Properties

Label 1254.2.a.p.1.1
Level $1254$
Weight $2$
Character 1254.1
Self dual yes
Analytic conductor $10.013$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1254,2,Mod(1,1254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1254.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1254 = 2 \cdot 3 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.0132404135\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.80194\) of defining polynomial
Character \(\chi\) \(=\) 1254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -3.60388 q^{5} +1.00000 q^{6} +4.49396 q^{7} -1.00000 q^{8} +1.00000 q^{9} +3.60388 q^{10} -1.00000 q^{11} -1.00000 q^{12} -5.38404 q^{13} -4.49396 q^{14} +3.60388 q^{15} +1.00000 q^{16} +5.20775 q^{17} -1.00000 q^{18} -1.00000 q^{19} -3.60388 q^{20} -4.49396 q^{21} +1.00000 q^{22} -3.38404 q^{23} +1.00000 q^{24} +7.98792 q^{25} +5.38404 q^{26} -1.00000 q^{27} +4.49396 q^{28} +2.98792 q^{29} -3.60388 q^{30} -0.670251 q^{31} -1.00000 q^{32} +1.00000 q^{33} -5.20775 q^{34} -16.1957 q^{35} +1.00000 q^{36} +4.89008 q^{37} +1.00000 q^{38} +5.38404 q^{39} +3.60388 q^{40} +1.20775 q^{41} +4.49396 q^{42} +12.9879 q^{43} -1.00000 q^{44} -3.60388 q^{45} +3.38404 q^{46} -11.0315 q^{47} -1.00000 q^{48} +13.1957 q^{49} -7.98792 q^{50} -5.20775 q^{51} -5.38404 q^{52} -8.71379 q^{53} +1.00000 q^{54} +3.60388 q^{55} -4.49396 q^{56} +1.00000 q^{57} -2.98792 q^{58} -8.98792 q^{59} +3.60388 q^{60} -13.7017 q^{61} +0.670251 q^{62} +4.49396 q^{63} +1.00000 q^{64} +19.4034 q^{65} -1.00000 q^{66} -14.4155 q^{67} +5.20775 q^{68} +3.38404 q^{69} +16.1957 q^{70} -10.2741 q^{71} -1.00000 q^{72} -14.1957 q^{73} -4.89008 q^{74} -7.98792 q^{75} -1.00000 q^{76} -4.49396 q^{77} -5.38404 q^{78} -5.60388 q^{79} -3.60388 q^{80} +1.00000 q^{81} -1.20775 q^{82} +14.4155 q^{83} -4.49396 q^{84} -18.7681 q^{85} -12.9879 q^{86} -2.98792 q^{87} +1.00000 q^{88} -1.01208 q^{89} +3.60388 q^{90} -24.1957 q^{91} -3.38404 q^{92} +0.670251 q^{93} +11.0315 q^{94} +3.60388 q^{95} +1.00000 q^{96} -1.01208 q^{97} -13.1957 q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - 3 q^{3} + 3 q^{4} - 2 q^{5} + 3 q^{6} + 4 q^{7} - 3 q^{8} + 3 q^{9} + 2 q^{10} - 3 q^{11} - 3 q^{12} - 6 q^{13} - 4 q^{14} + 2 q^{15} + 3 q^{16} - 2 q^{17} - 3 q^{18} - 3 q^{19} - 2 q^{20}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −3.60388 −1.61170 −0.805851 0.592118i \(-0.798292\pi\)
−0.805851 + 0.592118i \(0.798292\pi\)
\(6\) 1.00000 0.408248
\(7\) 4.49396 1.69856 0.849278 0.527945i \(-0.177037\pi\)
0.849278 + 0.527945i \(0.177037\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 3.60388 1.13965
\(11\) −1.00000 −0.301511
\(12\) −1.00000 −0.288675
\(13\) −5.38404 −1.49326 −0.746632 0.665237i \(-0.768331\pi\)
−0.746632 + 0.665237i \(0.768331\pi\)
\(14\) −4.49396 −1.20106
\(15\) 3.60388 0.930517
\(16\) 1.00000 0.250000
\(17\) 5.20775 1.26307 0.631533 0.775349i \(-0.282426\pi\)
0.631533 + 0.775349i \(0.282426\pi\)
\(18\) −1.00000 −0.235702
\(19\) −1.00000 −0.229416
\(20\) −3.60388 −0.805851
\(21\) −4.49396 −0.980662
\(22\) 1.00000 0.213201
\(23\) −3.38404 −0.705622 −0.352811 0.935695i \(-0.614774\pi\)
−0.352811 + 0.935695i \(0.614774\pi\)
\(24\) 1.00000 0.204124
\(25\) 7.98792 1.59758
\(26\) 5.38404 1.05590
\(27\) −1.00000 −0.192450
\(28\) 4.49396 0.849278
\(29\) 2.98792 0.554843 0.277421 0.960748i \(-0.410520\pi\)
0.277421 + 0.960748i \(0.410520\pi\)
\(30\) −3.60388 −0.657975
\(31\) −0.670251 −0.120381 −0.0601903 0.998187i \(-0.519171\pi\)
−0.0601903 + 0.998187i \(0.519171\pi\)
\(32\) −1.00000 −0.176777
\(33\) 1.00000 0.174078
\(34\) −5.20775 −0.893122
\(35\) −16.1957 −2.73757
\(36\) 1.00000 0.166667
\(37\) 4.89008 0.803925 0.401962 0.915656i \(-0.368328\pi\)
0.401962 + 0.915656i \(0.368328\pi\)
\(38\) 1.00000 0.162221
\(39\) 5.38404 0.862137
\(40\) 3.60388 0.569823
\(41\) 1.20775 0.188619 0.0943095 0.995543i \(-0.469936\pi\)
0.0943095 + 0.995543i \(0.469936\pi\)
\(42\) 4.49396 0.693433
\(43\) 12.9879 1.98064 0.990319 0.138807i \(-0.0443267\pi\)
0.990319 + 0.138807i \(0.0443267\pi\)
\(44\) −1.00000 −0.150756
\(45\) −3.60388 −0.537234
\(46\) 3.38404 0.498950
\(47\) −11.0315 −1.60910 −0.804552 0.593882i \(-0.797594\pi\)
−0.804552 + 0.593882i \(0.797594\pi\)
\(48\) −1.00000 −0.144338
\(49\) 13.1957 1.88510
\(50\) −7.98792 −1.12966
\(51\) −5.20775 −0.729231
\(52\) −5.38404 −0.746632
\(53\) −8.71379 −1.19693 −0.598466 0.801148i \(-0.704223\pi\)
−0.598466 + 0.801148i \(0.704223\pi\)
\(54\) 1.00000 0.136083
\(55\) 3.60388 0.485946
\(56\) −4.49396 −0.600531
\(57\) 1.00000 0.132453
\(58\) −2.98792 −0.392333
\(59\) −8.98792 −1.17013 −0.585064 0.810987i \(-0.698930\pi\)
−0.585064 + 0.810987i \(0.698930\pi\)
\(60\) 3.60388 0.465258
\(61\) −13.7017 −1.75432 −0.877162 0.480194i \(-0.840566\pi\)
−0.877162 + 0.480194i \(0.840566\pi\)
\(62\) 0.670251 0.0851220
\(63\) 4.49396 0.566186
\(64\) 1.00000 0.125000
\(65\) 19.4034 2.40670
\(66\) −1.00000 −0.123091
\(67\) −14.4155 −1.76113 −0.880567 0.473922i \(-0.842838\pi\)
−0.880567 + 0.473922i \(0.842838\pi\)
\(68\) 5.20775 0.631533
\(69\) 3.38404 0.407391
\(70\) 16.1957 1.93575
