Properties

Label 1197.2.a.o.1.2
Level $1197$
Weight $2$
Character 1197.1
Self dual yes
Analytic conductor $9.558$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1197,2,Mod(1,1197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1197.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1197 = 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.55809312195\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.368464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 6x^{3} + 6x^{2} + 6x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 399)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.09027\) of defining polynomial
Character \(\chi\) \(=\) 1197.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.09027 q^{2} +2.36924 q^{4} -0.388134 q^{5} +1.00000 q^{7} -0.771813 q^{8} +0.811305 q^{10} -6.41859 q^{11} +3.88714 q^{13} -2.09027 q^{14} -3.12518 q^{16} +4.98727 q^{17} -1.00000 q^{19} -0.919582 q^{20} +13.4166 q^{22} -3.44207 q^{23} -4.84935 q^{25} -8.12518 q^{26} +2.36924 q^{28} -0.169801 q^{29} -8.62562 q^{31} +8.07611 q^{32} -10.4247 q^{34} -0.388134 q^{35} +7.37540 q^{37} +2.09027 q^{38} +0.299567 q^{40} +8.77968 q^{41} -9.11087 q^{43} -15.2072 q^{44} +7.19485 q^{46} +4.80672 q^{47} +1.00000 q^{49} +10.1365 q^{50} +9.20957 q^{52} -8.42933 q^{53} +2.49127 q^{55} -0.771813 q^{56} +0.354931 q^{58} -2.97652 q^{59} +5.82287 q^{61} +18.0299 q^{62} -10.6309 q^{64} -1.50873 q^{65} -14.9980 q^{67} +11.8160 q^{68} +0.811305 q^{70} -4.24879 q^{71} +13.5757 q^{73} -15.4166 q^{74} -2.36924 q^{76} -6.41859 q^{77} -1.01431 q^{79} +1.21299 q^{80} -18.3519 q^{82} +4.32147 q^{83} -1.93573 q^{85} +19.0442 q^{86} +4.95395 q^{88} -13.8955 q^{89} +3.88714 q^{91} -8.15508 q^{92} -10.0474 q^{94} +0.388134 q^{95} -13.7743 q^{97} -2.09027 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 3 q^{2} + 7 q^{4} - 4 q^{5} + 5 q^{7} - 9 q^{8} - 6 q^{10} - 8 q^{11} - 6 q^{13} - 3 q^{14} + 19 q^{16} - 12 q^{17} - 5 q^{19} - 8 q^{20} - 12 q^{22} - 12 q^{23} + 15 q^{25} - 6 q^{26} + 7 q^{28}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.09027 −1.47805 −0.739023 0.673680i \(-0.764713\pi\)
−0.739023 + 0.673680i \(0.764713\pi\)
\(3\) 0 0
\(4\) 2.36924 1.18462
\(5\) −0.388134 −0.173579 −0.0867893 0.996227i \(-0.527661\pi\)
−0.0867893 + 0.996227i \(0.527661\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) −0.771813 −0.272877
\(9\) 0 0
\(10\) 0.811305 0.256557
\(11\) −6.41859 −1.93528 −0.967638 0.252341i \(-0.918800\pi\)
−0.967638 + 0.252341i \(0.918800\pi\)
\(12\) 0 0
\(13\) 3.88714 1.07810 0.539049 0.842274i \(-0.318784\pi\)
0.539049 + 0.842274i \(0.318784\pi\)
\(14\) −2.09027 −0.558649
\(15\) 0 0
\(16\) −3.12518 −0.781295
\(17\) 4.98727 1.20959 0.604795 0.796381i \(-0.293255\pi\)
0.604795 + 0.796381i \(0.293255\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) −0.919582 −0.205625
\(21\) 0 0
\(22\) 13.4166 2.86043
\(23\) −3.44207 −0.717720 −0.358860 0.933391i \(-0.616834\pi\)
−0.358860 + 0.933391i \(0.616834\pi\)
\(24\) 0 0
\(25\) −4.84935 −0.969870
\(26\) −8.12518 −1.59348
\(27\) 0 0
\(28\) 2.36924 0.447744
\(29\) −0.169801 −0.0315313 −0.0157656 0.999876i \(-0.505019\pi\)
−0.0157656 + 0.999876i \(0.505019\pi\)
\(30\) 0 0
\(31\) −8.62562 −1.54921 −0.774604 0.632447i \(-0.782051\pi\)
−0.774604 + 0.632447i \(0.782051\pi\)
\(32\) 8.07611 1.42767
\(33\) 0 0
\(34\) −10.4247 −1.78783
\(35\) −0.388134 −0.0656066
\(36\) 0 0
\(37\) 7.37540 1.21251 0.606254 0.795271i \(-0.292671\pi\)
0.606254 + 0.795271i \(0.292671\pi\)
\(38\) 2.09027 0.339087
\(39\) 0 0
\(40\) 0.299567 0.0473656
\(41\) 8.77968 1.37116 0.685578 0.727999i \(-0.259550\pi\)
0.685578 + 0.727999i \(0.259550\pi\)
\(42\) 0 0
\(43\) −9.11087 −1.38939 −0.694697 0.719302i \(-0.744462\pi\)
−0.694697 + 0.719302i \(0.744462\pi\)
\(44\) −15.2072 −2.29257
\(45\) 0 0
\(46\) 7.19485 1.06082
\(47\) 4.80672 0.701132 0.350566 0.936538i \(-0.385989\pi\)
0.350566 + 0.936538i \(0.385989\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 10.1365 1.43351
\(51\) 0 0
\(52\) 9.20957 1.27714
\(53\) −8.42933 −1.15786 −0.578929 0.815378i \(-0.696529\pi\)
−0.578929 + 0.815378i \(0.696529\pi\)
\(54\) 0 0
\(55\) 2.49127 0.335923
\(56\) −0.771813 −0.103138
\(57\) 0 0
\(58\) 0.354931 0.0466047
\(59\) −2.97652 −0.387510 −0.193755 0.981050i \(-0.562067\pi\)
−0.193755 + 0.981050i \(0.562067\pi\)
\(60\) 0 0
\(61\) 5.82287 0.745542 0.372771 0.927923i \(-0.378408\pi\)
0.372771 + 0.927923i \(0.378408\pi\)
\(62\) 18.0299 2.28980
\(63\) 0 0
\(64\) −10.6309 −1.32886
\(65\) −1.50873 −0.187135
