Properties

Label 13.5.d.a.5.3
Level $13$
Weight $5$
Character 13.5
Analytic conductor $1.344$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [13,5,Mod(5,13)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(13, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("13.5");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 13 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 13.d (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34380952009\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: 6.0.53039932416.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} - 12x^{3} + 529x^{2} - 1334x + 1682 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 5.3
Root \(-3.48832 + 3.48832i\) of defining polynomial
Character \(\chi\) \(=\) 13.5
Dual form 13.5.d.a.8.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.48832 - 3.48832i) q^{2} -1.36015 q^{3} -8.33680i q^{4} +(-6.84848 + 6.84848i) q^{5} +(-4.74466 + 4.74466i) q^{6} +(15.2891 + 15.2891i) q^{7} +(26.7317 + 26.7317i) q^{8} -79.1500 q^{9} +47.7794i q^{10} +(-94.2642 - 94.2642i) q^{11} +11.3393i q^{12} +(149.045 - 79.6662i) q^{13} +106.667 q^{14} +(9.31499 - 9.31499i) q^{15} +319.887 q^{16} -349.910i q^{17} +(-276.101 + 276.101i) q^{18} +(-217.788 + 217.788i) q^{19} +(57.0944 + 57.0944i) q^{20} +(-20.7955 - 20.7955i) q^{21} -657.648 q^{22} +310.298i q^{23} +(-36.3593 - 36.3593i) q^{24} +531.197i q^{25} +(242.014 - 797.817i) q^{26} +217.829 q^{27} +(127.462 - 127.462i) q^{28} +1076.14 q^{29} -64.9874i q^{30} +(-334.152 + 334.152i) q^{31} +(688.160 - 688.160i) q^{32} +(128.214 + 128.214i) q^{33} +(-1220.60 - 1220.60i) q^{34} -209.414 q^{35} +659.858i q^{36} +(-458.644 - 458.644i) q^{37} +1519.43i q^{38} +(-202.724 + 108.358i) q^{39} -366.143 q^{40} +(1405.06 - 1405.06i) q^{41} -145.083 q^{42} +3179.23i q^{43} +(-785.862 + 785.862i) q^{44} +(542.057 - 542.057i) q^{45} +(1082.42 + 1082.42i) q^{46} +(-2450.75 - 2450.75i) q^{47} -435.095 q^{48} -1933.49i q^{49} +(1852.99 + 1852.99i) q^{50} +475.932i q^{51} +(-664.161 - 1242.56i) q^{52} -2638.17 q^{53} +(759.857 - 759.857i) q^{54} +1291.13 q^{55} +817.408i q^{56} +(296.226 - 296.226i) q^{57} +(3753.91 - 3753.91i) q^{58} +(-190.247 - 190.247i) q^{59} +(-77.6572 - 77.6572i) q^{60} +3511.79 q^{61} +2331.26i q^{62} +(-1210.13 - 1210.13i) q^{63} +317.133i q^{64} +(-475.137 + 1566.32i) q^{65} +894.503 q^{66} +(-2011.87 + 2011.87i) q^{67} -2917.13 q^{68} -422.053i q^{69} +(-730.504 + 730.504i) q^{70} +(-5580.77 + 5580.77i) q^{71} +(-2115.81 - 2115.81i) q^{72} +(328.685 + 328.685i) q^{73} -3199.79 q^{74} -722.510i q^{75} +(1815.66 + 1815.66i) q^{76} -2882.43i q^{77} +(-329.177 + 1085.16i) q^{78} +4040.07 q^{79} +(-2190.74 + 2190.74i) q^{80} +6114.87 q^{81} -9802.63i q^{82} +(5522.44 - 5522.44i) q^{83} +(-173.368 + 173.368i) q^{84} +(2396.35 + 2396.35i) q^{85} +(11090.2 + 11090.2i) q^{86} -1463.71 q^{87} -5039.69i q^{88} +(-5862.57 - 5862.57i) q^{89} -3781.74i q^{90} +(3496.78 + 1060.73i) q^{91} +2586.89 q^{92} +(454.499 - 454.499i) q^{93} -17098.0 q^{94} -2983.04i q^{95} +(-936.005 + 936.005i) q^{96} +(-10865.4 + 10865.4i) q^{97} +(-6744.63 - 6744.63i) q^{98} +(7461.01 + 7461.01i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} - 4 q^{3} - 14 q^{5} + 32 q^{6} + 48 q^{7} - 96 q^{8} - 58 q^{9} - 32 q^{11} - 244 q^{14} + 404 q^{15} + 1044 q^{16} - 802 q^{18} + 732 q^{19} + 428 q^{20} - 2128 q^{21} - 1632 q^{22} - 24 q^{24}+ \cdots + 17492 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/13\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.48832 3.48832i 0.872081 0.872081i −0.120618 0.992699i \(-0.538488\pi\)
0.992699 + 0.120618i \(0.0384876\pi\)
\(3\) −1.36015 −0.151128 −0.0755642 0.997141i \(-0.524076\pi\)
−0.0755642 + 0.997141i \(0.524076\pi\)
\(4\) 8.33680i 0.521050i
\(5\) −6.84848 + 6.84848i −0.273939 + 0.273939i −0.830684 0.556745i \(-0.812050\pi\)
0.556745 + 0.830684i \(0.312050\pi\)
\(6\) −4.74466 + 4.74466i −0.131796 + 0.131796i
\(7\) 15.2891 + 15.2891i 0.312022 + 0.312022i 0.845693 0.533670i \(-0.179188\pi\)
−0.533670 + 0.845693i \(0.679188\pi\)
\(8\) 26.7317 + 26.7317i 0.417683 + 0.417683i
\(9\) −79.1500 −0.977160
\(10\) 47.7794i 0.477794i
\(11\) −94.2642 94.2642i −0.779043 0.779043i 0.200625 0.979668i \(-0.435703\pi\)
−0.979668 + 0.200625i \(0.935703\pi\)
\(12\) 11.3393i 0.0787454i
\(13\) 149.045 79.6662i 0.881921 0.471398i
\(14\) 106.667 0.544218
\(15\) 9.31499 9.31499i 0.0414000 0.0414000i
\(16\) 319.887 1.24956
\(17\) 349.910i 1.21076i −0.795936 0.605381i \(-0.793021\pi\)