\(71\) −10.2741 −1.21931 −0.609657 0.792665i \(-0.708693\pi\)
−0.609657 + 0.792665i \(0.708693\pi\)
\(72\) −1.00000 −0.117851
\(73\) −14.1957 −1.66148 −0.830739 0.556663i \(-0.812082\pi\)
−0.830739 + 0.556663i \(0.812082\pi\)
\(74\) −4.89008 −0.568461
\(75\) −7.98792 −0.922365
\(76\) −1.00000 −0.114708
\(77\) −4.49396 −0.512134
\(78\) −5.38404 −0.609623
\(79\) −5.60388 −0.630485 −0.315243 0.949011i \(-0.602086\pi\)
−0.315243 + 0.949011i \(0.602086\pi\)
\(80\) −3.60388 −0.402926
\(81\) 1.00000 0.111111
\(82\) −1.20775 −0.133374
\(83\) 14.4155 1.58231 0.791153 0.611618i \(-0.209481\pi\)
0.791153 + 0.611618i \(0.209481\pi\)
\(84\) −4.49396 −0.490331
\(85\) −18.7681 −2.03568
\(86\) −12.9879 −1.40052
\(87\) −2.98792 −0.320338
\(88\) 1.00000 0.106600
\(89\) −1.01208 −0.107280 −0.0536402 0.998560i \(-0.517082\pi\)
−0.0536402 + 0.998560i \(0.517082\pi\)
\(90\) 3.60388 0.379882
\(91\) −24.1957 −2.53640
\(92\) −3.38404 −0.352811
\(93\) 0.670251 0.0695018
\(94\) 11.0315 1.13781
\(95\) 3.60388 0.369750
\(96\) 1.00000 0.102062
\(97\) −1.01208 −0.102761 −0.0513807 0.998679i \(-0.516362\pi\)
−0.0513807 + 0.998679i \(0.516362\pi\)
\(98\) −13.1957 −1.33296
\(99\) −1.00000 −0.100504
\(100\) 7.98792 0.798792
\(101\) −3.90217 −0.388280 −0.194140 0.980974i \(-0.562192\pi\)
−0.194140 + 0.980974i \(0.562192\pi\)
\(102\) 5.20775 0.515644
\(103\) −18.2935 −1.80251 −0.901256 0.433286i \(-0.857354\pi\)
−0.901256 + 0.433286i \(0.857354\pi\)
\(104\) 5.38404 0.527949
\(105\) 16.1957 1.58054
\(106\) 8.71379 0.846358
\(107\) −0.792249 −0.0765896 −0.0382948 0.999266i \(-0.512193\pi\)
−0.0382948 + 0.999266i \(0.512193\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 10.3720 0.993454 0.496727 0.867907i \(-0.334535\pi\)
0.496727 + 0.867907i \(0.334535\pi\)
\(110\) −3.60388 −0.343616
\(111\) −4.89008 −0.464146
\(112\) 4.49396 0.424639
\(113\) −5.64742 −0.531264 −0.265632 0.964074i \(-0.585581\pi\)
−0.265632 + 0.964074i \(0.585581\pi\)
\(114\) −1.00000 −0.0936586
\(115\) 12.1957 1.13725
\(116\) 2.98792 0.277421
\(117\) −5.38404 −0.497755
\(118\) 8.98792 0.827405
\(119\) 23.4034 2.14539
\(120\) −3.60388 −0.328987
\(121\) 1.00000 0.0909091
\(122\) 13.7017 1.24049
\(123\) −1.20775 −0.108899
\(124\) −0.670251 −0.0601903
\(125\) −10.7681 −0.963127
\(126\) −4.49396 −0.400354
\(127\) 14.5918 1.29481 0.647406 0.762145i \(-0.275854\pi\)
0.647406 + 0.762145i \(0.275854\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −12.9879 −1.14352
\(130\) −19.4034 −1.70179
\(131\) −14.4155 −1.25949 −0.629744 0.776803i \(-0.716840\pi\)
−0.629744 + 0.776803i \(0.716840\pi\)
\(132\) 1.00000 0.0870388
\(133\) −4.49396 −0.389676
\(134\) 14.4155 1.24531
\(135\) 3.60388 0.310172
\(136\) −5.20775 −0.446561
\(137\) 0.219833 0.0187816 0.00939078 0.999956i \(-0.497011\pi\)
0.00939078 + 0.999956i \(0.497011\pi\)
\(138\) −3.38404 −0.288069
\(139\) −4.43967 −0.376567 −0.188284 0.982115i \(-0.560292\pi\)
−0.188284 + 0.982115i \(0.560292\pi\)
\(140\) −16.1957 −1.36878
\(141\) 11.0315 0.929016
\(142\) 10.2741 0.862186
\(143\) 5.38404 0.450236
\(144\) 1.00000 0.0833333
\(145\) −10.7681 −0.894241
\(146\) 14.1957 1.17484
\(147\) −13.1957 −1.08836
\(148\) 4.89008 0.401962
\(149\) −7.10992 −0.582467 −0.291234 0.956652i \(-0.594066\pi\)
−0.291234 + 0.956652i \(0.594066\pi\)
\(150\) 7.98792 0.652211
\(151\) −20.0194 −1.62915 −0.814577 0.580056i \(-0.803031\pi\)
−0.814577 + 0.580056i \(0.803031\pi\)
\(152\) 1.00000 0.0811107
\(153\) 5.20775 0.421022
\(154\) 4.49396 0.362134
\(155\) 2.41550 0.194018
\(156\) 5.38404 0.431068
\(157\) −12.3284 −0.983915 −0.491958 0.870619i \(-0.663718\pi\)
−0.491958 + 0.870619i \(0.663718\pi\)
\(158\) 5.60388 0.445820
\(159\) 8.71379 0.691049
\(160\) 3.60388 0.284911
\(161\) −15.2078 −1.19854
\(162\) −1.00000 −0.0785674
\(163\) 10.7681 0.843422 0.421711 0.906730i \(-0.361430\pi\)
0.421711 + 0.906730i \(0.361430\pi\)
\(164\) 1.20775 0.0943095
\(165\) −3.60388 −0.280561
\(166\) −14.4155 −1.11886
\(167\) 24.7439 1.91474 0.957371 0.288861i \(-0.0932765\pi\)
0.957371 + 0.288861i \(0.0932765\pi\)
\(168\) 4.49396 0.346716
\(169\) 15.9879 1.22984
\(170\) 18.7681 1.43945
\(171\) −1.00000 −0.0764719
\(172\) 12.9879 0.990319
\(173\) 7.18359 0.546158 0.273079 0.961992i \(-0.411958\pi\)
0.273079 + 0.961992i \(0.411958\pi\)
\(174\) 2.98792 0.226514
\(175\) 35.8974 2.71359
\(176\) −1.00000 −0.0753778
\(177\) 8.98792 0.675573
\(178\) 1.01208 0.0758587
\(179\) 11.4034 0.852332 0.426166 0.904645i \(-0.359864\pi\)
0.426166 + 0.904645i \(0.359864\pi\)
\(180\) −3.60388 −0.268617
\(181\) −3.46250 −0.257366 −0.128683 0.991686i \(-0.541075\pi\)
−0.128683 + 0.991686i \(0.541075\pi\)
\(182\) 24.1957 1.79350
\(183\) 13.7017 1.01286
\(184\) 3.38404 0.249475
\(185\) −17.6233 −1.29569
\(186\) −0.670251 −0.0491452
\(187\) −5.20775 −0.380828
\(188\) −11.0315 −0.804552
\(189\) −4.49396 −0.326887
\(190\) −3.60388 −0.261453
\(191\) 7.18837 0.520132 0.260066 0.965591i \(-0.416256\pi\)
0.260066 + 0.965591i \(0.416256\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −16.9638 −1.22108 −0.610539 0.791986i \(-0.709047\pi\)
−0.610539 + 0.791986i \(0.709047\pi\)