\(66\) 0 0
\(67\) −14.9980 −1.83230 −0.916149 0.400837i \(-0.868719\pi\)
−0.916149 + 0.400837i \(0.868719\pi\)
\(68\) 11.8160 1.43290
\(69\) 0 0
\(70\) 0.811305 0.0969695
\(71\) −4.24879 −0.504238 −0.252119 0.967696i \(-0.581127\pi\)
−0.252119 + 0.967696i \(0.581127\pi\)
\(72\) 0 0
\(73\) 13.5757 1.58891 0.794455 0.607323i \(-0.207757\pi\)
0.794455 + 0.607323i \(0.207757\pi\)
\(74\) −15.4166 −1.79214
\(75\) 0 0
\(76\) −2.36924 −0.271770
\(77\) −6.41859 −0.731466
\(78\) 0 0
\(79\) −1.01431 −0.114119 −0.0570594 0.998371i \(-0.518172\pi\)
−0.0570594 + 0.998371i \(0.518172\pi\)
\(80\) 1.21299 0.135616
\(81\) 0 0
\(82\) −18.3519 −2.02663
\(83\) 4.32147 0.474343 0.237171 0.971468i \(-0.423780\pi\)
0.237171 + 0.971468i \(0.423780\pi\)
\(84\) 0 0
\(85\) −1.93573 −0.209959
\(86\) 19.0442 2.05359
\(87\) 0 0
\(88\) 4.95395 0.528093
\(89\) −13.8955 −1.47293 −0.736463 0.676478i \(-0.763505\pi\)
−0.736463 + 0.676478i \(0.763505\pi\)
\(90\) 0 0
\(91\) 3.88714 0.407483
\(92\) −8.15508 −0.850226
\(93\) 0 0
\(94\) −10.0474 −1.03631
\(95\) 0.388134 0.0398217
\(96\) 0 0
\(97\) −13.7743 −1.39857 −0.699283 0.714845i \(-0.746497\pi\)
−0.699283 + 0.714845i \(0.746497\pi\)
\(98\) −2.09027 −0.211149
\(99\) 0 0
\(100\) −11.4893 −1.14893
\(101\) −8.15009 −0.810964 −0.405482 0.914103i \(-0.632896\pi\)
−0.405482 + 0.914103i \(0.632896\pi\)
\(102\) 0 0
\(103\) −12.8372 −1.26488 −0.632442 0.774608i \(-0.717947\pi\)
−0.632442 + 0.774608i \(0.717947\pi\)
\(104\) −3.00014 −0.294188
\(105\) 0 0
\(106\) 17.6196 1.71137
\(107\) 8.12463 0.785437 0.392719 0.919659i \(-0.371535\pi\)
0.392719 + 0.919659i \(0.371535\pi\)
\(108\) 0 0
\(109\) −20.3356 −1.94780 −0.973900 0.226978i \(-0.927115\pi\)
−0.973900 + 0.226978i \(0.927115\pi\)
\(110\) −5.20743 −0.496509
\(111\) 0 0
\(112\) −3.12518 −0.295302
\(113\) −4.16980 −0.392262 −0.196131 0.980578i \(-0.562838\pi\)
−0.196131 + 0.980578i \(0.562838\pi\)
\(114\) 0 0
\(115\) 1.33598 0.124581
\(116\) −0.402300 −0.0373526
\(117\) 0 0
\(118\) 6.22174 0.572758
\(119\) 4.98727 0.457182
\(120\) 0 0
\(121\) 30.1983 2.74530
\(122\) −12.1714 −1.10194
\(123\) 0 0
\(124\) −20.4362 −1.83522
\(125\) 3.82287 0.341927
\(126\) 0 0
\(127\) −6.20025 −0.550184 −0.275092 0.961418i \(-0.588708\pi\)
−0.275092 + 0.961418i \(0.588708\pi\)
\(128\) 6.06927 0.536453
\(129\) 0 0
\(130\) 3.15366 0.276594
\(131\) −15.5667 −1.36007 −0.680034 0.733181i \(-0.738035\pi\)
−0.680034 + 0.733181i \(0.738035\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 31.3499 2.70822
\(135\) 0 0
\(136\) −3.84924 −0.330069
\(137\) −10.7222 −0.916058 −0.458029 0.888937i \(-0.651444\pi\)
−0.458029 + 0.888937i \(0.651444\pi\)
\(138\) 0 0
\(139\) 10.0987 0.856560 0.428280 0.903646i \(-0.359120\pi\)
0.428280 + 0.903646i \(0.359120\pi\)
\(140\) −0.919582 −0.0777189
\(141\) 0 0
\(142\) 8.88112 0.745287
\(143\) −24.9499 −2.08642
\(144\) 0 0
\(145\) 0.0659056 0.00547316
\(146\) −28.3768 −2.34848
\(147\) 0 0
\(148\) 17.4741 1.43636
\(149\) −9.75279 −0.798980 −0.399490 0.916738i \(-0.630813\pi\)
−0.399490 + 0.916738i \(0.630813\pi\)
\(150\) 0 0
\(151\) −2.20942 −0.179800 −0.0899002 0.995951i \(-0.528655\pi\)
−0.0899002 + 0.995951i \(0.528655\pi\)
\(152\) 0.771813 0.0626023
\(153\) 0 0
\(154\) 13.4166 1.08114
\(155\) 3.34789 0.268909
\(156\) 0 0
\(157\) −10.3519 −0.826173 −0.413087 0.910692i \(-0.635549\pi\)
−0.413087 + 0.910692i \(0.635549\pi\)
\(158\) 2.12018 0.168673
\(159\) 0 0
\(160\) −3.13461 −0.247813
\(161\) −3.44207 −0.271273
\(162\) 0 0
\(163\) −8.52406 −0.667656 −0.333828 0.942634i \(-0.608340\pi\)
−0.333828 + 0.942634i \(0.608340\pi\)
\(164\) 20.8012 1.62430
\(165\) 0 0
\(166\) −9.03305 −0.701101
\(167\) −6.99801 −0.541522 −0.270761 0.962647i \(-0.587275\pi\)
−0.270761 + 0.962647i \(0.587275\pi\)
\(168\) 0 0
\(169\) 2.10985 0.162296
\(170\) 4.04620 0.310329
\(171\) 0 0
\(172\) −21.5858 −1.64591
\(173\) −14.6403 −1.11308 −0.556542 0.830820i \(-0.687872\pi\)
−0.556542 + 0.830820i \(0.687872\pi\)
\(174\) 0 0
\(175\) −4.84935 −0.366577
\(176\) 20.0592 1.51202
\(177\) 0 0
\(178\) 29.0455 2.17705
\(179\) 12.9009 0.964258 0.482129 0.876100i \(-0.339864\pi\)
0.482129 + 0.876100i \(0.339864\pi\)
\(180\) 0 0
\(181\) −12.3897 −0.920920 −0.460460 0.887680i \(-0.652316\pi\)
−0.460460 + 0.887680i \(0.652316\pi\)
\(182\) −8.12518 −0.602279
\(183\) 0 0
\(184\) 2.65663 0.195849
\(185\) −2.86264 −0.210466
\(186\) 0 0
\(187\) −32.0112 −2.34089
\(188\) 11.3883 0.830575
\(189\) 0 0
\(190\) −0.811305 −0.0588583
\(191\) −25.0544 −1.81287 −0.906436 0.422343i \(-0.861208\pi\)