0.795936 0.605381i \(-0.206979\pi\)
\(18\) −276.101 + 276.101i −0.852163 + 0.852163i
\(19\) −217.788 + 217.788i −0.603291 + 0.603291i −0.941184 0.337893i \(-0.890286\pi\)
0.337893 + 0.941184i \(0.390286\pi\)
\(20\) 57.0944 + 57.0944i 0.142736 + 0.142736i
\(21\) −20.7955 20.7955i −0.0471554 0.0471554i
\(22\) −657.648 −1.35878
\(23\) 310.298i 0.586575i 0.956024 + 0.293287i \(0.0947492\pi\)
−0.956024 + 0.293287i \(0.905251\pi\)
\(24\) −36.3593 36.3593i −0.0631237 0.0631237i
\(25\) 531.197i 0.849915i
\(26\) 242.014 797.817i 0.358009 1.18020i
\(27\) 217.829 0.298805
\(28\) 127.462 127.462i 0.162579 0.162579i
\(29\) 1076.14 1.27959 0.639796 0.768545i \(-0.279019\pi\)
0.639796 + 0.768545i \(0.279019\pi\)
\(30\) 64.9874i 0.0722082i
\(31\) −334.152 + 334.152i −0.347713 + 0.347713i −0.859257 0.511544i \(-0.829074\pi\)
0.511544 + 0.859257i \(0.329074\pi\)
\(32\) 688.160 688.160i 0.672032 0.672032i
\(33\) 128.214 + 128.214i 0.117735 + 0.117735i
\(34\) −1220.60 1220.60i −1.05588 1.05588i
\(35\) −209.414 −0.170950
\(36\) 659.858i 0.509149i
\(37\) −458.644 458.644i −0.335021 0.335021i 0.519469 0.854489i \(-0.326130\pi\)
−0.854489 + 0.519469i \(0.826130\pi\)
\(38\) 1519.43i 1.05224i
\(39\) −202.724 + 108.358i −0.133283 + 0.0712415i
\(40\) −366.143 −0.228839
\(41\) 1405.06 1405.06i 0.835849 0.835849i −0.152460 0.988310i \(-0.548720\pi\)
0.988310 + 0.152460i \(0.0487196\pi\)
\(42\) −145.083 −0.0822467
\(43\) 3179.23i 1.71943i 0.510774 + 0.859715i \(0.329359\pi\)
−0.510774 + 0.859715i \(0.670641\pi\)
\(44\) −785.862 + 785.862i −0.405920 + 0.405920i
\(45\) 542.057 542.057i 0.267682 0.267682i
\(46\) 1082.42 + 1082.42i 0.511540 + 0.511540i
\(47\) −2450.75 2450.75i −1.10944 1.10944i −0.993224 0.116214i \(-0.962924\pi\)
−0.116214 0.993224i \(-0.537076\pi\)
\(48\) −435.095 −0.188843
\(49\) 1933.49i 0.805284i
\(50\) 1852.99 + 1852.99i 0.741194 + 0.741194i
\(51\) 475.932i 0.182980i
\(52\) −664.161 1242.56i −0.245622 0.459525i
\(53\) −2638.17 −0.939185 −0.469593 0.882883i \(-0.655599\pi\)
−0.469593 + 0.882883i \(0.655599\pi\)
\(54\) 759.857 759.857i 0.260582 0.260582i
\(55\) 1291.13 0.426821
\(56\) 817.408i 0.260653i
\(57\) 296.226 296.226i 0.0911744 0.0911744i
\(58\) 3753.91 3753.91i 1.11591 1.11591i
\(59\) −190.247 190.247i −0.0546529 0.0546529i 0.679252 0.733905i \(-0.262304\pi\)
−0.733905 + 0.679252i \(0.762304\pi\)
\(60\) −77.6572 77.6572i −0.0215715 0.0215715i
\(61\) 3511.79 0.943777 0.471888 0.881658i \(-0.343573\pi\)
0.471888 + 0.881658i \(0.343573\pi\)
\(62\) 2331.26i 0.606468i
\(63\) −1210.13 1210.13i −0.304896 0.304896i
\(64\) 317.133i 0.0774250i
\(65\) −475.137 + 1566.32i −0.112458 + 0.370727i
\(66\) 894.503 0.205350
\(67\) −2011.87 + 2011.87i −0.448177 + 0.448177i −0.894748 0.446571i \(-0.852645\pi\)
0.446571 + 0.894748i \(0.352645\pi\)
\(68\) −2917.13 −0.630868
\(69\) 422.053i 0.0886480i
\(70\) −730.504 + 730.504i −0.149082 + 0.149082i
\(71\) −5580.77 + 5580.77i −1.10708 + 1.10708i −0.113544 + 0.993533i \(0.536220\pi\)
−0.993533 + 0.113544i \(0.963780\pi\)
\(72\) −2115.81 2115.81i −0.408143 0.408143i
\(73\) 328.685 + 328.685i 0.0616785 + 0.0616785i 0.737273 0.675595i \(-0.236113\pi\)
−0.675595 + 0.737273i \(0.736113\pi\)
\(74\) −3199.79 −0.584331
\(75\) 722.510i 0.128446i
\(76\) 1815.66 + 1815.66i 0.314345 + 0.314345i
\(77\) 2882.43i 0.486158i
\(78\) −329.177 + 1085.16i −0.0541054 + 0.178362i
\(79\) 4040.07 0.647344 0.323672 0.946169i \(-0.395083\pi\)
0.323672 + 0.946169i \(0.395083\pi\)
\(80\) −2190.74 + 2190.74i −0.342303 + 0.342303i
\(81\) 6114.87 0.932002
\(82\) 9802.63i 1.45786i
\(83\) 5522.44 5522.44i 0.801631 0.801631i −0.181719 0.983350i \(-0.558166\pi\)
0.983350 + 0.181719i \(0.0581663\pi\)
\(84\) −173.368 + 173.368i −0.0245703 + 0.0245703i
\(85\) 2396.35 + 2396.35i 0.331675 + 0.331675i
\(86\) 11090.2 + 11090.2i 1.49948 + 1.49948i
\(87\) −1463.71 −0.193382
\(88\) 5039.69i 0.650786i
\(89\) −5862.57 5862.57i −0.740130 0.740130i 0.232473 0.972603i \(-0.425318\pi\)
−0.972603 + 0.232473i \(0.925318\pi\)
\(90\) 3781.74i 0.466881i
\(91\) 3496.78 + 1060.73i 0.422266 + 0.128092i
\(92\) 2586.89 0.305635
\(93\) 454.499 454.499i 0.0525493 0.0525493i
\(94\) −17098.0 −1.93504
\(95\) 2983.04i 0.330530i
\(96\) −936.005 + 936.005i −0.101563 + 0.101563i
\(97\) −10865.4 + 10865.4i −1.15479 + 1.15479i −0.169209 + 0.985580i \(0.554121\pi\)
−0.985580 + 0.169209i \(0.945879\pi\)
\(98\) −6744.63 6744.63i −0.702273 0.702273i
\(99\) 7461.01 + 7461.01i 0.761250 + 0.761250i
\(100\) 4428.48 0.442848