\(194\) 1.01208 0.0726632
\(195\) −19.4034 −1.38951
\(196\) 13.1957 0.942548
\(197\) −10.0737 −0.717719 −0.358860 0.933392i \(-0.616834\pi\)
−0.358860 + 0.933392i \(0.616834\pi\)
\(198\) 1.00000 0.0710669
\(199\) −3.20775 −0.227391 −0.113696 0.993516i \(-0.536269\pi\)
−0.113696 + 0.993516i \(0.536269\pi\)
\(200\) −7.98792 −0.564831
\(201\) 14.4155 1.01679
\(202\) 3.90217 0.274555
\(203\) 13.4276 0.942432
\(204\) −5.20775 −0.364615
\(205\) −4.35258 −0.303998
\(206\) 18.2935 1.27457
\(207\) −3.38404 −0.235207
\(208\) −5.38404 −0.373316
\(209\) 1.00000 0.0691714
\(210\) −16.1957 −1.11761
\(211\) −14.4155 −0.992404 −0.496202 0.868207i \(-0.665272\pi\)
−0.496202 + 0.868207i \(0.665272\pi\)
\(212\) −8.71379 −0.598466
\(213\) 10.2741 0.703972
\(214\) 0.792249 0.0541570
\(215\) −46.8068 −3.19220
\(216\) 1.00000 0.0680414
\(217\) −3.01208 −0.204473
\(218\) −10.3720 −0.702478
\(219\) 14.1957 0.959254
\(220\) 3.60388 0.242973
\(221\) −28.0388 −1.88609
\(222\) 4.89008 0.328201
\(223\) 7.32975 0.490836 0.245418 0.969417i \(-0.421075\pi\)
0.245418 + 0.969417i \(0.421075\pi\)
\(224\) −4.49396 −0.300265
\(225\) 7.98792 0.532528
\(226\) 5.64742 0.375661
\(227\) −8.19567 −0.543966 −0.271983 0.962302i \(-0.587679\pi\)
−0.271983 + 0.962302i \(0.587679\pi\)
\(228\) 1.00000 0.0662266
\(229\) −21.8431 −1.44343 −0.721716 0.692189i \(-0.756646\pi\)
−0.721716 + 0.692189i \(0.756646\pi\)
\(230\) −12.1957 −0.804159
\(231\) 4.49396 0.295681
\(232\) −2.98792 −0.196166
\(233\) −9.75600 −0.639137 −0.319569 0.947563i \(-0.603538\pi\)
−0.319569 + 0.947563i \(0.603538\pi\)
\(234\) 5.38404 0.351966
\(235\) 39.7560 2.59340
\(236\) −8.98792 −0.585064
\(237\) 5.60388 0.364011
\(238\) −23.4034 −1.51702
\(239\) −8.31767 −0.538025 −0.269013 0.963137i \(-0.586697\pi\)
−0.269013 + 0.963137i \(0.586697\pi\)
\(240\) 3.60388 0.232629
\(241\) −5.56033 −0.358173 −0.179086 0.983833i \(-0.557314\pi\)
−0.179086 + 0.983833i \(0.557314\pi\)
\(242\) −1.00000 −0.0642824
\(243\) −1.00000 −0.0641500
\(244\) −13.7017 −0.877162
\(245\) −47.5555 −3.03821
\(246\) 1.20775 0.0770034
\(247\) 5.38404 0.342578
\(248\) 0.670251 0.0425610
\(249\) −14.4155 −0.913545
\(250\) 10.7681 0.681034
\(251\) 8.08708 0.510452 0.255226 0.966881i \(-0.417850\pi\)
0.255226 + 0.966881i \(0.417850\pi\)
\(252\) 4.49396 0.283093
\(253\) 3.38404 0.212753
\(254\) −14.5918 −0.915571
\(255\) 18.7681 1.17530
\(256\) 1.00000 0.0625000
\(257\) 19.4276 1.21186 0.605930 0.795518i \(-0.292801\pi\)
0.605930 + 0.795518i \(0.292801\pi\)
\(258\) 12.9879 0.808592
\(259\) 21.9758 1.36551
\(260\) 19.4034 1.20335
\(261\) 2.98792 0.184948
\(262\) 14.4155 0.890593
\(263\) 23.0858 1.42353 0.711764 0.702418i \(-0.247896\pi\)
0.711764 + 0.702418i \(0.247896\pi\)
\(264\) −1.00000 −0.0615457
\(265\) 31.4034 1.92910
\(266\) 4.49396 0.275542
\(267\) 1.01208 0.0619384
\(268\) −14.4155 −0.880567
\(269\) 1.50604 0.0918249 0.0459125 0.998945i \(-0.485380\pi\)
0.0459125 + 0.998945i \(0.485380\pi\)
\(270\) −3.60388 −0.219325
\(271\) −7.94571 −0.482667 −0.241334 0.970442i \(-0.577585\pi\)
−0.241334 + 0.970442i \(0.577585\pi\)
\(272\) 5.20775 0.315766
\(273\) 24.1957 1.46439
\(274\) −0.219833 −0.0132806
\(275\) −7.98792 −0.481690
\(276\) 3.38404 0.203695
\(277\) −15.6775 −0.941973 −0.470986 0.882141i \(-0.656102\pi\)
−0.470986 + 0.882141i \(0.656102\pi\)
\(278\) 4.43967 0.266273
\(279\) −0.670251 −0.0401269
\(280\) 16.1957 0.967876
\(281\) 8.96376 0.534733 0.267366 0.963595i \(-0.413847\pi\)
0.267366 + 0.963595i \(0.413847\pi\)
\(282\) −11.0315 −0.656914
\(283\) 25.3793 1.50864 0.754320 0.656507i \(-0.227967\pi\)
0.754320 + 0.656507i \(0.227967\pi\)
\(284\) −10.2741 −0.609657
\(285\) −3.60388 −0.213475
\(286\) −5.38404 −0.318365
\(287\) 5.42758 0.320380
\(288\) −1.00000 −0.0589256
\(289\) 10.1207 0.595334
\(290\) 10.7681 0.632324
\(291\) 1.01208 0.0593293
\(292\) −14.1957 −0.830739
\(293\) −3.78017 −0.220840 −0.110420 0.993885i \(-0.535220\pi\)
−0.110420 + 0.993885i \(0.535220\pi\)
\(294\) 13.1957 0.769587
\(295\) 32.3913 1.88590
\(296\) −4.89008 −0.284230
\(297\) 1.00000 0.0580259
\(298\) 7.10992 0.411866
\(299\) 18.2198 1.05368
\(300\) −7.98792 −0.461183
\(301\) 58.3672 3.36423
\(302\) 20.0194 1.15199
\(303\) 3.90217 0.224174
\(304\) −1.00000 −0.0573539
\(305\) 49.3793 2.82745
\(306\) −5.20775 −0.297707
\(307\) −21.1836 −1.20901 −0.604506 0.796601i \(-0.706629\pi\)
−0.604506 + 0.796601i \(0.706629\pi\)
\(308\) −4.49396 −0.256067
\(309\) 18.2935 1.04068
\(310\) −2.41550 −0.137191
\(311\) 20.3720 1.15519 0.577594 0.816324i \(-0.303992\pi\)
0.577594 + 0.816324i \(0.303992\pi\)
\(312\) −5.38404 −0.304811
\(313\) −11.1836 −0.632134 −0.316067 0.948737i \(-0.602362\pi\)
−0.316067 + 0.948737i \(0.602362\pi\)
\(314\) 12.3284 0.695733
\(315\) −16.1957 −0.912523
\(316\) −5.60388 −0.315243
\(317\) −0.361208 −0.0202874 −0.0101437 0.999949i \(-0.503229\pi\)
−0.0101437 + 0.999949i \(0.503229\pi\)
\(318\) −8.71379 −0.488645
\(319\) −2.98792 −0.167291
\(320\) −3.60388 −0.201463
\(321\) 0.792249 0.0442190
\(322\) 15.2078 0.847495
\(323\) −5.20775 −0.289767
\(324\) 1.00000 0.0555556
\(325\) −43.0073 −2.38562