−0.906436 + 0.422343i \(0.861208\pi\)
\(192\) 0 0
\(193\) 8.79939 0.633394 0.316697 0.948527i \(-0.397426\pi\)
0.316697 + 0.948527i \(0.397426\pi\)
\(194\) 28.7920 2.06715
\(195\) 0 0
\(196\) 2.36924 0.169231
\(197\) 4.80856 0.342595 0.171298 0.985219i \(-0.445204\pi\)
0.171298 + 0.985219i \(0.445204\pi\)
\(198\) 0 0
\(199\) 9.61344 0.681479 0.340739 0.940158i \(-0.389323\pi\)
0.340739 + 0.940158i \(0.389323\pi\)
\(200\) 3.74279 0.264655
\(201\) 0 0
\(202\) 17.0359 1.19864
\(203\) −0.169801 −0.0119177
\(204\) 0 0
\(205\) −3.40769 −0.238003
\(206\) 26.8332 1.86956
\(207\) 0 0
\(208\) −12.1480 −0.842313
\(209\) 6.41859 0.443983
\(210\) 0 0
\(211\) 2.22174 0.152951 0.0764756 0.997071i \(-0.475633\pi\)
0.0764756 + 0.997071i \(0.475633\pi\)
\(212\) −19.9711 −1.37162
\(213\) 0 0
\(214\) −16.9827 −1.16091
\(215\) 3.53624 0.241169
\(216\) 0 0
\(217\) −8.62562 −0.585545
\(218\) 42.5070 2.87894
\(219\) 0 0
\(220\) 5.90242 0.397941
\(221\) 19.3862 1.30406
\(222\) 0 0
\(223\) 18.2606 1.22282 0.611408 0.791315i \(-0.290603\pi\)
0.611408 + 0.791315i \(0.290603\pi\)
\(224\) 8.07611 0.539608
\(225\) 0 0
\(226\) 8.71602 0.579781
\(227\) 5.13736 0.340978 0.170489 0.985360i \(-0.445465\pi\)
0.170489 + 0.985360i \(0.445465\pi\)
\(228\) 0 0
\(229\) 10.4750 0.692206 0.346103 0.938197i \(-0.387505\pi\)
0.346103 + 0.938197i \(0.387505\pi\)
\(230\) −2.79257 −0.184136
\(231\) 0 0
\(232\) 0.131055 0.00860416
\(233\) −17.5271 −1.14824 −0.574118 0.818772i \(-0.694655\pi\)
−0.574118 + 0.818772i \(0.694655\pi\)
\(234\) 0 0
\(235\) −1.86565 −0.121702
\(236\) −7.05210 −0.459052
\(237\) 0 0
\(238\) −10.4247 −0.675736
\(239\) 21.7777 1.40868 0.704341 0.709862i \(-0.251243\pi\)
0.704341 + 0.709862i \(0.251243\pi\)
\(240\) 0 0
\(241\) 10.3611 0.667417 0.333708 0.942676i \(-0.391700\pi\)
0.333708 + 0.942676i \(0.391700\pi\)
\(242\) −63.1226 −4.05768
\(243\) 0 0
\(244\) 13.7958 0.883183
\(245\) −0.388134 −0.0247970
\(246\) 0 0
\(247\) −3.88714 −0.247333
\(248\) 6.65736 0.422743
\(249\) 0 0
\(250\) −7.99083 −0.505385
\(251\) −10.9146 −0.688922 −0.344461 0.938801i \(-0.611938\pi\)
−0.344461 + 0.938801i \(0.611938\pi\)
\(252\) 0 0
\(253\) 22.0932 1.38899
\(254\) 12.9602 0.813197
\(255\) 0 0
\(256\) 8.57537 0.535961
\(257\) 3.28123 0.204677 0.102339 0.994750i \(-0.467367\pi\)
0.102339 + 0.994750i \(0.467367\pi\)
\(258\) 0 0
\(259\) 7.37540 0.458285
\(260\) −3.57454 −0.221684
\(261\) 0 0
\(262\) 32.5386 2.01024
\(263\) 18.0034 1.11014 0.555069 0.831804i \(-0.312692\pi\)
0.555069 + 0.831804i \(0.312692\pi\)
\(264\) 0 0
\(265\) 3.27171 0.200979
\(266\) 2.09027 0.128163
\(267\) 0 0
\(268\) −35.5339 −2.17058
\(269\) 0.886737 0.0540653 0.0270327 0.999635i \(-0.491394\pi\)
0.0270327 + 0.999635i \(0.491394\pi\)
\(270\) 0 0
\(271\) 7.43917 0.451898 0.225949 0.974139i \(-0.427452\pi\)
0.225949 + 0.974139i \(0.427452\pi\)
\(272\) −15.5861 −0.945047
\(273\) 0 0
\(274\) 22.4123 1.35398
\(275\) 31.1260 1.87697
\(276\) 0 0
\(277\) −7.40189 −0.444736 −0.222368 0.974963i \(-0.571379\pi\)
−0.222368 + 0.974963i \(0.571379\pi\)
\(278\) −21.1090 −1.26604
\(279\) 0 0
\(280\) 0.299567 0.0179025
\(281\) 1.98187 0.118228 0.0591141 0.998251i \(-0.481172\pi\)
0.0591141 + 0.998251i \(0.481172\pi\)
\(282\) 0 0
\(283\) 7.83519 0.465753 0.232877 0.972506i \(-0.425186\pi\)
0.232877 + 0.972506i \(0.425186\pi\)
\(284\) −10.0664 −0.597331
\(285\) 0 0
\(286\) 52.1522 3.08382
\(287\) 8.77968 0.518248
\(288\) 0 0
\(289\) 7.87283 0.463108
\(290\) −0.137761 −0.00808958
\(291\) 0 0
\(292\) 32.1640 1.88226
\(293\) −3.83178 −0.223855 −0.111927 0.993716i \(-0.535702\pi\)
−0.111927 + 0.993716i \(0.535702\pi\)
\(294\) 0 0
\(295\) 1.15529 0.0672635
\(296\) −5.69243 −0.330866
\(297\) 0 0
\(298\) 20.3860 1.18093
\(299\) −13.3798 −0.773773
\(300\) 0 0
\(301\) −9.11087 −0.525142
\(302\) 4.61830 0.265753
\(303\) 0 0
\(304\) 3.12518 0.179241
\(305\) −2.26005 −0.129410
\(306\) 0 0
\(307\) 1.46279 0.0834861 0.0417431 0.999128i \(-0.486709\pi\)
0.0417431 + 0.999128i \(0.486709\pi\)
\(308\) −15.2072 −0.866509
\(309\) 0 0
\(310\) −6.99801 −0.397460
\(311\) 12.0213 0.681665 0.340832 0.940124i \(-0.389291\pi\)
0.340832 + 0.940124i \(0.389291\pi\)
\(312\) 0 0
\(313\) 5.36938 0.303495 0.151748 0.988419i \(-0.451510\pi\)
0.151748 + 0.988419i \(0.451510\pi\)
\(314\) 21.6383 1.22112
\(315\) 0 0
\(316\) −2.40314 −0.135187
\(317\) 12.6674 0.711471 0.355735 0.934587i \(-0.384230\pi\)
0.355735 + 0.934587i \(0.384230\pi\)
\(318\) 0 0
\(319\) 1.08988 0.0610218
\(320\) 4.12621 0.230662
\(321\) 0 0
\(322\) 7.19485 0.400954