\(101\) 8361.44i 0.819669i 0.912160 + 0.409834i \(0.134414\pi\)
−0.912160 + 0.409834i \(0.865586\pi\)
\(102\) 1660.21 + 1660.21i 0.159574 + 0.159574i
\(103\) 8831.26i 0.832431i −0.909266 0.416215i \(-0.863356\pi\)
0.909266 0.416215i \(-0.136644\pi\)
\(104\) 6113.83 + 1854.60i 0.565258 + 0.171469i
\(105\) 284.836 0.0258354
\(106\) −9202.79 + 9202.79i −0.819045 + 0.819045i
\(107\) −392.728 −0.0343024 −0.0171512 0.999853i \(-0.505460\pi\)
−0.0171512 + 0.999853i \(0.505460\pi\)
\(108\) 1816.00i 0.155692i
\(109\) −1174.35 + 1174.35i −0.0988426 + 0.0988426i −0.754799 0.655956i \(-0.772266\pi\)
0.655956 + 0.754799i \(0.272266\pi\)
\(110\) 4503.89 4503.89i 0.372222 0.372222i
\(111\) 623.826 + 623.826i 0.0506311 + 0.0506311i
\(112\) 4890.78 + 4890.78i 0.389890 + 0.389890i
\(113\) 5877.47 0.460292 0.230146 0.973156i \(-0.426080\pi\)
0.230146 + 0.973156i \(0.426080\pi\)
\(114\) 2066.66i 0.159023i
\(115\) −2125.07 2125.07i −0.160686 0.160686i
\(116\) 8971.53i 0.666731i
\(117\) −11796.9 + 6305.58i −0.861778 + 0.460631i
\(118\) −1327.28 −0.0953235
\(119\) 5349.81 5349.81i 0.377785 0.377785i
\(120\) 498.011 0.0345841
\(121\) 3130.48i 0.213816i
\(122\) 12250.3 12250.3i 0.823049 0.823049i
\(123\) −1911.10 + 1911.10i −0.126321 + 0.126321i
\(124\) 2785.76 + 2785.76i 0.181176 + 0.181176i
\(125\) −7918.19 7918.19i −0.506764 0.506764i
\(126\) −8442.66 −0.531788
\(127\) 18967.7i 1.17600i −0.808862 0.587998i \(-0.799916\pi\)
0.808862 0.587998i \(-0.200084\pi\)
\(128\) 12116.8 + 12116.8i 0.739553 + 0.739553i
\(129\) 4324.24i 0.259855i
\(130\) 3806.40 + 7121.26i 0.225231 + 0.421377i
\(131\) −166.709 −0.00971443 −0.00485722 0.999988i \(-0.501546\pi\)
−0.00485722 + 0.999988i \(0.501546\pi\)
\(132\) 1068.89 1068.89i 0.0613461 0.0613461i
\(133\) −6659.57 −0.376481
\(134\) 14036.1i 0.781693i
\(135\) −1491.80 + 1491.80i −0.0818544 + 0.0818544i
\(136\) 9353.70 9353.70i 0.505715 0.505715i
\(137\) −5287.93 5287.93i −0.281737 0.281737i 0.552064 0.833802i \(-0.313840\pi\)
−0.833802 + 0.552064i \(0.813840\pi\)
\(138\) −1472.26 1472.26i −0.0773083 0.0773083i
\(139\) 33096.3 1.71297 0.856486 0.516170i \(-0.172643\pi\)
0.856486 + 0.516170i \(0.172643\pi\)
\(140\) 1745.84i 0.0890737i
\(141\) 3333.40 + 3333.40i 0.167667 + 0.167667i
\(142\) 38935.1i 1.93092i
\(143\) −21559.2 6539.90i −1.05429 0.319815i
\(144\) −25319.0 −1.22102
\(145\) −7369.90 + 7369.90i −0.350530 + 0.350530i
\(146\) 2293.12 0.107577
\(147\) 2629.84i 0.121701i
\(148\) −3823.62 + 3823.62i −0.174563 + 0.174563i
\(149\) 6201.70 6201.70i 0.279343 0.279343i −0.553503 0.832847i \(-0.686709\pi\)
0.832847 + 0.553503i \(0.186709\pi\)
\(150\) −2520.35 2520.35i −0.112015 0.112015i
\(151\) −25174.0 25174.0i −1.10408 1.10408i −0.993914 0.110163i \(-0.964863\pi\)
−0.110163 0.993914i \(-0.535137\pi\)
\(152\) −11643.7 −0.503969
\(153\) 27695.4i 1.18311i
\(154\) −10054.8 10054.8i −0.423969 0.423969i
\(155\) 4576.87i 0.190504i
\(156\) 903.362 + 1690.07i 0.0371204 + 0.0694472i
\(157\) 7614.82 0.308930 0.154465 0.987998i \(-0.450635\pi\)
0.154465 + 0.987998i \(0.450635\pi\)
\(158\) 14093.1 14093.1i 0.564536 0.564536i
\(159\) 3588.32 0.141937
\(160\) 9425.70i 0.368192i
\(161\) −4744.18 + 4744.18i −0.183024 + 0.183024i
\(162\) 21330.6 21330.6i 0.812781 0.812781i
\(163\) 36056.4 + 36056.4i 1.35709 + 1.35709i 0.877488 + 0.479598i \(0.159217\pi\)
0.479598 + 0.877488i \(0.340783\pi\)
\(164\) −11713.7 11713.7i −0.435519 0.435519i
\(165\) −1756.14 −0.0645047
\(166\) 38528.1i 1.39817i
\(167\) 11597.5 + 11597.5i 0.415843 + 0.415843i 0.883768 0.467925i \(-0.154998\pi\)
−0.467925 + 0.883768i \(0.654998\pi\)
\(168\) 1111.80i 0.0393920i
\(169\) 15867.6 23747.6i 0.555569 0.831471i
\(170\) 16718.5 0.578495
\(171\) 17237.9 17237.9i 0.589512 0.589512i
\(172\) 26504.6 0.895909
\(173\) 20327.3i 0.679185i 0.940573 + 0.339592i \(0.110289\pi\)
−0.940573 + 0.339592i \(0.889711\pi\)
\(174\) −5105.90 + 5105.90i −0.168645 + 0.168645i
\(175\) −8121.52 + 8121.52i −0.265192 + 0.265192i
\(176\) −30153.9 30153.9i −0.973459 0.973459i
\(177\) 258.765 + 258.765i 0.00825960 + 0.00825960i
\(178\) −40901.1 −1.29091
\(179\) 42116.9i 1.31447i 0.753687 + 0.657234i \(0.228274\pi\)
−0.753687 + 0.657234i \(0.771726\pi\)
\(180\) −4519.02 4519.02i −0.139476 0.139476i
\(181\) 11460.6i 0.349823i −0.984584 0.174912i \(-0.944036\pi\)
0.984584 0.174912i \(-0.0559640\pi\)
\(182\) 15898.1 8497.73i 0.479957 0.256543i
\(183\) −4776.58 −0.142631
\(184\) −8294.80 + 8294.80i −0.245002 + 0.245002i
\(185\) 6282.02 0.183551
\(186\) 3170.88i 0.0916545i