\(326\) −10.7681 −0.596389
\(327\) −10.3720 −0.573571
\(328\) −1.20775 −0.0666869
\(329\) −49.5749 −2.73315
\(330\) 3.60388 0.198387
\(331\) −3.36467 −0.184939 −0.0924694 0.995716i \(-0.529476\pi\)
−0.0924694 + 0.995716i \(0.529476\pi\)
\(332\) 14.4155 0.791153
\(333\) 4.89008 0.267975
\(334\) −24.7439 −1.35393
\(335\) 51.9517 2.83842
\(336\) −4.49396 −0.245166
\(337\) 23.6233 1.28684 0.643420 0.765513i \(-0.277515\pi\)
0.643420 + 0.765513i \(0.277515\pi\)
\(338\) −15.9879 −0.869628
\(339\) 5.64742 0.306726
\(340\) −18.7681 −1.01784
\(341\) 0.670251 0.0362961
\(342\) 1.00000 0.0540738
\(343\) 27.8431 1.50339
\(344\) −12.9879 −0.700262
\(345\) −12.1957 −0.656593
\(346\) −7.18359 −0.386192
\(347\) 13.0750 0.701903 0.350951 0.936394i \(-0.385858\pi\)
0.350951 + 0.936394i \(0.385858\pi\)
\(348\) −2.98792 −0.160169
\(349\) −3.37329 −0.180568 −0.0902840 0.995916i \(-0.528777\pi\)
−0.0902840 + 0.995916i \(0.528777\pi\)
\(350\) −35.8974 −1.91880
\(351\) 5.38404 0.287379
\(352\) 1.00000 0.0533002
\(353\) 7.86725 0.418731 0.209366 0.977837i \(-0.432860\pi\)
0.209366 + 0.977837i \(0.432860\pi\)
\(354\) −8.98792 −0.477702
\(355\) 37.0267 1.96517
\(356\) −1.01208 −0.0536402
\(357\) −23.4034 −1.23864
\(358\) −11.4034 −0.602689
\(359\) −17.6582 −0.931963 −0.465981 0.884795i \(-0.654299\pi\)
−0.465981 + 0.884795i \(0.654299\pi\)
\(360\) 3.60388 0.189941
\(361\) 1.00000 0.0526316
\(362\) 3.46250 0.181985
\(363\) −1.00000 −0.0524864
\(364\) −24.1957 −1.26820
\(365\) 51.1594 2.67781
\(366\) −13.7017 −0.716200
\(367\) 21.0750 1.10011 0.550053 0.835130i \(-0.314608\pi\)
0.550053 + 0.835130i \(0.314608\pi\)
\(368\) −3.38404 −0.176405
\(369\) 1.20775 0.0628730
\(370\) 17.6233 0.916189
\(371\) −39.1594 −2.03306
\(372\) 0.670251 0.0347509
\(373\) 28.9831 1.50069 0.750345 0.661047i \(-0.229887\pi\)
0.750345 + 0.661047i \(0.229887\pi\)
\(374\) 5.20775 0.269286
\(375\) 10.7681 0.556062
\(376\) 11.0315 0.568904
\(377\) −16.0871 −0.828527
\(378\) 4.49396 0.231144
\(379\) −29.7318 −1.52722 −0.763611 0.645677i \(-0.776575\pi\)
−0.763611 + 0.645677i \(0.776575\pi\)
\(380\) 3.60388 0.184875
\(381\) −14.5918 −0.747560
\(382\) −7.18837 −0.367789
\(383\) 22.8224 1.16617 0.583085 0.812411i \(-0.301846\pi\)
0.583085 + 0.812411i \(0.301846\pi\)
\(384\) 1.00000 0.0510310
\(385\) 16.1957 0.825408
\(386\) 16.9638 0.863432
\(387\) 12.9879 0.660213
\(388\) −1.01208 −0.0513807
\(389\) −10.7245 −0.543756 −0.271878 0.962332i \(-0.587645\pi\)
−0.271878 + 0.962332i \(0.587645\pi\)
\(390\) 19.4034 0.982530
\(391\) −17.6233 −0.891246
\(392\) −13.1957 −0.666482
\(393\) 14.4155 0.727166
\(394\) 10.0737 0.507504
\(395\) 20.1957 1.01615
\(396\) −1.00000 −0.0502519
\(397\) 14.7439 0.739976 0.369988 0.929036i \(-0.379362\pi\)
0.369988 + 0.929036i \(0.379362\pi\)
\(398\) 3.20775 0.160790
\(399\) 4.49396 0.224979
\(400\) 7.98792 0.399396
\(401\) −22.6353 −1.13035 −0.565177 0.824969i \(-0.691192\pi\)
−0.565177 + 0.824969i \(0.691192\pi\)
\(402\) −14.4155 −0.718980
\(403\) 3.60866 0.179760
\(404\) −3.90217 −0.194140
\(405\) −3.60388 −0.179078
\(406\) −13.4276 −0.666400
\(407\) −4.89008 −0.242392
\(408\) 5.20775 0.257822
\(409\) −2.87933 −0.142374 −0.0711869 0.997463i \(-0.522679\pi\)
−0.0711869 + 0.997463i \(0.522679\pi\)
\(410\) 4.35258 0.214959
\(411\) −0.219833 −0.0108435
\(412\) −18.2935 −0.901256
\(413\) −40.3913 −1.98753
\(414\) 3.38404 0.166317
\(415\) −51.9517 −2.55021
\(416\) 5.38404 0.263974
\(417\) 4.43967 0.217411
\(418\) −1.00000 −0.0489116
\(419\) 15.1207 0.738693 0.369347 0.929292i \(-0.379582\pi\)
0.369347 + 0.929292i \(0.379582\pi\)
\(420\) 16.1957 0.790268
\(421\) −13.9651 −0.680617 −0.340308 0.940314i \(-0.610531\pi\)
−0.340308 + 0.940314i \(0.610531\pi\)
\(422\) 14.4155 0.701736
\(423\) −11.0315 −0.536368
\(424\) 8.71379 0.423179
\(425\) 41.5991 2.01785
\(426\) −10.2741 −0.497783
\(427\) −61.5749 −2.97982
\(428\) −0.792249 −0.0382948
\(429\) −5.38404 −0.259944
\(430\) 46.8068 2.25723
\(431\) 7.36467 0.354743 0.177372 0.984144i \(-0.443241\pi\)
0.177372 + 0.984144i \(0.443241\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −10.1957 −0.489973 −0.244986 0.969527i \(-0.578783\pi\)
−0.244986 + 0.969527i \(0.578783\pi\)
\(434\) 3.01208 0.144585
\(435\) 10.7681 0.516290
\(436\) 10.3720 0.496727
\(437\) 3.38404 0.161881
\(438\) −14.1957 −0.678295
\(439\) 14.9831 0.715106 0.357553 0.933893i \(-0.383611\pi\)
0.357553 + 0.933893i \(0.383611\pi\)
\(440\) −3.60388 −0.171808
\(441\) 13.1957 0.628365
\(442\) 28.0388 1.33367
\(443\) −21.5362 −1.02321 −0.511607 0.859219i \(-0.670950\pi\)
−0.511607 + 0.859219i \(0.670950\pi\)
\(444\) −4.89008 −0.232073
\(445\) 3.64742 0.172904
\(446\) −7.32975 −0.347074
\(447\) 7.10992 0.336287
\(448\) 4.49396 0.212320
\(449\) 2.43967 0.115135 0.0575675 0.998342i \(-0.481666\pi\)
0.0575675 + 0.998342i \(0.481666\pi\)
\(450\) −7.98792 −0.376554
\(451\) −1.20775 −0.0568708
\(452\) −5.64742 −0.265632
\(453\) 20.0194 0.940592
\(454\) 8.19567 0.384642
\(455\) 87.1982 4.08791
\(456\) −1.00000 −0.0468293
\(457\) −22.1086 −1.03420 −0.517098 0.855926i \(-0.672988\pi\)
−0.517098 + 0.855926i \(0.672988\pi\)