\(323\) −4.98727 −0.277499
\(324\) 0 0
\(325\) −18.8501 −1.04562
\(326\) 17.8176 0.986826
\(327\) 0 0
\(328\) −6.77627 −0.374157
\(329\) 4.80672 0.265003
\(330\) 0 0
\(331\) 15.2575 0.838630 0.419315 0.907841i \(-0.362270\pi\)
0.419315 + 0.907841i \(0.362270\pi\)
\(332\) 10.2386 0.561916
\(333\) 0 0
\(334\) 14.6278 0.800395
\(335\) 5.82123 0.318048
\(336\) 0 0
\(337\) −19.5379 −1.06430 −0.532148 0.846652i \(-0.678615\pi\)
−0.532148 + 0.846652i \(0.678615\pi\)
\(338\) −4.41017 −0.239881
\(339\) 0 0
\(340\) −4.58620 −0.248722
\(341\) 55.3643 2.99814
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 7.03189 0.379134
\(345\) 0 0
\(346\) 30.6023 1.64519
\(347\) 17.7777 0.954356 0.477178 0.878807i \(-0.341660\pi\)
0.477178 + 0.878807i \(0.341660\pi\)
\(348\) 0 0
\(349\) 13.6987 0.733275 0.366637 0.930364i \(-0.380509\pi\)
0.366637 + 0.930364i \(0.380509\pi\)
\(350\) 10.1365 0.541817
\(351\) 0 0
\(352\) −51.8372 −2.76293
\(353\) −8.81013 −0.468916 −0.234458 0.972126i \(-0.575332\pi\)
−0.234458 + 0.972126i \(0.575332\pi\)
\(354\) 0 0
\(355\) 1.64910 0.0875250
\(356\) −32.9219 −1.74486
\(357\) 0 0
\(358\) −26.9664 −1.42522
\(359\) 9.44808 0.498651 0.249325 0.968420i \(-0.419791\pi\)
0.249325 + 0.968420i \(0.419791\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 25.8979 1.36116
\(363\) 0 0
\(364\) 9.20957 0.482712
\(365\) −5.26917 −0.275801
\(366\) 0 0
\(367\) −1.08439 −0.0566044 −0.0283022 0.999599i \(-0.509010\pi\)
−0.0283022 + 0.999599i \(0.509010\pi\)
\(368\) 10.7571 0.560751
\(369\) 0 0
\(370\) 5.98370 0.311078
\(371\) −8.42933 −0.437629
\(372\) 0 0
\(373\) −3.64971 −0.188975 −0.0944874 0.995526i \(-0.530121\pi\)
−0.0944874 + 0.995526i \(0.530121\pi\)
\(374\) 66.9122 3.45995
\(375\) 0 0
\(376\) −3.70989 −0.191323
\(377\) −0.660041 −0.0339938
\(378\) 0 0
\(379\) 12.8846 0.661840 0.330920 0.943659i \(-0.392641\pi\)
0.330920 + 0.943659i \(0.392641\pi\)
\(380\) 0.919582 0.0471736
\(381\) 0 0
\(382\) 52.3705 2.67951
\(383\) 17.7242 0.905663 0.452831 0.891596i \(-0.350414\pi\)
0.452831 + 0.891596i \(0.350414\pi\)
\(384\) 0 0
\(385\) 2.49127 0.126967
\(386\) −18.3931 −0.936185
\(387\) 0 0
\(388\) −32.6346 −1.65677
\(389\) −10.4750 −0.531102 −0.265551 0.964097i \(-0.585554\pi\)
−0.265551 + 0.964097i \(0.585554\pi\)
\(390\) 0 0
\(391\) −17.1665 −0.868147
\(392\) −0.771813 −0.0389824
\(393\) 0 0
\(394\) −10.0512 −0.506372
\(395\) 0.393688 0.0198086
\(396\) 0 0
\(397\) −34.3679 −1.72488 −0.862438 0.506163i \(-0.831064\pi\)
−0.862438 + 0.506163i \(0.831064\pi\)
\(398\) −20.0947 −1.00726
\(399\) 0 0
\(400\) 15.1551 0.757755
\(401\) 10.7403 0.536346 0.268173 0.963371i \(-0.413580\pi\)
0.268173 + 0.963371i \(0.413580\pi\)
\(402\) 0 0
\(403\) −33.5290 −1.67020
\(404\) −19.3095 −0.960685
\(405\) 0 0
\(406\) 0.354931 0.0176149
\(407\) −47.3397 −2.34654
\(408\) 0 0
\(409\) 26.0559 1.28838 0.644191 0.764865i \(-0.277194\pi\)
0.644191 + 0.764865i \(0.277194\pi\)
\(410\) 7.12300 0.351780
\(411\) 0 0
\(412\) −30.4144 −1.49841
\(413\) −2.97652 −0.146465
\(414\) 0 0
\(415\) −1.67731 −0.0823358
\(416\) 31.3930 1.53917
\(417\) 0 0
\(418\) −13.4166 −0.656227
\(419\) 1.36205 0.0665405 0.0332702 0.999446i \(-0.489408\pi\)
0.0332702 + 0.999446i \(0.489408\pi\)
\(420\) 0 0
\(421\) −1.93675 −0.0943912 −0.0471956 0.998886i \(-0.515028\pi\)
−0.0471956 + 0.998886i \(0.515028\pi\)
\(422\) −4.64405 −0.226069
\(423\) 0 0
\(424\) 6.50587 0.315953
\(425\) −24.1850 −1.17315
\(426\) 0 0
\(427\) 5.82287 0.281788
\(428\) 19.2492 0.930445
\(429\) 0 0
\(430\) −7.39170 −0.356459
\(431\) −27.0267 −1.30183 −0.650915 0.759151i \(-0.725615\pi\)
−0.650915 + 0.759151i \(0.725615\pi\)
\(432\) 0 0
\(433\) −38.2404 −1.83771 −0.918857 0.394590i \(-0.870887\pi\)
−0.918857 + 0.394590i \(0.870887\pi\)
\(434\) 18.0299 0.865463
\(435\) 0 0
\(436\) −48.1800 −2.30740
\(437\) 3.44207 0.164656
\(438\) 0 0
\(439\) −2.76497 −0.131965 −0.0659823 0.997821i \(-0.521018\pi\)
−0.0659823 + 0.997821i \(0.521018\pi\)
\(440\) −1.92279 −0.0916656
\(441\) 0 0
\(442\) −40.5224 −1.92746
\(443\) −14.0564 −0.667839 −0.333919 0.942602i \(-0.608371\pi\)
−0.333919 + 0.942602i \(0.608371\pi\)
\(444\) 0 0
\(445\) 5.39333 0.255668
\(446\) −38.1695 −1.80738
\(447\) 0 0
\(448\) −10.6309 −0.502263
\(449\) 14.3792 0.678598 0.339299 0.940679i \(-0.389810\pi\)
0.339299 + 0.940679i \(0.389810\pi\)
\(450\) 0 0
\(451\) −56.3531 −2.65357
\(452\) −9.87926 −0.464681
\(453\) 0 0
\(454\) −10.7385 −0.503982
\(455\) −1.50873 −0.0707303
\(456\) 0 0
\(457\) 27.8024 1.30054 0.650271 0.759703i \(-0.274655\pi\)