\(187\) −32984.0 + 32984.0i −0.943236 + 0.943236i
\(188\) −20431.4 + 20431.4i −0.578073 + 0.578073i
\(189\) 3330.41 + 3330.41i 0.0932338 + 0.0932338i
\(190\) −10405.8 10405.8i −0.288249 0.288249i
\(191\) −29746.6 −0.815400 −0.407700 0.913116i \(-0.633669\pi\)
−0.407700 + 0.913116i \(0.633669\pi\)
\(192\) 431.350i 0.0117011i
\(193\) −15738.8 15738.8i −0.422529 0.422529i 0.463545 0.886073i \(-0.346577\pi\)
−0.886073 + 0.463545i \(0.846577\pi\)
\(194\) 75804.2i 2.01414i
\(195\) 646.259 2130.44i 0.0169956 0.0560273i
\(196\) −16119.1 −0.419593
\(197\) 22079.8 22079.8i 0.568934 0.568934i −0.362896 0.931830i \(-0.618212\pi\)
0.931830 + 0.362896i \(0.118212\pi\)
\(198\) 52052.8 1.32774
\(199\) 63536.7i 1.60442i −0.597041 0.802211i \(-0.703657\pi\)
0.597041 0.802211i \(-0.296343\pi\)
\(200\) −14199.8 + 14199.8i −0.354995 + 0.354995i
\(201\) 2736.45 2736.45i 0.0677323 0.0677323i
\(202\) 29167.4 + 29167.4i 0.714817 + 0.714817i
\(203\) 16453.2 + 16453.2i 0.399261 + 0.399261i
\(204\) 3967.75 0.0953420
\(205\) 19245.1i 0.457944i
\(206\) −30806.3 30806.3i −0.725947 0.725947i
\(207\) 24560.1i 0.573177i
\(208\) 47677.4 25484.1i 1.10201 0.589038i
\(209\) 41059.3 0.939980
\(210\) 993.599 993.599i 0.0225306 0.0225306i
\(211\) −9438.33 −0.211997 −0.105999 0.994366i \(-0.533804\pi\)
−0.105999 + 0.994366i \(0.533804\pi\)
\(212\) 21993.9i 0.489363i
\(213\) 7590.72 7590.72i 0.167311 0.167311i
\(214\) −1369.96 + 1369.96i −0.0299145 + 0.0299145i
\(215\) −21772.9 21772.9i −0.471019 0.471019i
\(216\) 5822.94 + 5822.94i 0.124806 + 0.124806i
\(217\) −10217.8 −0.216989
\(218\) 8193.02i 0.172397i
\(219\) −447.062 447.062i −0.00932137 0.00932137i
\(220\) 10763.9i 0.222395i
\(221\) −27876.0 52152.2i −0.570750 1.06780i
\(222\) 4352.22 0.0883089
\(223\) −36897.6 + 36897.6i −0.741974 + 0.741974i −0.972958 0.230984i \(-0.925806\pi\)
0.230984 + 0.972958i \(0.425806\pi\)
\(224\) 21042.7 0.419378
\(225\) 42044.2i 0.830503i
\(226\) 20502.5 20502.5i 0.401412 0.401412i
\(227\) −16881.0 + 16881.0i −0.327601 + 0.327601i −0.851674 0.524073i \(-0.824412\pi\)
0.524073 + 0.851674i \(0.324412\pi\)
\(228\) −2469.57 2469.57i −0.0475064 0.0475064i
\(229\) −5795.38 5795.38i −0.110512 0.110512i 0.649688 0.760201i \(-0.274899\pi\)
−0.760201 + 0.649688i \(0.774899\pi\)
\(230\) −14825.9 −0.280262
\(231\) 3920.55i 0.0734722i
\(232\) 28767.0 + 28767.0i 0.534464 + 0.534464i
\(233\) 4361.29i 0.0803346i −0.999193 0.0401673i \(-0.987211\pi\)
0.999193 0.0401673i \(-0.0127891\pi\)
\(234\) −19155.4 + 63147.2i −0.349833 + 1.15325i
\(235\) 33567.8 0.607837
\(236\) −1586.05 + 1586.05i −0.0284769 + 0.0284769i
\(237\) −5495.12 −0.0978320
\(238\) 37323.8i 0.658918i
\(239\) −6740.89 + 6740.89i −0.118011 + 0.118011i −0.763646 0.645635i \(-0.776593\pi\)
0.645635 + 0.763646i \(0.276593\pi\)
\(240\) 2979.74 2979.74i 0.0517316 0.0517316i
\(241\) 41872.5 + 41872.5i 0.720932 + 0.720932i 0.968795 0.247863i \(-0.0797282\pi\)
−0.247863 + 0.968795i \(0.579728\pi\)
\(242\) 10920.1 + 10920.1i 0.186465 + 0.186465i
\(243\) −25961.3 −0.439657
\(244\) 29277.1i 0.491755i
\(245\) 13241.4 + 13241.4i 0.220599 + 0.220599i
\(246\) 13333.1i 0.220323i
\(247\) −15109.8 + 49810.5i −0.247665 + 0.816445i
\(248\) −17864.9 −0.290468
\(249\) −7511.37 + 7511.37i −0.121149 + 0.121149i
\(250\) −55242.4 −0.883878
\(251\) 75079.1i 1.19171i 0.803091 + 0.595857i \(0.203187\pi\)
−0.803091 + 0.595857i \(0.796813\pi\)
\(252\) −10088.6 + 10088.6i −0.158866 + 0.158866i
\(253\) 29250.0 29250.0i 0.456967 0.456967i
\(254\) −66165.3 66165.3i −1.02556 1.02556i
\(255\) −3259.41 3259.41i −0.0501255 0.0501255i
\(256\) 79460.7 1.21247
\(257\) 32844.1i 0.497268i −0.968597 0.248634i \(-0.920018\pi\)
0.968597 0.248634i \(-0.0799817\pi\)
\(258\) −15084.3 15084.3i −0.226614 0.226614i
\(259\) 14024.5i 0.209068i
\(260\) 13058.1 + 3961.12i 0.193167 + 0.0585965i
\(261\) −85176.2 −1.25037
\(262\) −581.536 + 581.536i −0.00847177 + 0.00847177i
\(263\) −61227.8 −0.885192 −0.442596 0.896721i \(-0.645942\pi\)
−0.442596 + 0.896721i \(0.645942\pi\)
\(264\) 6854.76i 0.0983522i
\(265\) 18067.5 18067.5i 0.257280 0.257280i
\(266\) −23230.7 + 23230.7i −0.328322 + 0.328322i
\(267\) 7974.00 + 7974.00i 0.111855 + 0.111855i
\(268\) 16772.5 + 16772.5i 0.233523 + 0.233523i
\(269\) 127164. 1.75736 0.878679 0.477413i \(-0.158425\pi\)
0.878679 + 0.477413i \(0.158425\pi\)
\(270\) 10407.7i 0.142767i
\(271\) 21722.8 + 21722.8i 0.295786 + 0.295786i 0.839361 0.543575i \(-0.182930\pi\)
−0.543575 + 0.839361i \(0.682930\pi\)
\(272\) 111932.i 1.51292i
\(273\) −4756.17 1442.76i −0.0638163 0.0193584i