\(458\) 21.8431 1.02066
\(459\) −5.20775 −0.243077
\(460\) 12.1957 0.568626
\(461\) −27.9409 −1.30134 −0.650669 0.759361i \(-0.725512\pi\)
−0.650669 + 0.759361i \(0.725512\pi\)
\(462\) −4.49396 −0.209078
\(463\) 4.79225 0.222715 0.111357 0.993780i \(-0.464480\pi\)
0.111357 + 0.993780i \(0.464480\pi\)
\(464\) 2.98792 0.138711
\(465\) −2.41550 −0.112016
\(466\) 9.75600 0.451938
\(467\) 36.3043 1.67996 0.839980 0.542617i \(-0.182566\pi\)
0.839980 + 0.542617i \(0.182566\pi\)
\(468\) −5.38404 −0.248877
\(469\) −64.7827 −2.99139
\(470\) −39.7560 −1.83381
\(471\) 12.3284 0.568064
\(472\) 8.98792 0.413702
\(473\) −12.9879 −0.597185
\(474\) −5.60388 −0.257395
\(475\) −7.98792 −0.366511
\(476\) 23.4034 1.07269
\(477\) −8.71379 −0.398977
\(478\) 8.31767 0.380441
\(479\) −11.5254 −0.526610 −0.263305 0.964713i \(-0.584813\pi\)
−0.263305 + 0.964713i \(0.584813\pi\)
\(480\) −3.60388 −0.164494
\(481\) −26.3284 −1.20047
\(482\) 5.56033 0.253266
\(483\) 15.2078 0.691977
\(484\) 1.00000 0.0454545
\(485\) 3.64742 0.165621
\(486\) 1.00000 0.0453609
\(487\) 14.4892 0.656567 0.328284 0.944579i \(-0.393530\pi\)
0.328284 + 0.944579i \(0.393530\pi\)
\(488\) 13.7017 0.620247
\(489\) −10.7681 −0.486950
\(490\) 47.5555 2.14834
\(491\) 13.5147 0.609908 0.304954 0.952367i \(-0.401359\pi\)
0.304954 + 0.952367i \(0.401359\pi\)
\(492\) −1.20775 −0.0544496
\(493\) 15.5603 0.700802
\(494\) −5.38404 −0.242240
\(495\) 3.60388 0.161982
\(496\) −0.670251 −0.0300952
\(497\) −46.1715 −2.07108
\(498\) 14.4155 0.645974
\(499\) 20.6353 0.923764 0.461882 0.886941i \(-0.347174\pi\)
0.461882 + 0.886941i \(0.347174\pi\)
\(500\) −10.7681 −0.481563
\(501\) −24.7439 −1.10548
\(502\) −8.08708 −0.360944
\(503\) −23.4383 −1.04506 −0.522532 0.852620i \(-0.675012\pi\)
−0.522532 + 0.852620i \(0.675012\pi\)
\(504\) −4.49396 −0.200177
\(505\) 14.0629 0.625792
\(506\) −3.38404 −0.150439
\(507\) −15.9879 −0.710048
\(508\) 14.5918 0.647406
\(509\) −36.0301 −1.59701 −0.798504 0.601990i \(-0.794375\pi\)
−0.798504 + 0.601990i \(0.794375\pi\)
\(510\) −18.7681 −0.831065
\(511\) −63.7948 −2.82211
\(512\) −1.00000 −0.0441942
\(513\) 1.00000 0.0441511
\(514\) −19.4276 −0.856914
\(515\) 65.9275 2.90511
\(516\) −12.9879 −0.571761
\(517\) 11.0315 0.485163
\(518\) −21.9758 −0.965563
\(519\) −7.18359 −0.315325
\(520\) −19.4034 −0.850896
\(521\) 0.681005 0.0298354 0.0149177 0.999889i \(-0.495251\pi\)
0.0149177 + 0.999889i \(0.495251\pi\)
\(522\) −2.98792 −0.130778
\(523\) 22.7198 0.993466 0.496733 0.867903i \(-0.334533\pi\)
0.496733 + 0.867903i \(0.334533\pi\)
\(524\) −14.4155 −0.629744
\(525\) −35.8974 −1.56669
\(526\) −23.0858 −1.00659
\(527\) −3.49050 −0.152049
\(528\) 1.00000 0.0435194
\(529\) −11.5483 −0.502098
\(530\) −31.4034 −1.36408
\(531\) −8.98792 −0.390042
\(532\) −4.49396 −0.194838
\(533\) −6.50258 −0.281658
\(534\) −1.01208 −0.0437971
\(535\) 2.85517 0.123440
\(536\) 14.4155 0.622655
\(537\) −11.4034 −0.492094
\(538\) −1.50604 −0.0649300
\(539\) −13.1957 −0.568378
\(540\) 3.60388 0.155086
\(541\) 32.5784 1.40065 0.700327 0.713822i \(-0.253037\pi\)
0.700327 + 0.713822i \(0.253037\pi\)
\(542\) 7.94571 0.341297
\(543\) 3.46250 0.148590
\(544\) −5.20775 −0.223280
\(545\) −37.3793 −1.60115
\(546\) −24.1957 −1.03548
\(547\) −41.6233 −1.77968 −0.889841 0.456271i \(-0.849185\pi\)
−0.889841 + 0.456271i \(0.849185\pi\)
\(548\) 0.219833 0.00939078
\(549\) −13.7017 −0.584775
\(550\) 7.98792 0.340606
\(551\) −2.98792 −0.127290
\(552\) −3.38404 −0.144034
\(553\) −25.1836 −1.07092
\(554\) 15.6775 0.666075
\(555\) 17.6233 0.748065
\(556\) −4.43967 −0.188284
\(557\) 19.2573 0.815956 0.407978 0.912992i \(-0.366234\pi\)
0.407978 + 0.912992i \(0.366234\pi\)
\(558\) 0.670251 0.0283740
\(559\) −69.9275 −2.95762
\(560\) −16.1957 −0.684392
\(561\) 5.20775 0.219871
\(562\) −8.96376 −0.378113
\(563\) −28.0388 −1.18169 −0.590846 0.806784i \(-0.701206\pi\)
−0.590846 + 0.806784i \(0.701206\pi\)
\(564\) 11.0315 0.464508
\(565\) 20.3526 0.856240
\(566\) −25.3793 −1.06677
\(567\) 4.49396 0.188729
\(568\) 10.2741 0.431093
\(569\) −27.0267 −1.13302 −0.566509 0.824056i \(-0.691706\pi\)
−0.566509 + 0.824056i \(0.691706\pi\)
\(570\) 3.60388 0.150950
\(571\) 2.41550 0.101086 0.0505428 0.998722i \(-0.483905\pi\)
0.0505428 + 0.998722i \(0.483905\pi\)
\(572\) 5.38404 0.225118
\(573\) −7.18837 −0.300299
\(574\) −5.42758 −0.226543
\(575\) −27.0315 −1.12729
\(576\) 1.00000 0.0416667
\(577\) 10.6353 0.442755 0.221377 0.975188i \(-0.428945\pi\)
0.221377 + 0.975188i \(0.428945\pi\)
\(578\) −10.1207 −0.420964
\(579\) 16.9638 0.704990
\(580\) −10.7681 −0.447120
\(581\) 64.7827 2.68764
\(582\) −1.01208 −0.0419521
\(583\) 8.71379 0.360888
\(584\) 14.1957 0.587421
\(585\) 19.4034 0.802233
\(586\) 3.78017 0.156157
\(587\) −12.4397 −0.513440 −0.256720 0.966486i \(-0.582642\pi\)
−0.256720 + 0.966486i \(0.582642\pi\)
\(588\) −13.1957 −0.544180
\(589\) 0.670251 0.0276172
\(590\) −32.3913 −1.33353
\(591\) 10.0737 0.414375
\(592\) 4.89008 0.200981
\(593\) 9.01208 0.370082 0.185041 0.982731i \(-0.440758\pi\)
0.185041 + 0.982731i \(0.440758\pi\)
\(594\) −1.00000 −0.0410305
\(595\) −84.3430 −3.45773