0.650271 + 0.759703i \(0.274655\pi\)
\(458\) −21.8955 −1.02311
\(459\) 0 0
\(460\) 3.16526 0.147581
\(461\) −21.0697 −0.981312 −0.490656 0.871353i \(-0.663243\pi\)
−0.490656 + 0.871353i \(0.663243\pi\)
\(462\) 0 0
\(463\) 2.52304 0.117256 0.0586278 0.998280i \(-0.481327\pi\)
0.0586278 + 0.998280i \(0.481327\pi\)
\(464\) 0.530659 0.0246352
\(465\) 0 0
\(466\) 36.6364 1.69715
\(467\) −21.2342 −0.982602 −0.491301 0.870990i \(-0.663479\pi\)
−0.491301 + 0.870990i \(0.663479\pi\)
\(468\) 0 0
\(469\) −14.9980 −0.692544
\(470\) 3.89972 0.179881
\(471\) 0 0
\(472\) 2.29732 0.105743
\(473\) 58.4789 2.68886
\(474\) 0 0
\(475\) 4.84935 0.222504
\(476\) 11.8160 0.541587
\(477\) 0 0
\(478\) −45.5213 −2.08210
\(479\) 9.86851 0.450904 0.225452 0.974254i \(-0.427614\pi\)
0.225452 + 0.974254i \(0.427614\pi\)
\(480\) 0 0
\(481\) 28.6692 1.30720
\(482\) −21.6575 −0.986472
\(483\) 0 0
\(484\) 71.5469 3.25213
\(485\) 5.34626 0.242761
\(486\) 0 0
\(487\) 20.7038 0.938181 0.469090 0.883150i \(-0.344582\pi\)
0.469090 + 0.883150i \(0.344582\pi\)
\(488\) −4.49416 −0.203441
\(489\) 0 0
\(490\) 0.811305 0.0366510
\(491\) 32.6041 1.47140 0.735700 0.677307i \(-0.236853\pi\)
0.735700 + 0.677307i \(0.236853\pi\)
\(492\) 0 0
\(493\) −0.846844 −0.0381399
\(494\) 8.12518 0.365569
\(495\) 0 0
\(496\) 26.9566 1.21039
\(497\) −4.24879 −0.190584
\(498\) 0 0
\(499\) 0.812534 0.0363740 0.0181870 0.999835i \(-0.494211\pi\)
0.0181870 + 0.999835i \(0.494211\pi\)
\(500\) 9.05729 0.405054
\(501\) 0 0
\(502\) 22.8145 1.01826
\(503\) 16.6285 0.741427 0.370714 0.928747i \(-0.379113\pi\)
0.370714 + 0.928747i \(0.379113\pi\)
\(504\) 0 0
\(505\) 3.16333 0.140766
\(506\) −46.1808 −2.05299
\(507\) 0 0
\(508\) −14.6899 −0.651759
\(509\) −33.8641 −1.50100 −0.750499 0.660871i \(-0.770187\pi\)
−0.750499 + 0.660871i \(0.770187\pi\)
\(510\) 0 0
\(511\) 13.5757 0.600552
\(512\) −30.0634 −1.32863
\(513\) 0 0
\(514\) −6.85866 −0.302523
\(515\) 4.98254 0.219557
\(516\) 0 0
\(517\) −30.8524 −1.35689
\(518\) −15.4166 −0.677366
\(519\) 0 0
\(520\) 1.16446 0.0510648
\(521\) −28.3645 −1.24267 −0.621336 0.783544i \(-0.713410\pi\)
−0.621336 + 0.783544i \(0.713410\pi\)
\(522\) 0 0
\(523\) −1.32743 −0.0580443 −0.0290221 0.999579i \(-0.509239\pi\)
−0.0290221 + 0.999579i \(0.509239\pi\)
\(524\) −36.8812 −1.61116
\(525\) 0 0
\(526\) −37.6320 −1.64083
\(527\) −43.0183 −1.87391
\(528\) 0 0
\(529\) −11.1522 −0.484878
\(530\) −6.83876 −0.297057
\(531\) 0 0
\(532\) −2.36924 −0.102720
\(533\) 34.1278 1.47824
\(534\) 0 0
\(535\) −3.15344 −0.136335
\(536\) 11.5757 0.499992
\(537\) 0 0
\(538\) −1.85352 −0.0799110
\(539\) −6.41859 −0.276468
\(540\) 0 0
\(541\) −19.0875 −0.820637 −0.410319 0.911942i \(-0.634583\pi\)
−0.410319 + 0.911942i \(0.634583\pi\)
\(542\) −15.5499 −0.667925
\(543\) 0 0
\(544\) 40.2777 1.72689
\(545\) 7.89294 0.338096
\(546\) 0 0
\(547\) −12.7660 −0.545834 −0.272917 0.962038i \(-0.587988\pi\)
−0.272917 + 0.962038i \(0.587988\pi\)
\(548\) −25.4034 −1.08518
\(549\) 0 0
\(550\) −65.0618 −2.77425
\(551\) 0.169801 0.00723377
\(552\) 0 0
\(553\) −1.01431 −0.0431328
\(554\) 15.4720 0.657341
\(555\) 0 0
\(556\) 23.9262 1.01470
\(557\) −23.1620 −0.981405 −0.490703 0.871327i \(-0.663260\pi\)
−0.490703 + 0.871327i \(0.663260\pi\)
\(558\) 0 0
\(559\) −35.4152 −1.49790
\(560\) 1.21299 0.0512581
\(561\) 0 0
\(562\) −4.14264 −0.174747
\(563\) 9.19938 0.387708 0.193854 0.981030i \(-0.437901\pi\)
0.193854 + 0.981030i \(0.437901\pi\)
\(564\) 0 0
\(565\) 1.61844 0.0680883
\(566\) −16.3777 −0.688405
\(567\) 0 0
\(568\) 3.27927 0.137595
\(569\) −42.8405 −1.79597 −0.897984 0.440028i \(-0.854969\pi\)
−0.897984 + 0.440028i \(0.854969\pi\)
\(570\) 0 0
\(571\) 10.6358 0.445095 0.222547 0.974922i \(-0.428563\pi\)
0.222547 + 0.974922i \(0.428563\pi\)
\(572\) −59.1124 −2.47161
\(573\) 0 0
\(574\) −18.3519 −0.765994
\(575\) 16.6918 0.696096
\(576\) 0 0
\(577\) 45.7190 1.90331 0.951653 0.307176i \(-0.0993842\pi\)
0.951653 + 0.307176i \(0.0993842\pi\)
\(578\) −16.4564 −0.684494
\(579\) 0 0
\(580\) 0.156146 0.00648361
\(581\) 4.32147 0.179285
\(582\) 0 0
\(583\) 54.1044 2.24078
\(584\) −10.4779 −0.433577
\(585\) 0 0
\(586\) 8.00946 0.330868
\(587\) −13.8685 −0.572414 −0.286207 0.958168i \(-0.592395\pi\)
−0.286207 + 0.958168i \(0.592395\pi\)
\(588\) 0 0
\(589\) 8.62562 0.355412
\(590\) −2.41487 −0.0994186
\(591\) 0 0
\(592\) −23.0495 −0.947327
\(593\) 31.7063 1.30202 0.651011 0.759068i \(-0.274345\pi\)
0.651011 + 0.759068i \(0.274345\pi\)
\(594\) 0 0
\(595\) −1.93573 −0.0793570
\(596\) −23.1067 −0.946487
\(597\) 0 0