\(274\) −36892.0 −0.491396
\(275\) 50072.8 50072.8i 0.662120 0.662120i
\(276\) −3518.57 −0.0461901
\(277\) 70284.0i 0.916003i 0.888951 + 0.458002i \(0.151435\pi\)
−0.888951 + 0.458002i \(0.848565\pi\)
\(278\) 115451. 115451.i 1.49385 1.49385i
\(279\) 26448.1 26448.1i 0.339771 0.339771i
\(280\) −5598.00 5598.00i −0.0714030 0.0714030i
\(281\) 32616.5 + 32616.5i 0.413071 + 0.413071i 0.882807 0.469736i \(-0.155651\pi\)
−0.469736 + 0.882807i \(0.655651\pi\)
\(282\) 23255.9 0.292439
\(283\) 61904.1i 0.772941i −0.922302 0.386470i \(-0.873694\pi\)
0.922302 0.386470i \(-0.126306\pi\)
\(284\) 46525.8 + 46525.8i 0.576842 + 0.576842i
\(285\) 4057.39i 0.0499525i
\(286\) −98018.9 + 52392.3i −1.19833 + 0.640524i
\(287\) 42964.3 0.521607
\(288\) −54467.9 + 54467.9i −0.656683 + 0.656683i
\(289\) −38916.2 −0.465945
\(290\) 51417.2i 0.611381i
\(291\) 14778.6 14778.6i 0.174521 0.174521i
\(292\) 2740.18 2740.18i 0.0321376 0.0321376i
\(293\) −31482.7 31482.7i −0.366721 0.366721i 0.499559 0.866280i \(-0.333496\pi\)
−0.866280 + 0.499559i \(0.833496\pi\)
\(294\) 9173.74 + 9173.74i 0.106133 + 0.106133i
\(295\) 2605.80 0.0299431
\(296\) 24520.7i 0.279865i
\(297\) −20533.5 20533.5i −0.232782 0.232782i
\(298\) 43267.1i 0.487220i
\(299\) 24720.3 + 46248.2i 0.276510 + 0.517312i
\(300\) −6023.42 −0.0669269
\(301\) −48607.5 + 48607.5i −0.536501 + 0.536501i
\(302\) −175630. −1.92569
\(303\) 11372.9i 0.123875i
\(304\) −69667.5 + 69667.5i −0.753847 + 0.753847i
\(305\) −24050.4 + 24050.4i −0.258537 + 0.258537i
\(306\) 96610.5 + 96610.5i 1.03177 + 1.03177i
\(307\) −1138.57 1138.57i −0.0120805 0.0120805i 0.701041 0.713121i \(-0.252719\pi\)
−0.713121 + 0.701041i \(0.752719\pi\)
\(308\) −24030.2 −0.253313
\(309\) 12011.9i 0.125804i
\(310\) −15965.6 15965.6i −0.166135 0.166135i
\(311\) 30282.7i 0.313093i 0.987671 + 0.156547i \(0.0500361\pi\)
−0.987671 + 0.156547i \(0.949964\pi\)
\(312\) −8315.76 2522.55i −0.0854265 0.0259138i
\(313\) −91111.3 −0.930001 −0.465001 0.885310i \(-0.653946\pi\)
−0.465001 + 0.885310i \(0.653946\pi\)
\(314\) 26563.0 26563.0i 0.269412 0.269412i
\(315\) 16575.1 0.167046
\(316\) 33681.3i 0.337299i
\(317\) 47317.6 47317.6i 0.470873 0.470873i −0.431324 0.902197i \(-0.641953\pi\)
0.902197 + 0.431324i \(0.141953\pi\)
\(318\) 12517.2 12517.2i 0.123781 0.123781i
\(319\) −101441. 101441.i −0.996857 0.996857i
\(320\) −2171.88 2171.88i −0.0212097 0.0212097i
\(321\) 534.171 0.00518407
\(322\) 33098.4i 0.319224i
\(323\) 76206.3 + 76206.3i 0.730442 + 0.730442i
\(324\) 50978.4i 0.485620i
\(325\) 42318.4 + 79172.0i 0.400648 + 0.749557i
\(326\) 251553. 2.36698
\(327\) 1597.30 1597.30i 0.0149379 0.0149379i
\(328\) 75119.5 0.698240
\(329\) 74939.5i 0.692339i
\(330\) −6125.99 + 6125.99i −0.0562533 + 0.0562533i
\(331\) −11598.3 + 11598.3i −0.105861 + 0.105861i −0.758054 0.652192i \(-0.773849\pi\)
0.652192 + 0.758054i \(0.273849\pi\)
\(332\) −46039.5 46039.5i −0.417690 0.417690i
\(333\) 36301.6 + 36301.6i 0.327369 + 0.327369i
\(334\) 80911.4 0.725298
\(335\) 27556.5i 0.245547i
\(336\) −6652.21 6652.21i −0.0589234 0.0589234i
\(337\) 50574.4i 0.445319i 0.974896 + 0.222659i \(0.0714738\pi\)
−0.974896 + 0.222659i \(0.928526\pi\)
\(338\) −27488.1 138191.i −0.240609 1.20961i
\(339\) −7994.27 −0.0695632
\(340\) 19977.9 19977.9i 0.172819 0.172819i
\(341\) 62997.2 0.541767
\(342\) 120263.i 1.02820i
\(343\) 66270.4 66270.4i 0.563289 0.563289i
\(344\) −84986.1 + 84986.1i −0.718177 + 0.718177i
\(345\) 2890.42 + 2890.42i 0.0242842 + 0.0242842i
\(346\) 70908.3 + 70908.3i 0.592304 + 0.592304i
\(347\) −151929. −1.26177 −0.630885 0.775876i \(-0.717308\pi\)
−0.630885 + 0.775876i \(0.717308\pi\)
\(348\) 12202.7i 0.100762i
\(349\) −141017. 141017.i −1.15776 1.15776i −0.984955 0.172810i \(-0.944715\pi\)
−0.172810 0.984955i \(-0.555285\pi\)
\(350\) 56661.0i 0.462539i
\(351\) 32466.2 17353.6i 0.263522 0.140856i
\(352\) −129738. −1.04708
\(353\) −111821. + 111821.i −0.897375 + 0.897375i −0.995203 0.0978279i \(-0.968811\pi\)
0.0978279 + 0.995203i \(0.468811\pi\)
\(354\) 1805.31 0.0144061
\(355\) 76439.6i 0.606543i
\(356\) −48875.1 + 48875.1i −0.385645 + 0.385645i
\(357\) −7276.57 + 7276.57i −0.0570940 + 0.0570940i
\(358\) 146917. + 146917.i 1.14632 + 1.14632i
\(359\) −16698.6 16698.6i −0.129566 0.129566i 0.639350 0.768916i \(-0.279204\pi\)
−0.768916 + 0.639350i \(0.779204\pi\)
\(360\) 28980.2 0.223613
\(361\) 35457.6i 0.272079i
\(362\) −39978.2 39978.2i −0.305074 0.305074i
\(363\) 4257.94i 0.0323137i
\(364\) 8843.13 29152.0i 0.0667426 0.220022i
