.676658\pi\)
\(728\) −392.616 + 296.579i −0.539308 + 0.407389i
\(729\) −15.2830 728.840i −0.0209643 0.999780i
\(730\) 95.7828 + 165.901i 0.131209 + 0.227261i
\(731\) 961.567 + 555.161i 1.31541 + 0.759454i
\(732\) −216.066 214.561i −0.295172 0.293116i
\(733\) −17.5857 + 30.4593i −0.0239914 + 0.0415542i −0.877772 0.479079i \(-0.840971\pi\)
0.853780 + 0.520633i \(0.174304\pi\)
\(734\) −1214.77 + 701.350i −1.65500 + 0.955517i
\(735\) 87.2616 + 23.0552i 0.118723 + 0.0313676i
\(736\) −119.495 206.971i −0.162357 0.281210i
\(737\) −138.016 79.6835i −0.187267 0.108119i
\(738\) −8.51149 1217.89i −0.0115332 1.65026i
\(739\) 700.539 + 1213.37i 0.947956 + 1.64191i 0.749722 + 0.661753i \(0.230187\pi\)
0.198234 + 0.980155i \(0.436479\pi\)
\(740\) −241.487 + 139.423i −0.326334 + 0.188409i
\(741\) 1087.99 445.493i 1.46828 0.601206i
\(742\) 3.57634 6.19440i 0.00481987 0.00834825i
\(743\) 830.282i 1.11747i −0.829346 0.558736i \(-0.811287\pi\)
0.829346 0.558736i \(-0.188713\pi\)
\(744\) −744.031 196.579i −1.00004 0.264218i
\(745\) −867.975 −1.16507
\(746\) 716.077i 0.959889i
\(747\) −203.852 + 358.850i −0.272894 + 0.480388i
\(748\) −131.034 + 226.958i −0.175179 + 0.303420i
\(749\) −745.291 + 430.294i −0.995049 + 0.574492i
\(750\) −236.702 + 895.896i −0.315603 + 1.19453i
\(751\) 725.958 0.966655 0.483327 0.875440i \(-0.339428\pi\)
0.483327 + 0.875440i \(0.339428\pi\)
\(752\) 560.473i 0.745309i
\(753\) −321.026 84.8175i −0.426329 0.112639i
\(754\) −52.2476 + 123.489i −0.0692938 + 0.163779i
\(755\) 68.5229i 0.0907588i
\(756\) 395.437 + 101.526i 0.523065 + 0.134294i
\(757\) 455.691 + 789.279i 0.601969 + 1.04264i 0.992523 + 0.122061i \(0.0389503\pi\)
−0.390554 + 0.920580i \(0.627716\pi\)
\(758\) 543.998i 0.717675i
\(759\) 38.7050 146.495i 0.0509947 0.193010i
\(760\) 235.268 + 407.497i 0.309564 + 0.536180i
\(761\) 1000.60 577.695i 1.31485 0.759126i 0.331951 0.943297i \(-0.392293\pi\)
0.982894 + 0.184170i \(0.0589598\pi\)
\(762\) −316.429 1164.64i −0.415261 1.52839i
\(763\) −1581.37 −2.07257
\(764\) −598.432 + 345.505i −0.783288 + 0.452231i
\(765\) −532.309 302.389i −0.695829 0.395279i
\(766\) −1387.40 −1.81123
\(767\) 574.225 + 242.951i 0.748663 + 0.316754i
\(768\) −643.049 638.570i −0.837303 0.831472i
\(769\) −550.108 −0.715356 −0.357678 0.933845i \(-0.616431\pi\)
−0.357678 + 0.933845i \(0.616431\pi\)
\(770\) 362.968i 0.471387i
\(771\) −395.439 1455.44i −0.512891 1.88772i
\(772\) −293.898 509.045i −0.380696 0.659385i
\(773\) 507.118 + 292.785i 0.656039 + 0.378764i 0.790766 0.612118i \(-0.209682\pi\)
−0.134727 + 0.990883i \(0.543016\pi\)