\(598\) 27.9674 1.14367
\(599\) 3.91479 0.159954 0.0799771 0.996797i \(-0.474515\pi\)
0.0799771 + 0.996797i \(0.474515\pi\)
\(600\) 0 0
\(601\) 7.68790 0.313596 0.156798 0.987631i \(-0.449883\pi\)
0.156798 + 0.987631i \(0.449883\pi\)
\(602\) 19.0442 0.776184
\(603\) 0 0
\(604\) −5.23465 −0.212995
\(605\) −11.7210 −0.476525
\(606\) 0 0
\(607\) 4.11499 0.167022 0.0835112 0.996507i \(-0.473387\pi\)
0.0835112 + 0.996507i \(0.473387\pi\)
\(608\) −8.07611 −0.327529
\(609\) 0 0
\(610\) 4.72412 0.191274
\(611\) 18.6844 0.755890
\(612\) 0 0
\(613\) 14.0997 0.569482 0.284741 0.958604i \(-0.408092\pi\)
0.284741 + 0.958604i \(0.408092\pi\)
\(614\) −3.05764 −0.123396
\(615\) 0 0
\(616\) 4.95395 0.199600
\(617\) −26.1748 −1.05376 −0.526879 0.849941i \(-0.676638\pi\)
−0.526879 + 0.849941i \(0.676638\pi\)
\(618\) 0 0
\(619\) 13.8200 0.555473 0.277736 0.960657i \(-0.410416\pi\)
0.277736 + 0.960657i \(0.410416\pi\)
\(620\) 7.93196 0.318555
\(621\) 0 0
\(622\) −25.1278 −1.00753
\(623\) −13.8955 −0.556713
\(624\) 0 0
\(625\) 22.7630 0.910519
\(626\) −11.2235 −0.448580
\(627\) 0 0
\(628\) −24.5262 −0.978702
\(629\) 36.7831 1.46664
\(630\) 0 0
\(631\) 26.3799 1.05017 0.525084 0.851050i \(-0.324034\pi\)
0.525084 + 0.851050i \(0.324034\pi\)
\(632\) 0.782857 0.0311404
\(633\) 0 0
\(634\) −26.4783 −1.05159
\(635\) 2.40653 0.0955001
\(636\) 0 0
\(637\) 3.88714 0.154014
\(638\) −2.27815 −0.0901930
\(639\) 0 0
\(640\) −2.35569 −0.0931168
\(641\) 43.5850 1.72151 0.860753 0.509024i \(-0.169993\pi\)
0.860753 + 0.509024i \(0.169993\pi\)
\(642\) 0 0
\(643\) −37.6911 −1.48639 −0.743195 0.669075i \(-0.766691\pi\)
−0.743195 + 0.669075i \(0.766691\pi\)
\(644\) −8.15508 −0.321355
\(645\) 0 0
\(646\) 10.4247 0.410156
\(647\) 41.8752 1.64628 0.823142 0.567835i \(-0.192219\pi\)
0.823142 + 0.567835i \(0.192219\pi\)
\(648\) 0 0
\(649\) 19.1051 0.749940
\(650\) 39.4019 1.54547
\(651\) 0 0
\(652\) −20.1955 −0.790919
\(653\) −20.9665 −0.820484 −0.410242 0.911977i \(-0.634556\pi\)
−0.410242 + 0.911977i \(0.634556\pi\)
\(654\) 0 0
\(655\) 6.04196 0.236079
\(656\) −27.4381 −1.07128
\(657\) 0 0
\(658\) −10.0474 −0.391687
\(659\) −19.0359 −0.741532 −0.370766 0.928726i \(-0.620905\pi\)
−0.370766 + 0.928726i \(0.620905\pi\)
\(660\) 0 0
\(661\) −18.6957 −0.727178 −0.363589 0.931559i \(-0.618449\pi\)
−0.363589 + 0.931559i \(0.618449\pi\)
\(662\) −31.8924 −1.23953
\(663\) 0 0
\(664\) −3.33536 −0.129437
\(665\) 0.388134 0.0150512
\(666\) 0 0
\(667\) 0.584467 0.0226306
\(668\) −16.5800 −0.641498
\(669\) 0 0
\(670\) −12.1680 −0.470090
\(671\) −37.3746 −1.44283
\(672\) 0 0
\(673\) 42.1036 1.62297 0.811487 0.584370i \(-0.198658\pi\)
0.811487 + 0.584370i \(0.198658\pi\)
\(674\) 40.8395 1.57308
\(675\) 0 0
\(676\) 4.99875 0.192259
\(677\) 41.1045 1.57977 0.789887 0.613252i \(-0.210139\pi\)
0.789887 + 0.613252i \(0.210139\pi\)
\(678\) 0 0
\(679\) −13.7743 −0.528608
\(680\) 1.49402 0.0572930
\(681\) 0 0
\(682\) −115.726 −4.43140
\(683\) 2.64451 0.101189 0.0505947 0.998719i \(-0.483888\pi\)
0.0505947 + 0.998719i \(0.483888\pi\)
\(684\) 0 0
\(685\) 4.16164 0.159008
\(686\) −2.09027 −0.0798070
\(687\) 0 0
\(688\) 28.4731 1.08553
\(689\) −32.7660 −1.24828
\(690\) 0 0
\(691\) 8.59120 0.326825 0.163412 0.986558i \(-0.447750\pi\)
0.163412 + 0.986558i \(0.447750\pi\)
\(692\) −34.6865 −1.31858
\(693\) 0 0
\(694\) −37.1602 −1.41058
\(695\) −3.91964 −0.148681
\(696\) 0 0
\(697\) 43.7866 1.65854
\(698\) −28.6340 −1.08381
\(699\) 0 0
\(700\) −11.4893 −0.434254
\(701\) −24.5073 −0.925626 −0.462813 0.886456i \(-0.653160\pi\)
−0.462813 + 0.886456i \(0.653160\pi\)
\(702\) 0 0
\(703\) −7.37540 −0.278168
\(704\) 68.2354 2.57172
\(705\) 0 0
\(706\) 18.4156 0.693079
\(707\) −8.15009 −0.306516
\(708\) 0 0
\(709\) 30.1710 1.13310 0.566548 0.824029i \(-0.308278\pi\)
0.566548 + 0.824029i \(0.308278\pi\)
\(710\) −3.44706 −0.129366
\(711\) 0 0
\(712\) 10.7248 0.401927
\(713\) 29.6899 1.11190
\(714\) 0 0
\(715\) 9.68391 0.362158
\(716\) 30.5653 1.14228
\(717\) 0 0
\(718\) −19.7491 −0.737029
\(719\) −22.5815 −0.842149 −0.421074 0.907026i \(-0.638347\pi\)
−0.421074 + 0.907026i \(0.638347\pi\)
\(720\) 0 0
\(721\) −12.8372 −0.478081
\(722\) −2.09027 −0.0777919
\(723\) 0 0
\(724\) −29.3542 −1.09094
\(725\) 0.823426 0.0305813
\(726\) 0 0
\(727\) 16.6904 0.619013 0.309507 0.950897i \(-0.399836\pi\)
0.309507 + 0.950897i \(0.399836\pi\)
\(728\) −3.00014 −0.111193
\(729\) 0 0
\(730\) 11.0140 0.407646
\(731\) −45.4383 −1.68060
\(732\) 0 0
\(733\) 23.0956 0.853055 0.426528 0.904475i \(-0.359737\pi\)