\(596\) −7.10992 −0.291234
\(597\) 3.20775 0.131285
\(598\) −18.2198 −0.745064
\(599\) 3.11470 0.127263 0.0636316 0.997973i \(-0.479732\pi\)
0.0636316 + 0.997973i \(0.479732\pi\)
\(600\) 7.98792 0.326105
\(601\) −31.1836 −1.27201 −0.636003 0.771687i \(-0.719413\pi\)
−0.636003 + 0.771687i \(0.719413\pi\)
\(602\) −58.3672 −2.37887
\(603\) −14.4155 −0.587045
\(604\) −20.0194 −0.814577
\(605\) −3.60388 −0.146518
\(606\) −3.90217 −0.158515
\(607\) −28.0194 −1.13727 −0.568636 0.822589i \(-0.692529\pi\)
−0.568636 + 0.822589i \(0.692529\pi\)
\(608\) 1.00000 0.0405554
\(609\) −13.4276 −0.544113
\(610\) −49.3793 −1.99931
\(611\) 59.3938 2.40282
\(612\) 5.20775 0.210511
\(613\) 17.3491 0.700725 0.350362 0.936614i \(-0.386058\pi\)
0.350362 + 0.936614i \(0.386058\pi\)
\(614\) 21.1836 0.854900
\(615\) 4.35258 0.175513
\(616\) 4.49396 0.181067
\(617\) 23.3793 0.941213 0.470607 0.882343i \(-0.344035\pi\)
0.470607 + 0.882343i \(0.344035\pi\)
\(618\) −18.2935 −0.735873
\(619\) 29.8672 1.20047 0.600233 0.799825i \(-0.295075\pi\)
0.600233 + 0.799825i \(0.295075\pi\)
\(620\) 2.41550 0.0970089
\(621\) 3.38404 0.135797
\(622\) −20.3720 −0.816841
\(623\) −4.54825 −0.182222
\(624\) 5.38404 0.215534
\(625\) −1.13275 −0.0453101
\(626\) 11.1836 0.446986
\(627\) −1.00000 −0.0399362
\(628\) −12.3284 −0.491958
\(629\) 25.4663 1.01541
\(630\) 16.1957 0.645251
\(631\) 5.14483 0.204813 0.102406 0.994743i \(-0.467346\pi\)
0.102406 + 0.994743i \(0.467346\pi\)
\(632\) 5.60388 0.222910
\(633\) 14.4155 0.572965
\(634\) 0.361208 0.0143454
\(635\) −52.5870 −2.08685
\(636\) 8.71379 0.345524
\(637\) −71.0461 −2.81495
\(638\) 2.98792 0.118293
\(639\) −10.2741 −0.406438
\(640\) 3.60388 0.142456
\(641\) 23.9758 0.946989 0.473494 0.880797i \(-0.342992\pi\)
0.473494 + 0.880797i \(0.342992\pi\)
\(642\) −0.792249 −0.0312676
\(643\) 3.12067 0.123067 0.0615336 0.998105i \(-0.480401\pi\)
0.0615336 + 0.998105i \(0.480401\pi\)
\(644\) −15.2078 −0.599269
\(645\) 46.8068 1.84302
\(646\) 5.20775 0.204896
\(647\) 15.4711 0.608233 0.304116 0.952635i \(-0.401639\pi\)
0.304116 + 0.952635i \(0.401639\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 8.98792 0.352807
\(650\) 43.0073 1.68688
\(651\) 3.01208 0.118053
\(652\) 10.7681 0.421711
\(653\) −4.34780 −0.170142 −0.0850712 0.996375i \(-0.527112\pi\)
−0.0850712 + 0.996375i \(0.527112\pi\)
\(654\) 10.3720 0.405576
\(655\) 51.9517 2.02992
\(656\) 1.20775 0.0471548
\(657\) −14.1957 −0.553826
\(658\) 49.5749 1.93263
\(659\) 12.6353 0.492203 0.246101 0.969244i \(-0.420850\pi\)
0.246101 + 0.969244i \(0.420850\pi\)
\(660\) −3.60388 −0.140281
\(661\) 5.17283 0.201200 0.100600 0.994927i \(-0.467924\pi\)
0.100600 + 0.994927i \(0.467924\pi\)
\(662\) 3.36467 0.130771
\(663\) 28.0388 1.08894
\(664\) −14.4155 −0.559430
\(665\) 16.1957 0.628041
\(666\) −4.89008 −0.189487
\(667\) −10.1112 −0.391509
\(668\) 24.7439 0.957371
\(669\) −7.32975 −0.283384
\(670\) −51.9517 −2.00707
\(671\) 13.7017 0.528949
\(672\) 4.49396 0.173358
\(673\) −1.84309 −0.0710457 −0.0355229 0.999369i \(-0.511310\pi\)
−0.0355229 + 0.999369i \(0.511310\pi\)
\(674\) −23.6233 −0.909934
\(675\) −7.98792 −0.307455
\(676\) 15.9879 0.614920
\(677\) −43.4276 −1.66906 −0.834529 0.550964i \(-0.814260\pi\)
−0.834529 + 0.550964i \(0.814260\pi\)
\(678\) −5.64742 −0.216888
\(679\) −4.54825 −0.174546
\(680\) 18.7681 0.719723
\(681\) 8.19567 0.314059
\(682\) −0.670251 −0.0256652
\(683\) 20.9879 0.803080 0.401540 0.915841i \(-0.368475\pi\)
0.401540 + 0.915841i \(0.368475\pi\)
\(684\) −1.00000 −0.0382360
\(685\) −0.792249 −0.0302703
\(686\) −27.8431 −1.06305
\(687\) 21.8431 0.833366
\(688\) 12.9879 0.495160
\(689\) 46.9154 1.78734
\(690\) 12.1957 0.464281
\(691\) −30.0844 −1.14447 −0.572233 0.820091i \(-0.693923\pi\)
−0.572233 + 0.820091i \(0.693923\pi\)
\(692\) 7.18359 0.273079
\(693\) −4.49396 −0.170711
\(694\) −13.0750 −0.496320
\(695\) 16.0000 0.606915
\(696\) 2.98792 0.113257
\(697\) 6.28967 0.238238
\(698\) 3.37329 0.127681
\(699\) 9.75600 0.369006
\(700\) 35.8974 1.35679
\(701\) −34.4263 −1.30026 −0.650131 0.759822i \(-0.725286\pi\)
−0.650131 + 0.759822i \(0.725286\pi\)
\(702\) −5.38404 −0.203208
\(703\) −4.89008 −0.184433
\(704\) −1.00000 −0.0376889
\(705\) −39.7560 −1.49730
\(706\) −7.86725 −0.296088
\(707\) −17.5362 −0.659516
\(708\) 8.98792 0.337787
\(709\) 38.4999 1.44590 0.722948 0.690903i \(-0.242787\pi\)
0.722948 + 0.690903i \(0.242787\pi\)
\(710\) −37.0267 −1.38959
\(711\) −5.60388 −0.210162
\(712\) 1.01208 0.0379294
\(713\) 2.26816 0.0849432
\(714\) 23.4034 0.875851
\(715\) −19.4034 −0.725647
\(716\) 11.4034 0.426166
\(717\) 8.31767 0.310629
\(718\) 17.6582 0.658997
\(719\) −43.1400 −1.60885 −0.804426 0.594053i \(-0.797527\pi\)
−0.804426 + 0.594053i \(0.797527\pi\)
\(720\) −3.60388 −0.134309
\(721\) −82.2103 −3.06167
\(722\) −1.00000 −0.0372161
\(723\) 5.56033 0.206791
\(724\) −3.46250 −0.128683
\(725\) 23.8672 0.886407
\(726\) 1.00000 0.0371135
\(727\) 33.3793 1.23797 0.618984 0.785404i \(-0.287545\pi\)
0.618984 + 0.785404i \(0.287545\pi\)
\(728\) 24.1957 0.896751
\(729\) 1.00000 0.0370370
\(730\) −51.1594 −1.89350