\(774\) 1133.10 7.91894i 1.46396 0.0102312i
\(775\) 780.117 1.00660
\(776\) 232.250i 0.299291i
\(777\) 728.284 + 723.212i 0.937302 + 0.930774i
\(778\) −544.343 −0.699669
\(779\) 1445.13 + 834.348i 1.85511 + 1.07105i
\(780\) −148.830 + 192.337i −0.190808 + 0.246585i
\(781\) 25.1320 + 43.5299i 0.0321792 + 0.0557360i
\(782\) −374.812 + 216.398i −0.479299 + 0.276723i
\(783\) −109.721 + 30.6359i −0.140129 + 0.0391263i
\(784\) 95.3496 165.150i 0.121619 0.210651i
\(785\) 174.614 100.814i 0.222439 0.128425i
\(786\) −864.754 858.732i −1.10020 1.09253i
\(787\) −199.539 345.611i −0.253544 0.439150i 0.710955 0.703237i \(-0.248263\pi\)
−0.964499 + 0.264087i \(0.914929\pi\)
\(788\) 595.283 + 343.687i 0.755436 + 0.436151i
\(789\) 585.606 + 154.721i 0.742212 + 0.196098i
\(790\) 63.5355 110.047i 0.0804246 0.139300i
\(791\) 1147.74 662.650i 1.45100 0.837737i
\(792\) −1.91381 273.843i −0.00241643 0.345761i
\(793\) −402.422 532.732i −0.507467 0.671793i
\(794\) −231.541 + 133.680i −0.291614 + 0.168363i
\(795\) −0.924653 + 3.49972i −0.00116309 + 0.00440217i
\(796\) 128.824 0.161839
\(797\) −418.101 + 241.391i −0.524593 + 0.302874i −0.738812 0.673912i \(-0.764613\pi\)
0.214219 + 0.976786i \(0.431280\pi\)
\(798\) −1191.87 + 1200.23i −1.49358 + 1.50405i
\(799\) −604.180 −0.756170
\(800\) 379.196 + 218.929i 0.473995 + 0.273661i
\(801\) −362.009 + 637.262i −0.451946 + 0.795583i
\(802\) 202.166 350.162i 0.252078 0.436611i
\(803\) 132.289 + 76.3773i 0.164744 + 0.0951149i
\(804\) 109.010 + 108.251i 0.135584 + 0.134640i
\(805\) −99.1143 + 171.671i −0.123123 + 0.213256i
\(806\) 1517.66 + 642.112i 1.88295 + 0.796665i
\(807\) −808.597 213.637i −1.00198 0.264730i
\(808\) 91.3196 158.170i 0.113019 0.195755i
\(809\) 1069.07 617.227i 1.32147 0.762950i 0.337505 0.941324i \(-0.390417\pi\)
0.983963 + 0.178374i \(0.0570836\pi\)
\(810\) −624.718 + 8.73239i −0.771257 + 0.0107807i
\(811\) −169.669 −0.209209 −0.104605 0.994514i \(-0.533358\pi\)
−0.104605 + 0.994514i \(0.533358\pi\)
\(812\) 63.7972i 0.0785680i
\(813\) −250.553 248.808i −0.308183 0.306036i
\(814\) −336.186 + 582.292i −0.413005 + 0.715346i
\(815\) −485.064 + 280.052i −0.595171 + 0.343622i
\(816\) −911.446 + 917.838i −1.11697 + 1.12480i
\(817\) −776.263 + 1344.53i −0.950138 + 1.64569i
\(818\) 111.318i 0.136086i
\(819\) 826.814 + 343.027i 1.00954 + 0.418836i
\(820\) −345.181 −0.420953
\(821\) −754.672 435.710i −0.919210 0.530706i −0.0358273 0.999358i \(-0.511407\pi\)
−0.883383 + 0.468652i \(0.844740\pi\)
\(822\) −355.759 + 1346.51i −0.432796 + 1.63809i