0.426528 + 0.904475i \(0.359737\pi\)
\(734\) 2.26666 0.0836640
\(735\) 0 0
\(736\) −27.7985 −1.02467
\(737\) 96.2660 3.54601
\(738\) 0 0
\(739\) −23.6754 −0.870913 −0.435456 0.900210i \(-0.643413\pi\)
−0.435456 + 0.900210i \(0.643413\pi\)
\(740\) −6.78229 −0.249322
\(741\) 0 0
\(742\) 17.6196 0.646836
\(743\) 8.20020 0.300836 0.150418 0.988622i \(-0.451938\pi\)
0.150418 + 0.988622i \(0.451938\pi\)
\(744\) 0 0
\(745\) 3.78539 0.138686
\(746\) 7.62889 0.279313
\(747\) 0 0
\(748\) −75.8422 −2.77307
\(749\) 8.12463 0.296867
\(750\) 0 0
\(751\) −53.7070 −1.95980 −0.979899 0.199494i \(-0.936070\pi\)
−0.979899 + 0.199494i \(0.936070\pi\)
\(752\) −15.0219 −0.547791
\(753\) 0 0
\(754\) 1.37967 0.0502444
\(755\) 0.857552 0.0312095
\(756\) 0 0
\(757\) 48.5136 1.76326 0.881628 0.471945i \(-0.156448\pi\)
0.881628 + 0.471945i \(0.156448\pi\)
\(758\) −26.9324 −0.978230
\(759\) 0 0
\(760\) −0.299567 −0.0108664
\(761\) −0.788644 −0.0285883 −0.0142942 0.999898i \(-0.504550\pi\)
−0.0142942 + 0.999898i \(0.504550\pi\)
\(762\) 0 0
\(763\) −20.3356 −0.736199
\(764\) −59.3599 −2.14757
\(765\) 0 0
\(766\) −37.0484 −1.33861
\(767\) −11.5702 −0.417774
\(768\) 0 0
\(769\) 9.62974 0.347257 0.173629 0.984811i \(-0.444451\pi\)
0.173629 + 0.984811i \(0.444451\pi\)
\(770\) −5.20743 −0.187663
\(771\) 0 0
\(772\) 20.8479 0.750331
\(773\) 35.2618 1.26828 0.634139 0.773219i \(-0.281355\pi\)
0.634139 + 0.773219i \(0.281355\pi\)
\(774\) 0 0
\(775\) 41.8287 1.50253
\(776\) 10.6312 0.381637
\(777\) 0 0
\(778\) 21.8955 0.784993
\(779\) −8.77968 −0.314565
\(780\) 0 0
\(781\) 27.2712 0.975841
\(782\) 35.8827 1.28316
\(783\) 0 0
\(784\) −3.12518 −0.111614
\(785\) 4.01793 0.143406
\(786\) 0 0
\(787\) −40.3469 −1.43821 −0.719106 0.694900i \(-0.755449\pi\)
−0.719106 + 0.694900i \(0.755449\pi\)
\(788\) 11.3926 0.405845
\(789\) 0 0
\(790\) −0.822915 −0.0292780
\(791\) −4.16980 −0.148261
\(792\) 0 0
\(793\) 22.6343 0.803767
\(794\) 71.8383 2.54945
\(795\) 0 0
\(796\) 22.7766 0.807294
\(797\) −5.29192 −0.187449 −0.0937247 0.995598i \(-0.529877\pi\)
−0.0937247 + 0.995598i \(0.529877\pi\)
\(798\) 0 0
\(799\) 23.9724 0.848083
\(800\) −39.1639 −1.38465
\(801\) 0 0
\(802\) −22.4502 −0.792744
\(803\) −87.1365 −3.07498
\(804\) 0 0
\(805\) 1.33598 0.0470872
\(806\) 70.0847 2.46863
\(807\) 0 0
\(808\) 6.29034 0.221294
\(809\) 54.6544 1.92155 0.960774 0.277333i \(-0.0894507\pi\)
0.960774 + 0.277333i \(0.0894507\pi\)
\(810\) 0 0
\(811\) 34.1414 1.19887 0.599433 0.800425i \(-0.295393\pi\)
0.599433 + 0.800425i \(0.295393\pi\)
\(812\) −0.402300 −0.0141180
\(813\) 0 0
\(814\) 98.9528 3.46829
\(815\) 3.30847 0.115891
\(816\) 0 0
\(817\) 9.11087 0.318749
\(818\) −54.4640 −1.90429
\(819\) 0 0
\(820\) −8.07363 −0.281944
\(821\) 47.8638 1.67046 0.835229 0.549902i \(-0.185335\pi\)
0.835229 + 0.549902i \(0.185335\pi\)
\(822\) 0 0
\(823\) −8.87160 −0.309244 −0.154622 0.987974i \(-0.549416\pi\)
−0.154622 + 0.987974i \(0.549416\pi\)
\(824\) 9.90789 0.345158
\(825\) 0 0
\(826\) 6.22174 0.216482
\(827\) −22.8022 −0.792910 −0.396455 0.918054i \(-0.629760\pi\)
−0.396455 + 0.918054i \(0.629760\pi\)
\(828\) 0 0
\(829\) −17.9774 −0.624381 −0.312190 0.950020i \(-0.601063\pi\)
−0.312190 + 0.950020i \(0.601063\pi\)
\(830\) 3.50603 0.121696
\(831\) 0 0
\(832\) −41.3238 −1.43265
\(833\) 4.98727 0.172799
\(834\) 0 0
\(835\) 2.71616 0.0939967
\(836\) 15.2072 0.525951
\(837\) 0 0
\(838\) −2.84705 −0.0983499
\(839\) 41.0481 1.41714 0.708569 0.705641i \(-0.249341\pi\)
0.708569 + 0.705641i \(0.249341\pi\)
\(840\) 0 0
\(841\) −28.9712 −0.999006
\(842\) 4.04833 0.139515
\(843\) 0 0
\(844\) 5.26384 0.181189
\(845\) −0.818905 −0.0281712
\(846\) 0 0
\(847\) 30.1983 1.03762
\(848\) 26.3432 0.904629
\(849\) 0 0
\(850\) 50.5533 1.73396
\(851\) −25.3866 −0.870242
\(852\) 0 0
\(853\) 10.2504 0.350966 0.175483 0.984482i \(-0.443851\pi\)
0.175483 + 0.984482i \(0.443851\pi\)
\(854\) −12.1714 −0.416496
\(855\) 0 0
\(856\) −6.27069 −0.214328
\(857\) −35.3195 −1.20649 −0.603246 0.797555i \(-0.706126\pi\)
−0.603246 + 0.797555i \(0.706126\pi\)
\(858\) 0 0
\(859\) −29.0481 −0.991109 −0.495555 0.868577i \(-0.665035\pi\)
−0.495555 + 0.868577i \(0.665035\pi\)
\(860\) 8.37819 0.285694
\(861\) 0 0
\(862\) 56.4931 1.92416
\(863\) −37.0768 −1.26211 −0.631054 0.775739i \(-0.717378\pi\)
−0.631054 + 0.775739i \(0.717378\pi\)
\(864\) 0 0
\(865\) 5.68241 0.193208
\(866\) 79.9328 2.71623
\(867\) 0 0
\(868\) −20.4362 −0.693649
\(869\) 6.51043 0.220851
\(870\) 0 0
\(871\) −58.2994 −1.97540
\(872\) 15.6953 0.531510
\(873\) 0 0
\(874\) −7.19485 −0.243370