\(731\) 67.6378 2.50168
\(732\) 13.7017 0.506430
\(733\) 44.1387 1.63030 0.815150 0.579249i \(-0.196654\pi\)
0.815150 + 0.579249i \(0.196654\pi\)
\(734\) −21.0750 −0.777892
\(735\) 47.5555 1.75411
\(736\) 3.38404 0.124737
\(737\) 14.4155 0.531002
\(738\) −1.20775 −0.0444579
\(739\) 13.8189 0.508337 0.254169 0.967160i \(-0.418198\pi\)
0.254169 + 0.967160i \(0.418198\pi\)
\(740\) −17.6233 −0.647844
\(741\) −5.38404 −0.197788
\(742\) 39.1594 1.43759
\(743\) −34.7198 −1.27374 −0.636872 0.770969i \(-0.719772\pi\)
−0.636872 + 0.770969i \(0.719772\pi\)
\(744\) −0.670251 −0.0245726
\(745\) 25.6233 0.938763
\(746\) −28.9831 −1.06115
\(747\) 14.4155 0.527436
\(748\) −5.20775 −0.190414
\(749\) −3.56033 −0.130092
\(750\) −10.7681 −0.393195
\(751\) −10.8901 −0.397385 −0.198692 0.980062i \(-0.563669\pi\)
−0.198692 + 0.980062i \(0.563669\pi\)
\(752\) −11.0315 −0.402276
\(753\) −8.08708 −0.294710
\(754\) 16.0871 0.585857
\(755\) 72.1473 2.62571
\(756\) −4.49396 −0.163444
\(757\) 41.0025 1.49026 0.745131 0.666918i \(-0.232387\pi\)
0.745131 + 0.666918i \(0.232387\pi\)
\(758\) 29.7318 1.07991
\(759\) −3.38404 −0.122833
\(760\) −3.60388 −0.130726
\(761\) 15.6716 0.568094 0.284047 0.958810i \(-0.408323\pi\)
0.284047 + 0.958810i \(0.408323\pi\)
\(762\) 14.5918 0.528605
\(763\) 46.6112 1.68744
\(764\) 7.18837 0.260066
\(765\) −18.7681 −0.678562
\(766\) −22.8224 −0.824606
\(767\) 48.3913 1.74731
\(768\) −1.00000 −0.0360844
\(769\) −0.0629179 −0.00226888 −0.00113444 0.999999i \(-0.500361\pi\)
−0.00113444 + 0.999999i \(0.500361\pi\)
\(770\) −16.1957 −0.583651
\(771\) −19.4276 −0.699667
\(772\) −16.9638 −0.610539
\(773\) −26.9336 −0.968735 −0.484368 0.874865i \(-0.660950\pi\)
−0.484368 + 0.874865i \(0.660950\pi\)
\(774\) −12.9879 −0.466841
\(775\) −5.35391 −0.192318
\(776\) 1.01208 0.0363316
\(777\) −21.9758 −0.788379
\(778\) 10.7245 0.384494
\(779\) −1.20775 −0.0432722
\(780\) −19.4034 −0.694754
\(781\) 10.2741 0.367637
\(782\) 17.6233 0.630206
\(783\) −2.98792 −0.106779
\(784\) 13.1957 0.471274
\(785\) 44.4301 1.58578
\(786\) −14.4155 −0.514184
\(787\) −29.7103 −1.05906 −0.529530 0.848292i \(-0.677632\pi\)
−0.529530 + 0.848292i \(0.677632\pi\)
\(788\) −10.0737 −0.358860
\(789\) −23.0858 −0.821875
\(790\) −20.1957 −0.718530
\(791\) −25.3793 −0.902382
\(792\) 1.00000 0.0355335
\(793\) 73.7706 2.61967
\(794\) −14.7439 −0.523242
\(795\) −31.4034 −1.11376
\(796\) −3.20775 −0.113696
\(797\) 20.3612 0.721231 0.360615 0.932715i \(-0.382567\pi\)
0.360615 + 0.932715i \(0.382567\pi\)
\(798\) −4.49396 −0.159084
\(799\) −57.4491 −2.03240
\(800\) −7.98792 −0.282416
\(801\) −1.01208 −0.0357601
\(802\) 22.6353 0.799281
\(803\) 14.1957 0.500954
\(804\) 14.4155 0.508396
\(805\) 54.8068 1.93169
\(806\) −3.60866 −0.127110
\(807\) −1.50604 −0.0530151
\(808\) 3.90217 0.137278
\(809\) −10.0000 −0.351581 −0.175791 0.984428i \(-0.556248\pi\)
−0.175791 + 0.984428i \(0.556248\pi\)
\(810\) 3.60388 0.126627
\(811\) 14.3284 0.503139 0.251569 0.967839i \(-0.419053\pi\)
0.251569 + 0.967839i \(0.419053\pi\)
\(812\) 13.4276 0.471216
\(813\) 7.94571 0.278668
\(814\) 4.89008 0.171397
\(815\) −38.8068 −1.35934
\(816\) −5.20775 −0.182308
\(817\) −12.9879 −0.454390
\(818\) 2.87933 0.100673
\(819\) −24.1957 −0.845465
\(820\) −4.35258 −0.151999
\(821\) −25.6125 −0.893882 −0.446941 0.894563i \(-0.647487\pi\)
−0.446941 + 0.894563i \(0.647487\pi\)
\(822\) 0.219833 0.00766754
\(823\) −27.2465 −0.949753 −0.474877 0.880052i \(-0.657507\pi\)
−0.474877 + 0.880052i \(0.657507\pi\)
\(824\) 18.2935 0.637284
\(825\) 7.98792 0.278104
\(826\) 40.3913 1.40539
\(827\) 23.8431 0.829105 0.414553 0.910025i \(-0.363938\pi\)
0.414553 + 0.910025i \(0.363938\pi\)
\(828\) −3.38404 −0.117604
\(829\) −4.45042 −0.154569 −0.0772847 0.997009i \(-0.524625\pi\)
−0.0772847 + 0.997009i \(0.524625\pi\)
\(830\) 51.9517 1.80327
\(831\) 15.6775 0.543848
\(832\) −5.38404 −0.186658
\(833\) 68.7198 2.38100
\(834\) −4.43967 −0.153733
\(835\) −89.1740 −3.08599
\(836\) 1.00000 0.0345857
\(837\) 0.670251 0.0231673
\(838\) −15.1207 −0.522335
\(839\) −9.92154 −0.342530 −0.171265 0.985225i \(-0.554785\pi\)
−0.171265 + 0.985225i \(0.554785\pi\)
\(840\) −16.1957 −0.558804
\(841\) −20.0723 −0.692150
\(842\) 13.9651 0.481269
\(843\) −8.96376 −0.308728
\(844\) −14.4155 −0.496202
\(845\) −57.6185 −1.98214
\(846\) 11.0315 0.379269
\(847\) 4.49396 0.154414
\(848\) −8.71379 −0.299233
\(849\) −25.3793 −0.871014
\(850\) −41.5991 −1.42684
\(851\) −16.5483 −0.567267
\(852\) 10.2741 0.351986
\(853\) −1.75004 −0.0599201 −0.0299601 0.999551i \(-0.509538\pi\)
−0.0299601 + 0.999551i \(0.509538\pi\)
\(854\) 61.5749 2.10705
\(855\) 3.60388 0.123250
\(856\) 0.792249 0.0270785
\(857\) −1.12067 −0.0382814 −0.0191407 0.999817i \(-0.506093\pi\)
−0.0191407 + 0.999817i \(0.506093\pi\)
\(858\) 5.38404 0.183808
\(859\) 7.31634 0.249630 0.124815 0.992180i \(-0.460166\pi\)
0.124815 + 0.992180i \(0.460166\pi\)
\(860\) −46.8068 −1.59610
\(861\) −5.42758 −0.184972
\(862\) −7.36467 −0.250842
\(863\) −29.8732 −1.01690 −0.508448 0.861093i \(-0.669781\pi\)
−0.508448 + 0.861093i \(0.669781\pi\)
\(864\) 1.00000 0.0340207
\(865\) −25.8888 −0.880244