\(365\) −4501.98 −0.0337923
\(366\) −16662.3 + 16662.3i −0.124386 + 0.124386i
\(367\) 237835. 1.76581 0.882905 0.469551i \(-0.155584\pi\)
0.882905 + 0.469551i \(0.155584\pi\)
\(368\) 99260.1i 0.732958i
\(369\) −111211. + 111211.i −0.816759 + 0.816759i
\(370\) 21913.7 21913.7i 0.160071 0.160071i
\(371\) −40335.3 40335.3i −0.293047 0.293047i
\(372\) −3789.07 3789.07i −0.0273808 0.0273808i
\(373\) −176379. −1.26773 −0.633867 0.773442i \(-0.718533\pi\)
−0.633867 + 0.773442i \(0.718533\pi\)
\(374\) 230118.i 1.64516i
\(375\) 10770.0 + 10770.0i 0.0765864 + 0.0765864i
\(376\) 131025.i 0.926787i
\(377\) 160392. 85731.7i 1.12850 0.603196i
\(378\) 23235.1 0.162615
\(379\) 145770. 145770.i 1.01482 1.01482i 0.0149312 0.999889i \(-0.495247\pi\)
0.999889 0.0149312i \(-0.00475293\pi\)
\(380\) −24869.0 −0.172223
\(381\) 25798.9i 0.177726i
\(382\) −103766. + 103766.i −0.711095 + 0.711095i
\(383\) −93481.5 + 93481.5i −0.637277 + 0.637277i −0.949883 0.312606i \(-0.898798\pi\)
0.312606 + 0.949883i \(0.398798\pi\)
\(384\) −16480.8 16480.8i −0.111767 0.111767i
\(385\) 19740.3 + 19740.3i 0.133178 + 0.133178i
\(386\) −109804. −0.736958
\(387\) 251636.i 1.68016i
\(388\) 90582.8 + 90582.8i 0.601703 + 0.601703i
\(389\) 230862.i 1.52565i 0.646607 + 0.762824i \(0.276187\pi\)
−0.646607 + 0.762824i \(0.723813\pi\)
\(390\) −5177.30 9686.02i −0.0340388 0.0636819i
\(391\) 108576. 0.710202
\(392\) 51685.4 51685.4i 0.336353 0.336353i
\(393\) 226.751 0.00146813
\(394\) 154043.i 0.992313i
\(395\) −27668.3 + 27668.3i −0.177333 + 0.177333i
\(396\) 62201.0 62201.0i 0.396649 0.396649i
\(397\) −52860.3 52860.3i −0.335389 0.335389i 0.519240 0.854629i \(-0.326215\pi\)
−0.854629 + 0.519240i \(0.826215\pi\)
\(398\) −221637. 221637.i −1.39919 1.39919i
\(399\) 9058.05 0.0568969
\(400\) 169923.i 1.06202i
\(401\) −55481.9 55481.9i −0.345034 0.345034i 0.513222 0.858256i \(-0.328452\pi\)
−0.858256 + 0.513222i \(0.828452\pi\)
\(402\) 19091.3i 0.118136i
\(403\) −23183.0 + 76424.2i −0.142744 + 0.470567i
\(404\) 69707.7 0.427089
\(405\) −41877.5 + 41877.5i −0.255312 + 0.255312i
\(406\) 114788. 0.696376
\(407\) 86467.3i 0.521991i
\(408\) −12722.5 + 12722.5i −0.0764278 + 0.0764278i
\(409\) 222055. 222055.i 1.32743 1.32743i 0.419834 0.907601i \(-0.362088\pi\)
0.907601 0.419834i \(-0.137912\pi\)
\(410\) 67133.1 + 67133.1i 0.399364 + 0.399364i
\(411\) 7192.40 + 7192.40i 0.0425785 + 0.0425785i
\(412\) −73624.5 −0.433738
\(413\) 5817.40i 0.0341058i
\(414\) −85673.5 85673.5i −0.499857 0.499857i
\(415\) 75640.6i 0.439196i
\(416\) 47743.5 157390.i 0.275885 0.909473i
\(417\) −45016.2 −0.258879
\(418\) 143228. 143228.i 0.819738 0.819738i
\(419\) −106881. −0.608797 −0.304399 0.952545i \(-0.598455\pi\)
−0.304399 + 0.952545i \(0.598455\pi\)
\(420\) 2374.62i 0.0134616i
\(421\) 32008.8 32008.8i 0.180595 0.180595i −0.611020 0.791615i \(-0.709241\pi\)
0.791615 + 0.611020i \(0.209241\pi\)
\(422\) −32924.0 + 32924.0i −0.184879 + 0.184879i
\(423\) 193977. + 193977.i 1.08410 + 1.08410i
\(424\) −70522.8 70522.8i −0.392282 0.392282i
\(425\) 185871. 1.02904
\(426\) 52957.8i 0.291817i
\(427\) 53692.1 + 53692.1i 0.294479 + 0.294479i
\(428\) 3274.10i 0.0178733i
\(429\) 29323.9 + 8895.28i 0.159334 + 0.0483331i
\(430\) −151902. −0.821534
\(431\) −4372.31 + 4372.31i −0.0235373 + 0.0235373i −0.718777 0.695240i \(-0.755298\pi\)
0.695240 + 0.718777i \(0.255298\pi\)
\(432\) 69680.5 0.373374
\(433\) 299051.i 1.59503i 0.603298 + 0.797516i \(0.293853\pi\)
−0.603298 + 0.797516i \(0.706147\pi\)
\(434\) −35642.9 + 35642.9i −0.189232 + 0.189232i
\(435\) 10024.2 10024.2i 0.0529750 0.0529750i
\(436\) 9790.31 + 9790.31i 0.0515019 + 0.0515019i
\(437\) −67579.2 67579.2i −0.353875 0.353875i
\(438\) −3118.99 −0.0162580
\(439\) 52613.5i 0.273003i 0.990640 + 0.136502i \(0.0435859\pi\)
−0.990640 + 0.136502i \(0.956414\pi\)
\(440\) 34514.2 + 34514.2i 0.178276 + 0.178276i
\(441\) 153035.i 0.786892i
\(442\) −279164. 84683.3i −1.42895 0.433464i
\(443\) −157260. −0.801329 −0.400664 0.916225i \(-0.631221\pi\)
−0.400664 + 0.916225i \(0.631221\pi\)
\(444\) 5200.72 5200.72i 0.0263814 0.0263814i
\(445\) 80299.4 0.405501
\(446\) 257422.i 1.29412i
\(447\) −8435.28 + 8435.28i −0.0422167 + 0.0422167i
\(448\) −4848.67 + 4848.67i −0.0241583 + 0.0241583i
\(449\) −156794. 156794.i −0.777743 0.777743i 0.201704 0.979447i \(-0.435352\pi\)
−0.979447 + 0.201704i \(0.935352\pi\)
\(450\) −146664. 146664.i −0.724266 0.724266i
\(451\) −264894. −1.30233
\(452\) 48999.3i 0.239835i
\(453\) 34240.6 + 34240.6i 0.166857 + 0.166857i