\(823\) 227.405 + 393.878i 0.276313 + 0.478588i 0.970465 0.241240i \(-0.0775541\pi\)
−0.694153 + 0.719828i \(0.744221\pi\)
\(824\) −299.865 173.127i −0.363914 0.210106i
\(825\) 72.7862 + 267.894i 0.0882257 + 0.324720i
\(826\) −897.065 −1.08604
\(827\) 58.1961i 0.0703702i −0.999381 0.0351851i \(-0.988798\pi\)
0.999381 0.0351851i \(-0.0112021\pi\)
\(828\) −72.1463 + 127.003i −0.0871332 + 0.153385i
\(829\) 184.684 + 319.882i 0.222779 + 0.385865i 0.955651 0.294502i \(-0.0951537\pi\)
−0.732872 + 0.680367i \(0.761820\pi\)
\(830\) 306.319 + 176.853i 0.369059 + 0.213076i
\(831\) 319.337 86.7631i 0.384280 0.104408i
\(832\) −69.3448 91.7997i −0.0833471 0.110336i
\(833\) −178.029 102.785i −0.213721 0.123392i
\(834\) 7.54010 + 27.7518i 0.00904089 + 0.0332755i
\(835\) 100.728 174.466i 0.120632 0.208941i
\(836\) −317.347 183.221i −0.379602 0.219163i
\(837\) 376.508 + 1348.44i 0.449831 + 1.61104i
\(838\) −478.512 + 828.806i −0.571016 + 0.989029i
\(839\) 436.464i 0.520219i −0.965579 0.260109i \(-0.916241\pi\)
0.965579 0.260109i \(-0.0837586\pi\)
\(840\) −91.5160 + 346.379i −0.108948 + 0.412356i
\(841\) −411.599 712.911i −0.489417 0.847694i
\(842\) 546.840i 0.649453i
\(843\) −36.7904 + 37.0484i −0.0436422 + 0.0439483i
\(844\) −92.1484 159.606i −0.109181 0.189106i
\(845\) −382.701 + 371.306i −0.452900 + 0.439416i
\(846\) −531.816 + 312.020i −0.628625 + 0.368818i
\(847\) −318.160 551.069i −0.375631 0.650613i
\(848\) 6.62354 + 3.82410i 0.00781078 + 0.00450955i
\(849\) 1427.05 387.727i 1.68086 0.456687i
\(850\) 396.467 686.701i 0.466432 0.807883i
\(851\) −318.008 + 183.602i −0.373688 + 0.215749i
\(852\) −12.7042 46.7585i −0.0149110 0.0548809i
\(853\) 4.91575 + 8.51433i 0.00576290 + 0.00998163i 0.868892 0.495001i \(-0.164832\pi\)
−0.863130 + 0.504983i \(0.831499\pi\)
\(854\) 831.876 + 480.284i 0.974093 + 0.562393i
\(855\) 422.820 744.310i 0.494526 0.870538i
\(856\) −278.233 481.913i −0.325038 0.562982i
\(857\) 1224.81 707.143i 1.42918 0.825138i 0.432125 0.901814i \(-0.357764\pi\)
0.997056 + 0.0766755i \(0.0244305\pi\)
\(858\) −78.9023 + 581.077i −0.0919607 + 0.677246i
\(859\) 97.9732 169.694i 0.114055 0.197549i −0.803347 0.595512i \(-0.796949\pi\)
0.917402 + 0.397963i \(0.130283\pi\)
\(860\) 321.151i 0.373431i
\(861\) 333.126 + 1226.09i 0.386905 + 1.42403i
\(862\) −593.731 −0.688783
\(863\) 414.684i 0.480514i 0.970709 + 0.240257i \(0.0772318\pi\)
−0.970709 + 0.240257i \(0.922768\pi\)
\(864\) −195.410 + 761.107i −0.226169 + 0.880911i
\(865\) 387.825 671.733i 0.448353 0.776570i
\(866\) 135.486 78.2229i 0.156450 0.0903267i