\(875\) 3.82287 0.129236
\(876\) 0 0
\(877\) −40.8400 −1.37907 −0.689535 0.724253i \(-0.742185\pi\)
−0.689535 + 0.724253i \(0.742185\pi\)
\(878\) 5.77954 0.195050
\(879\) 0 0
\(880\) −7.78567 −0.262455
\(881\) 20.8316 0.701835 0.350918 0.936406i \(-0.385870\pi\)
0.350918 + 0.936406i \(0.385870\pi\)
\(882\) 0 0
\(883\) 17.8077 0.599276 0.299638 0.954053i \(-0.403134\pi\)
0.299638 + 0.954053i \(0.403134\pi\)
\(884\) 45.9306 1.54481
\(885\) 0 0
\(886\) 29.3817 0.987097
\(887\) 12.0913 0.405985 0.202993 0.979180i \(-0.434933\pi\)
0.202993 + 0.979180i \(0.434933\pi\)
\(888\) 0 0
\(889\) −6.20025 −0.207950
\(890\) −11.2735 −0.377890
\(891\) 0 0
\(892\) 43.2636 1.44857
\(893\) −4.80672 −0.160851
\(894\) 0 0
\(895\) −5.00727 −0.167375
\(896\) 6.06927 0.202760
\(897\) 0 0
\(898\) −30.0565 −1.00300
\(899\) 1.46464 0.0488485
\(900\) 0 0
\(901\) −42.0393 −1.40053
\(902\) 117.793 3.92209
\(903\) 0 0
\(904\) 3.21831 0.107039
\(905\) 4.80886 0.159852
\(906\) 0 0
\(907\) −48.9499 −1.62536 −0.812678 0.582713i \(-0.801991\pi\)
−0.812678 + 0.582713i \(0.801991\pi\)
\(908\) 12.1716 0.403930
\(909\) 0 0
\(910\) 3.15366 0.104543
\(911\) −27.4903 −0.910796 −0.455398 0.890288i \(-0.650503\pi\)
−0.455398 + 0.890288i \(0.650503\pi\)
\(912\) 0 0
\(913\) −27.7377 −0.917985
\(914\) −58.1146 −1.92226
\(915\) 0 0
\(916\) 24.8177 0.820001
\(917\) −15.5667 −0.514057
\(918\) 0 0
\(919\) 26.3177 0.868141 0.434070 0.900879i \(-0.357077\pi\)
0.434070 + 0.900879i \(0.357077\pi\)
\(920\) −1.03113 −0.0339953
\(921\) 0 0
\(922\) 44.0413 1.45042
\(923\) −16.5156 −0.543618
\(924\) 0 0
\(925\) −35.7659 −1.17598
\(926\) −5.27384 −0.173309
\(927\) 0 0
\(928\) −1.37133 −0.0450162
\(929\) −27.5260 −0.903099 −0.451550 0.892246i \(-0.649129\pi\)
−0.451550 + 0.892246i \(0.649129\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) −41.5258 −1.36022
\(933\) 0 0
\(934\) 44.3853 1.45233
\(935\) 12.4246 0.406329
\(936\) 0 0
\(937\) −18.9196 −0.618075 −0.309038 0.951050i \(-0.600007\pi\)
−0.309038 + 0.951050i \(0.600007\pi\)
\(938\) 31.3499 1.02361
\(939\) 0 0
\(940\) −4.42017 −0.144170
\(941\) −33.7139 −1.09904 −0.549521 0.835480i \(-0.685190\pi\)
−0.549521 + 0.835480i \(0.685190\pi\)
\(942\) 0 0
\(943\) −30.2202 −0.984106
\(944\) 9.30217 0.302760
\(945\) 0 0
\(946\) −122.237 −3.97426
\(947\) 0.655109 0.0212882 0.0106441 0.999943i \(-0.496612\pi\)
0.0106441 + 0.999943i \(0.496612\pi\)
\(948\) 0 0
\(949\) 52.7705 1.71300
\(950\) −10.1365 −0.328870
\(951\) 0 0
\(952\) −3.84924 −0.124754
\(953\) −33.6974 −1.09157 −0.545783 0.837927i \(-0.683768\pi\)
−0.545783 + 0.837927i \(0.683768\pi\)
\(954\) 0 0
\(955\) 9.72446 0.314676
\(956\) 51.5966 1.66875
\(957\) 0 0
\(958\) −20.6279 −0.666456
\(959\) −10.7222 −0.346237
\(960\) 0 0
\(961\) 43.4013 1.40004
\(962\) −59.9265 −1.93211
\(963\) 0 0
\(964\) 24.5479 0.790635
\(965\) −3.41534 −0.109944
\(966\) 0 0
\(967\) −31.1237 −1.00087 −0.500436 0.865774i \(-0.666827\pi\)
−0.500436 + 0.865774i \(0.666827\pi\)
\(968\) −23.3074 −0.749128
\(969\) 0 0
\(970\) −11.1751 −0.358812
\(971\) −0.890148 −0.0285662 −0.0142831 0.999898i \(-0.504547\pi\)
−0.0142831 + 0.999898i \(0.504547\pi\)
\(972\) 0 0
\(973\) 10.0987 0.323749
\(974\) −43.2767 −1.38667
\(975\) 0 0
\(976\) −18.1975 −0.582488
\(977\) 28.1686 0.901192 0.450596 0.892728i \(-0.351211\pi\)
0.450596 + 0.892728i \(0.351211\pi\)
\(978\) 0 0
\(979\) 89.1898 2.85052
\(980\) −0.919582 −0.0293750
\(981\) 0 0
\(982\) −68.1514 −2.17480
\(983\) 32.9894 1.05220 0.526099 0.850424i \(-0.323654\pi\)
0.526099 + 0.850424i \(0.323654\pi\)
\(984\) 0 0
\(985\) −1.86636 −0.0594673
\(986\) 1.77013 0.0563726
\(987\) 0 0
\(988\) −9.20957 −0.292995
\(989\) 31.3602 0.997197
\(990\) 0 0
\(991\) 32.9379 1.04631 0.523154 0.852238i \(-0.324755\pi\)
0.523154 + 0.852238i \(0.324755\pi\)
\(992\) −69.6614 −2.21175
\(993\) 0 0
\(994\) 8.88112 0.281692
\(995\) −3.73130 −0.118290
\(996\) 0 0
\(997\) −36.5637 −1.15798 −0.578992 0.815334i \(-0.696554\pi\)
−0.578992 + 0.815334i \(0.696554\pi\)
\(998\) −1.69842 −0.0537625
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1197.2.a.o.1.2 5
3.2 odd 2 399.2.a.g.1.4 5
7.6 odd 2 8379.2.a.cb.1.2 5
12.11 even 2 6384.2.a.cf.1.3 5
15.14 odd 2 9975.2.a.bp.1.2 5
21.20 even 2 2793.2.a.bg.1.4 5
57.56 even 2 7581.2.a.w.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.a.g.1.4 5 3.2 odd 2
1197.2.a.o.1.2 5 1.1 even 1 trivial
2793.2.a.bg.1.4 5 21.20 even 2
6384.2.a.cf.1.3 5 12.11 even 2
7581.2.a.w.1.2 5 57.56 even 2
8379.2.a.cb.1.2 5 7.6 odd 2
9975.2.a.bp.1.2 5 15.14 odd 2