\(454\) 117772.i 0.571389i
\(455\) −31212.0 + 16683.2i −0.150765 + 0.0805856i
\(456\) 15837.2 0.0761640
\(457\) −69443.0 + 69443.0i −0.332503 + 0.332503i −0.853537 0.521033i \(-0.825547\pi\)
0.521033 + 0.853537i \(0.325547\pi\)
\(458\) −40432.3 −0.192751
\(459\) 76220.5i 0.361782i
\(460\) −17716.3 + 17716.3i −0.0837253 + 0.0837253i
\(461\) 110039. 110039.i 0.517779 0.517779i −0.399120 0.916899i \(-0.630684\pi\)
0.916899 + 0.399120i \(0.130684\pi\)
\(462\) 13676.1 + 13676.1i 0.0640737 + 0.0640737i
\(463\) −55855.2 55855.2i −0.260556 0.260556i 0.564724 0.825280i \(-0.308983\pi\)
−0.825280 + 0.564724i \(0.808983\pi\)
\(464\) 344242. 1.59892
\(465\) 6225.25i 0.0287906i
\(466\) −15213.6 15213.6i −0.0700583 0.0700583i
\(467\) 122121.i 0.559960i 0.960006 + 0.279980i \(0.0903279\pi\)
−0.960006 + 0.279980i \(0.909672\pi\)
\(468\) 52568.3 + 98348.2i 0.240012 + 0.449030i
\(469\) −61519.3 −0.279683
\(470\) 117095. 117095.i 0.530083 0.530083i
\(471\) −10357.3 −0.0466881
\(472\) 10171.2i 0.0456552i
\(473\) 299687. 299687.i 1.33951 1.33951i
\(474\) −19168.8 + 19168.8i −0.0853174 + 0.0853174i
\(475\) −115688. 115688.i −0.512746 0.512746i
\(476\) −44600.3 44600.3i −0.196845 0.196845i
\(477\) 208811. 0.917734
\(478\) 47028.8i 0.205830i
\(479\) 228045. + 228045.i 0.993915 + 0.993915i 0.999982 0.00606704i \(-0.00193121\pi\)
−0.00606704 + 0.999982i \(0.501931\pi\)
\(480\) 12820.4i 0.0556442i
\(481\) −104897. 31820.0i −0.453390 0.137534i
\(482\) 292129. 1.25742
\(483\) 6452.81 6452.81i 0.0276602 0.0276602i
\(484\) 26098.2 0.111409
\(485\) 148823.i 0.632684i
\(486\) −90561.4 + 90561.4i −0.383416 + 0.383416i
\(487\) 139290. 139290.i 0.587304 0.587304i −0.349597 0.936900i \(-0.613681\pi\)
0.936900 + 0.349597i \(0.113681\pi\)
\(488\) 93876.2 + 93876.2i 0.394199 + 0.394199i
\(489\) −49042.3 49042.3i −0.205094 0.205094i
\(490\) 92380.9 0.384760
\(491\) 321820.i 1.33490i −0.744653 0.667451i \(-0.767385\pi\)
0.744653 0.667451i \(-0.232615\pi\)
\(492\) 15932.5 + 15932.5i 0.0658193 + 0.0658193i
\(493\) 376551.i 1.54928i
\(494\) 121047. + 226463.i 0.496022 + 0.927990i
\(495\) −102193. −0.417072
\(496\) −106891. + 106891.i −0.434487 + 0.434487i
\(497\) −170650. −0.690865
\(498\) 52404.2i 0.211304i
\(499\) −228774. + 228774.i −0.918767 + 0.918767i −0.996940 0.0781727i \(-0.975091\pi\)
0.0781727 + 0.996940i \(0.475091\pi\)
\(500\) −66012.4 + 66012.4i −0.264049 + 0.264049i
\(501\) −15774.3 15774.3i −0.0628457 0.0628457i
\(502\) 261900. + 261900.i 1.03927 + 1.03927i
\(503\) −353111. −1.39565 −0.697823 0.716271i \(-0.745848\pi\)
−0.697823 + 0.716271i \(0.745848\pi\)
\(504\) 64697.8i 0.254700i
\(505\) −57263.1 57263.1i −0.224539 0.224539i
\(506\) 204067.i 0.797024i
\(507\) −21582.4 + 32300.5i −0.0839622 + 0.125659i
\(508\) −158130. −0.612753
\(509\) 56162.6 56162.6i 0.216776 0.216776i −0.590362 0.807138i \(-0.701015\pi\)
0.807138 + 0.590362i \(0.201015\pi\)
\(510\) −22739.8 −0.0874270
\(511\) 10050.6i 0.0384901i
\(512\) 83315.4 83315.4i 0.317823 0.317823i
\(513\) −47440.5 + 47440.5i −0.180266 + 0.180266i
\(514\) −114571. 114571.i −0.433658 0.433658i
\(515\) 60480.7 + 60480.7i 0.228035 + 0.228035i
\(516\) −36050.3 −0.135397
\(517\) 462036.i 1.72860i
\(518\) −48922.0 48922.0i −0.182324 0.182324i
\(519\) 27648.3i 0.102644i
\(520\) −54571.7 + 29169.2i −0.201818 + 0.107874i
\(521\) −653.559 −0.00240774 −0.00120387 0.999999i \(-0.500383\pi\)
−0.00120387 + 0.999999i \(0.500383\pi\)
\(522\) −297122. + 297122.i −1.09042 + 1.09042i
\(523\) −90474.5 −0.330768 −0.165384 0.986229i \(-0.552886\pi\)
−0.165384 + 0.986229i \(0.552886\pi\)
\(524\) 1389.82i 0.00506171i
\(525\) 11046.5 11046.5i 0.0400781 0.0400781i
\(526\) −213582. + 213582.i −0.771959 + 0.771959i
\(527\) 116923. + 116923.i 0.420998 + 0.420998i
\(528\) 41013.9 + 41013.9i 0.147117 + 0.147117i
\(529\) 183556. 0.655930
\(530\) 126050.i 0.448737i
\(531\) 15058.0 + 15058.0i 0.0534046 + 0.0534046i
\(532\) 55519.5i 0.196165i
\(533\) 97481.0 321353.i 0.343136 1.13117i
\(534\) 55631.8 0.195093
\(535\) 2689.59 2689.59i 0.00939677 0.00939677i
\(536\) −107561. −0.374392
\(537\) 57285.5i 0.198653i
\(538\) 443590. 443590.i 1.53256 1.53256i
\(539\) −182259. + 182259.i −0.627351 + 0.627351i
\(540\) 12436.8 + 12436.8i 0.0426502 + 0.0426502i
\(541\) 406174. + 406174.i 1.38777 + 1.38777i 0.829987 + 0.557782i \(0.188348\pi\)
0.557782 + 0.829987i \(0.311652\pi\)
\(542\) 151552. 0.515898
\(543\) 15588.1i 0.0528682i
\(544\) −240794. 240794.i −0.813671 0.813671i
\(545\) 16085.0i 0.0541537i