\(867\) 374.213 + 371.607i 0.431619 + 0.428613i
\(868\) −784.055 −0.903289
\(869\) 101.326i 0.116601i
\(870\) 25.5982 + 94.2158i 0.0294233 + 0.108294i
\(871\) 203.030 + 268.775i 0.233100 + 0.308582i
\(872\) 1022.53i 1.17263i
\(873\) 364.427 213.812i 0.417442 0.244916i
\(874\) −302.582 524.087i −0.346203 0.599642i
\(875\) 966.671i 1.10477i
\(876\) −104.487 103.759i −0.119277 0.118446i
\(877\) 235.547 + 407.980i 0.268583 + 0.465200i 0.968496 0.249028i \(-0.0801113\pi\)
−0.699913 + 0.714228i \(0.746778\pi\)
\(878\) −515.282 + 297.498i −0.586882 + 0.338836i
\(879\) −731.645 + 736.776i −0.832361 + 0.838198i
\(880\) −388.114 −0.441039
\(881\) −1476.32 + 852.355i −1.67574 + 0.967486i −0.711406 + 0.702781i \(0.751941\pi\)
−0.964329 + 0.264705i \(0.914725\pi\)
\(882\) −209.788 + 1.46615i −0.237855 + 0.00166230i
\(883\) 650.040 0.736172 0.368086 0.929792i \(-0.380013\pi\)
0.368086 + 0.929792i \(0.380013\pi\)
\(884\) 441.982 333.870i 0.499980 0.377681i
\(885\) 438.102 119.031i 0.495031 0.134499i
\(886\) 22.8848 0.0258294
\(887\) 338.912i 0.382088i −0.981581 0.191044i \(-0.938813\pi\)
0.981581 0.191044i \(-0.0611873\pi\)
\(888\) −467.636 + 470.915i −0.526617 + 0.530310i
\(889\) 629.498 + 1090.32i 0.708097 + 1.22646i
\(890\) 543.975 + 314.064i 0.611208 + 0.352881i
\(891\) −427.930 + 255.106i −0.480280 + 0.286314i
\(892\) 486.666 0.545590
\(893\) 844.804i 0.946029i
\(894\) 1946.97 528.986i 2.17781 0.591707i
\(895\) 369.937 0.413338
\(896\) 914.683 + 528.093i 1.02085 + 0.589389i
\(897\) −195.991 + 253.283i −0.218496 + 0.282367i
\(898\) −495.478 858.193i −0.551757 0.955672i
\(899\) 189.465 109.387i 0.210750 0.121677i
\(900\) −1.87019 267.601i −0.00207799 0.297334i
\(901\) 4.12232 7.14006i 0.00457527 0.00792460i
\(902\) −720.817 + 416.164i −0.799132 + 0.461379i
\(903\) −1140.73 + 309.934i −1.26327 + 0.343228i
\(904\) 428.476 + 742.142i 0.473978 + 0.820954i
\(905\) 711.626 + 410.857i 0.786327 + 0.453986i
\(906\) 41.7612 + 153.705i 0.0460940 + 0.169652i
\(907\) 545.835 945.414i 0.601803 1.04235i −0.390745 0.920499i \(-0.627783\pi\)
0.992548 0.121854i \(-0.0388840\pi\)
\(908\) −324.932 + 187.599i −0.357854 + 0.206607i
\(909\) −332.257 + 2.32205i −0.365520 + 0.00255451i
\(910\) 298.931 706.538i 0.328496 0.776415i
\(911\) −680.446 + 392.856i −0.746922 + 0.431236i −0.824581 0.565744i \(-0.808589\pi\)
0.0776587 + 0.996980i \(0.475256\pi\)
\(912\) −1283.38 1274.44i −1.40722 1.39742i
\(913\) 282.046 0.308922
\(914\) 20.5214 11.8481i 0.0224524 0.0129629i
\(915\) −469.994 124.176i −0.513655 0.135711i
\(916\) 83.0110 0.0906234