\(866\) 10.1957 0.346463
\(867\) −10.1207 −0.343716
\(868\) −3.01208 −0.102237
\(869\) 5.60388 0.190098
\(870\) −10.7681 −0.365072
\(871\) 77.6137 2.62984
\(872\) −10.3720 −0.351239
\(873\) −1.01208 −0.0342538
\(874\) −3.38404 −0.114467
\(875\) −48.3913 −1.63593
\(876\) 14.1957 0.479627
\(877\) 48.5435 1.63920 0.819598 0.572939i \(-0.194197\pi\)
0.819598 + 0.572939i \(0.194197\pi\)
\(878\) −14.9831 −0.505656
\(879\) 3.78017 0.127502
\(880\) 3.60388 0.121487
\(881\) −3.37926 −0.113850 −0.0569250 0.998378i \(-0.518130\pi\)
−0.0569250 + 0.998378i \(0.518130\pi\)
\(882\) −13.1957 −0.444321
\(883\) −14.9638 −0.503570 −0.251785 0.967783i \(-0.581018\pi\)
−0.251785 + 0.967783i \(0.581018\pi\)
\(884\) −28.0388 −0.943045
\(885\) −32.3913 −1.08882
\(886\) 21.5362 0.723522
\(887\) −26.7198 −0.897162 −0.448581 0.893742i \(-0.648070\pi\)
−0.448581 + 0.893742i \(0.648070\pi\)
\(888\) 4.89008 0.164100
\(889\) 65.5749 2.19931
\(890\) −3.64742 −0.122262
\(891\) −1.00000 −0.0335013
\(892\) 7.32975 0.245418
\(893\) 11.0315 0.369154
\(894\) −7.10992 −0.237791
\(895\) −41.0965 −1.37370
\(896\) −4.49396 −0.150133
\(897\) −18.2198 −0.608343
\(898\) −2.43967 −0.0814127
\(899\) −2.00266 −0.0667923
\(900\) 7.98792 0.266264
\(901\) −45.3793 −1.51180
\(902\) 1.20775 0.0402137
\(903\) −58.3672 −1.94234
\(904\) 5.64742 0.187830
\(905\) 12.4784 0.414797
\(906\) −20.0194 −0.665099
\(907\) 49.9758 1.65942 0.829710 0.558194i \(-0.188506\pi\)
0.829710 + 0.558194i \(0.188506\pi\)
\(908\) −8.19567 −0.271983
\(909\) −3.90217 −0.129427
\(910\) −87.1982 −2.89059
\(911\) 35.0180 1.16020 0.580100 0.814545i \(-0.303014\pi\)
0.580100 + 0.814545i \(0.303014\pi\)
\(912\) 1.00000 0.0331133
\(913\) −14.4155 −0.477083
\(914\) 22.1086 0.731287
\(915\) −49.3793 −1.63243
\(916\) −21.8431 −0.721716
\(917\) −64.7827 −2.13931
\(918\) 5.20775 0.171881
\(919\) −18.3827 −0.606390 −0.303195 0.952929i \(-0.598053\pi\)
−0.303195 + 0.952929i \(0.598053\pi\)
\(920\) −12.1957 −0.402079
\(921\) 21.1836 0.698023
\(922\) 27.9409 0.920185
\(923\) 55.3163 1.82076
\(924\) 4.49396 0.147840
\(925\) 39.0616 1.28434
\(926\) −4.79225 −0.157483
\(927\) −18.2935 −0.600838
\(928\) −2.98792 −0.0980832
\(929\) −12.9250 −0.424056 −0.212028 0.977264i \(-0.568007\pi\)
−0.212028 + 0.977264i \(0.568007\pi\)
\(930\) 2.41550 0.0792074
\(931\) −13.1957 −0.432471
\(932\) −9.75600 −0.319569
\(933\) −20.3720 −0.666948
\(934\) −36.3043 −1.18791
\(935\) 18.7681 0.613782
\(936\) 5.38404 0.175983
\(937\) −14.1957 −0.463752 −0.231876 0.972745i \(-0.574486\pi\)
−0.231876 + 0.972745i \(0.574486\pi\)
\(938\) 64.7827 2.11523
\(939\) 11.1836 0.364963
\(940\) 39.7560 1.29670
\(941\) 23.1836 0.755763 0.377882 0.925854i \(-0.376653\pi\)
0.377882 + 0.925854i \(0.376653\pi\)
\(942\) −12.3284 −0.401682
\(943\) −4.08708 −0.133094
\(944\) −8.98792 −0.292532
\(945\) 16.1957 0.526845
\(946\) 12.9879 0.422274
\(947\) −17.2319 −0.559962 −0.279981 0.960006i \(-0.590328\pi\)
−0.279981 + 0.960006i \(0.590328\pi\)
\(948\) 5.60388 0.182005
\(949\) 76.4301 2.48103
\(950\) 7.98792 0.259162
\(951\) 0.361208 0.0117130
\(952\) −23.4034 −0.758509
\(953\) 11.8888 0.385115 0.192557 0.981286i \(-0.438322\pi\)
0.192557 + 0.981286i \(0.438322\pi\)
\(954\) 8.71379 0.282119
\(955\) −25.9060 −0.838299
\(956\) −8.31767 −0.269013
\(957\) 2.98792 0.0965857
\(958\) 11.5254 0.372369
\(959\) 0.987918 0.0319015
\(960\) 3.60388 0.116315
\(961\) −30.5508 −0.985508
\(962\) 26.3284 0.848862
\(963\) −0.792249 −0.0255299
\(964\) −5.56033 −0.179086
\(965\) 61.1353 1.96801
\(966\) −15.2078 −0.489301
\(967\) 9.04221 0.290778 0.145389 0.989375i \(-0.453557\pi\)
0.145389 + 0.989375i \(0.453557\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 5.20775 0.167297
\(970\) −3.64742 −0.117111
\(971\) −46.2586 −1.48451 −0.742254 0.670118i \(-0.766243\pi\)
−0.742254 + 0.670118i \(0.766243\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −19.9517 −0.639621
\(974\) −14.4892 −0.464263
\(975\) 43.0073 1.37734
\(976\) −13.7017 −0.438581
\(977\) 53.7077 1.71826 0.859130 0.511757i \(-0.171005\pi\)
0.859130 + 0.511757i \(0.171005\pi\)
\(978\) 10.7681 0.344325
\(979\) 1.01208 0.0323463
\(980\) −47.5555 −1.51911
\(981\) 10.3720 0.331151
\(982\) −13.5147 −0.431270
\(983\) 0.406878 0.0129774 0.00648870 0.999979i \(-0.497935\pi\)
0.00648870 + 0.999979i \(0.497935\pi\)
\(984\) 1.20775 0.0385017
\(985\) 36.3043 1.15675
\(986\) −15.5603 −0.495542
\(987\) 49.5749 1.57799
\(988\) 5.38404 0.171289
\(989\) −43.9517 −1.39758
\(990\) −3.60388 −0.114539
\(991\) −51.0374 −1.62126 −0.810629 0.585561i \(-0.800874\pi\)
−0.810629 + 0.585561i \(0.800874\pi\)
\(992\) 0.670251 0.0212805
\(993\) 3.36467 0.106774
\(994\) 46.1715 1.46447
\(995\) 11.5603 0.366487
\(996\) −14.4155 −0.456773
\(997\) −40.9095 −1.29562 −0.647808 0.761804i \(-0.724314\pi\)
−0.647808 + 0.761804i \(0.724314\pi\)
\(998\) −20.6353 −0.653200
\(999\) −4.89008 −0.154715
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1254.2.a.p.1.1 3
3.2 odd 2 3762.2.a.bf.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1254.2.a.p.1.1 3 1.1 even 1 trivial
3762.2.a.bf.1.3 3 3.2 odd 2