\(917\) 1101.02 + 635.674i 1.20068 + 0.693210i
\(918\) 1378.32 + 353.876i 1.50144 + 0.385486i
\(919\) 0.983854 1.70409i 0.00107057 0.00185428i −0.865490 0.500927i \(-0.832993\pi\)
0.866560 + 0.499073i \(0.166326\pi\)
\(920\) −111.004 64.0883i −0.120657 0.0696612i
\(921\) 1294.05 351.590i 1.40505 0.381748i
\(922\) 416.772 721.870i 0.452030 0.782939i
\(923\) −13.0707 105.431i −0.0141611 0.114227i
\(924\) −73.1536 269.246i −0.0791705 0.291392i
\(925\) 336.382 582.630i 0.363656 0.629870i
\(926\) −998.128 + 576.270i −1.07789 + 0.622322i
\(927\) 4.40224 + 629.907i 0.00474891 + 0.679511i
\(928\) 122.792 0.132319
\(929\) 545.424i 0.587109i −0.955942 0.293555i \(-0.905162\pi\)
0.955942 0.293555i \(-0.0948383\pi\)
\(930\) 1157.89 314.597i 1.24505 0.338276i
\(931\) 143.721 248.932i 0.154373 0.267382i
\(932\) 259.831 150.014i 0.278789 0.160959i
\(933\) 255.383 + 67.4740i 0.273722 + 0.0723194i
\(934\) 937.214 1623.30i 1.00344 1.73801i
\(935\) 418.380i 0.447465i
\(936\) −221.804 + 534.626i −0.236971 + 0.571182i
\(937\) 1697.45 1.81158 0.905790 0.423726i \(-0.139278\pi\)
0.905790 + 0.423726i \(0.139278\pi\)
\(938\) −419.699 242.313i −0.447440 0.258330i
\(939\) −729.916 724.833i −0.777334 0.771920i
\(940\) 87.3769 + 151.341i 0.0929541 + 0.161001i
\(941\) −886.312 511.713i −0.941884 0.543797i −0.0513333 0.998682i \(-0.516347\pi\)
−0.890550 + 0.454885i \(0.849680\pi\)
\(942\) −330.239 + 332.555i −0.350572 + 0.353031i
\(943\) −454.561 −0.482037
\(944\) 959.212i 1.01611i
\(945\) 627.760 175.281i 0.664297 0.185483i
\(946\) −387.192 670.636i −0.409294 0.708917i
\(947\) 370.242 + 213.759i 0.390963 + 0.225723i 0.682577 0.730813i \(-0.260859\pi\)
−0.291614 + 0.956536i \(0.594192\pi\)
\(948\) −24.9508 + 94.4366i −0.0263195 + 0.0996166i
\(949\) −194.606 257.623i −0.205064 0.271468i
\(950\) 960.191 + 554.366i 1.01073 + 0.583543i
\(951\) 708.128 713.094i 0.744614 0.749836i
\(952\) 407.999 706.675i 0.428571 0.742306i
\(953\) −124.120 71.6609i −0.130242 0.0751951i 0.433464 0.901171i \(-0.357291\pi\)
−0.563705 + 0.825976i \(0.690625\pi\)
\(954\) −0.0588016 8.41380i −6.16369e−5 0.00881949i
\(955\) −551.582 + 955.369i −0.577573 + 1.00039i
\(956\) 390.304i 0.408267i
\(957\) 55.2412 + 54.8565i 0.0577233 + 0.0573213i
\(958\) −276.431 478.793i −0.288550 0.499784i
\(959\) 1452.89i 1.51500i
\(960\) −80.9889 21.3979i −0.0843634 0.0222894i
\(961\) −863.849 1496.23i −0.898907 1.55695i
\(962\) 1133.97 856.589i 1.17876 0.890425i
\(963\) −500.034 + 880.234i −0.519246 + 0.914054i
\(964\) −8.00713 13.8687i −0.00830615 0.0143867i
\(965\) −812.668 469.194i −0.842143 0.486211i
\(966\) 117.700 445.482i 0.121842 0.461162i
\(967\) 208.251 360.702i 0.215358 0.373011i −0.738025 0.674773i \(-0.764242\pi\)
0.953383 + 0.301762i \(0.0975748\pi\)
\(968\) 356.327 205.725i 0.368106 0.212526i
\(969\) −1373.83 + 1383.46i −1.41778 + 1.42772i
\(970\) −181.057 313.600i −0.186657 0.323299i
\(971\) −940.061 542.744i −0.968136 0.558954i −0.0694689 0.997584i \(-0.522130\pi\)
−0.898668 + 0.438630i \(0.855464\pi\)
\(972\) 461.650 132.385i 0.474948 0.136199i
\(973\) −15.0001 25.9810i −0.0154164 0.0267020i
\(974\) −1326.40 + 765.800i −1.36181 + 0.786242i
\(975\) 78.9481 581.415i 0.0809724 0.596323i
\(976\) −513.557 + 889.506i −0.526185 + 0.911380i
\(977\) 816.416i 0.835636i 0.908531 + 0.417818i \(0.137205\pi\)
−0.908531 + 0.417818i \(0.862795\pi\)
\(978\) 917.376 923.809i 0.938012 0.944590i
\(979\) 500.870 0.511614
\(980\) 59.4595i 0.0606729i
\(981\) −1604.47 + 941.354i −1.63555 + 0.959586i
\(982\) 475.144 822.973i 0.483853 0.838058i
\(983\) −492.034 + 284.076i −0.500543 + 0.288989i −0.728938 0.684580i \(-0.759986\pi\)
0.228395 + 0.973569i \(0.426652\pi\)
\(984\) −792.801 + 215.402i −0.805692 + 0.218905i
\(985\) 1097.36 1.11407
\(986\) 222.369i 0.225527i
\(987\) 453.240 456.419i 0.459210 0.462431i
\(988\) 466.839 + 618.008i 0.472509 + 0.625515i
\(989\) 422.916i 0.427620i
\(990\) 216.066 + 368.270i 0.218249 + 0.371990i
\(991\) −110.273 190.998i −0.111274 0.192732i 0.805010 0.593261i \(-0.202160\pi\)
−0.916284 + 0.400529i \(0.868826\pi\)
\(992\) 1509.09i 1.52126i
\(993\) −158.706 + 43.1200i −0.159824 + 0.0434239i
\(994\) 76.4250 + 132.372i 0.0768863 + 0.133171i
\(995\) 178.108 102.831i 0.179003 0.103348i
\(996\) −262.867 69.4515i −0.263923 0.0697305i
\(997\) −610.251 −0.612088 −0.306044 0.952017i \(-0.599005\pi\)
−0.306044 + 0.952017i \(0.599005\pi\)
\(998\) −68.4711 + 39.5318i −0.0686083 + 0.0396110i
\(999\) 1169.43 + 300.246i 1.17060 + 0.300546i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.3.u.a.68.7 yes 52
3.2 odd 2 351.3.u.a.341.20 52
9.2 odd 6 117.3.k.a.29.7 52
9.7 even 3 351.3.k.a.224.20 52
13.9 even 3 117.3.k.a.113.20 yes 52
39.35 odd 6 351.3.k.a.152.7 52
117.61 even 3 351.3.u.a.35.20 52
117.74 odd 6 inner 117.3.u.a.74.7 yes 52
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.3.k.a.29.7 52 9.2 odd 6
117.3.k.a.113.20 yes 52 13.9 even 3
117.3.u.a.68.7 yes 52 1.1 even 1 trivial
117.3.u.a.74.7 yes 52 117.74 odd 6 inner
351.3.k.a.152.7 52 39.35 odd 6
351.3.k.a.224.20 52 9.7 even 3
351.3.u.a.35.20 52 117.61 even 3
351.3.u.a.341.20 52 3.2 odd 2