\(546\) −21623.9 + 11558.2i −0.0725351 + 0.0387709i
\(547\) 315859. 1.05565 0.527823 0.849354i \(-0.323008\pi\)
0.527823 + 0.849354i \(0.323008\pi\)
\(548\) −44084.4 + 44084.4i −0.146799 + 0.146799i
\(549\) −277958. −0.922221
\(550\) 349340.i 1.15484i
\(551\) −234370. + 234370.i −0.771966 + 0.771966i
\(552\) 11282.2 11282.2i 0.0370268 0.0370268i
\(553\) 61769.1 + 61769.1i 0.201986 + 0.201986i
\(554\) 245173. + 245173.i 0.798829 + 0.798829i
\(555\) −8544.52 −0.0277397
\(556\) 275918.i 0.892545i
\(557\) −203963. 203963.i −0.657416 0.657416i 0.297352 0.954768i \(-0.403896\pi\)
−0.954768 + 0.297352i \(0.903896\pi\)
\(558\) 184519.i 0.592616i
\(559\) 253277. + 473846.i 0.810535 + 1.51640i
\(560\) −66988.8 −0.213612
\(561\) 44863.4 44863.4i 0.142550 0.142550i
\(562\) 227554. 0.720462
\(563\) 454782.i 1.43478i −0.696669 0.717392i \(-0.745336\pi\)
0.696669 0.717392i \(-0.254664\pi\)
\(564\) 27789.9 27789.9i 0.0873632 0.0873632i
\(565\) −40251.7 + 40251.7i −0.126092 + 0.126092i
\(566\) −215941. 215941.i −0.674067 0.674067i
\(567\) 93490.8 + 93490.8i 0.290806 + 0.290806i
\(568\) −298367. −0.924814
\(569\) 61243.8i 0.189164i 0.995517 + 0.0945818i \(0.0301514\pi\)
−0.995517 + 0.0945818i \(0.969849\pi\)
\(570\) 14153.5 + 14153.5i 0.0435626 + 0.0435626i
\(571\) 385360.i 1.18194i −0.806694 0.590969i \(-0.798745\pi\)
0.806694 0.590969i \(-0.201255\pi\)
\(572\) −54521.9 + 179735.i −0.166640 + 0.549340i
\(573\) 40460.0 0.123230
\(574\) 149873. 149873.i 0.454884 0.454884i
\(575\) −164829. −0.498538
\(576\) 25101.1i 0.0756566i
\(577\) 17322.8 17322.8i 0.0520316 0.0520316i −0.680612 0.732644i \(-0.738286\pi\)
0.732644 + 0.680612i \(0.238286\pi\)
\(578\) −135752. + 135752.i −0.406342 + 0.406342i
\(579\) 21407.2 + 21407.2i 0.0638561 + 0.0638561i
\(580\) 61441.4 + 61441.4i 0.182644 + 0.182644i
\(581\) 168866. 0.500254
\(582\) 103105.i 0.304394i
\(583\) 248685. + 248685.i 0.731666 + 0.731666i
\(584\) 17572.6i 0.0515241i
\(585\) 37607.1 123974.i 0.109890 0.362260i
\(586\) −219643. −0.639622
\(587\) −195267. + 195267.i −0.566698 + 0.566698i −0.931202 0.364504i \(-0.881239\pi\)
0.364504 + 0.931202i \(0.381239\pi\)
\(588\) 21924.5 0.0634124
\(589\) 145549.i 0.419545i
\(590\) 9089.88 9089.88i 0.0261128 0.0261128i
\(591\) −30031.9 + 30031.9i −0.0859820 + 0.0859820i
\(592\) −146714. 146714.i −0.418628 0.418628i
\(593\) 194446. + 194446.i 0.552956 + 0.552956i 0.927293 0.374337i \(-0.122130\pi\)
−0.374337 + 0.927293i \(0.622130\pi\)
\(594\) −143255. −0.406009
\(595\) 73276.2i 0.206980i
\(596\) −51702.4 51702.4i −0.145552 0.145552i
\(597\) 86419.8i 0.242474i
\(598\) 247561. + 75096.6i 0.692277 + 0.209999i
\(599\) 547193. 1.52506 0.762531 0.646952i \(-0.223957\pi\)
0.762531 + 0.646952i \(0.223957\pi\)
\(600\) 19313.9 19313.9i 0.0536498 0.0536498i
\(601\) −4486.27 −0.0124204 −0.00621021 0.999981i \(-0.501977\pi\)
−0.00621021 + 0.999981i \(0.501977\pi\)
\(602\) 339117.i 0.935744i
\(603\) 159239. 159239.i 0.437941 0.437941i
\(604\) −209871. + 209871.i −0.575279 + 0.575279i
\(605\) −21439.0 21439.0i −0.0585726 0.0585726i
\(606\) −39672.2 39672.2i −0.108029 0.108029i
\(607\) 17313.3 0.0469898 0.0234949 0.999724i \(-0.492521\pi\)
0.0234949 + 0.999724i \(0.492521\pi\)
\(608\) 299746.i 0.810862i
\(609\) −22378.8 22378.8i −0.0603397 0.0603397i
\(610\) 167791.i 0.450931i
\(611\) −560513. 170029.i −1.50142 0.455450i
\(612\) 230891. 0.616459
\(613\) −338843. + 338843.i −0.901732 + 0.901732i −0.995586 0.0938541i \(-0.970081\pi\)
0.0938541 + 0.995586i \(0.470081\pi\)
\(614\) −7943.41 −0.0210703
\(615\) 26176.3i 0.0692083i
\(616\) 77052.3 77052.3i 0.203060 0.203060i
\(617\) 130914. 130914.i 0.343888 0.343888i −0.513939 0.857827i \(-0.671814\pi\)
0.857827 + 0.513939i \(0.171814\pi\)
\(618\) 41901.3 + 41901.3i 0.109711 + 0.109711i
\(619\) −408183. 408183.i −1.06530 1.06530i −0.997713 0.0675916i \(-0.978469\pi\)
−0.0675916 0.997713i \(-0.521531\pi\)
\(620\) −38156.5 −0.0992624
\(621\) 67591.8i 0.175271i
\(622\) 105636. + 105636.i 0.273043 + 0.273043i
\(623\) 179267.i 0.461874i
\(624\) −64848.6 + 34662.4i −0.166545 + 0.0890203i
\(625\) −223543. −0.572270
\(626\) −317826. + 317826.i −0.811036 + 0.811036i
\(627\) −55847.0 −0.142058
\(628\) 63483.3i 0.160968i
\(629\) −160484. + 160484.i −0.405631 + 0.405631i
\(630\) 57819.4 57819.4i 0.145677 0.145677i
\(631\) 39255.5 + 39255.5i 0.0985921 + 0.0985921i 0.754682 0.656090i \(-0.227791\pi\)
−0.656090 + 0.754682i \(0.727791\pi\)
\(632\) 107998. + 107998.i 0.270384 + 0.270384i
\(633\) 12837.6 0.0320388
\(634\) 330118.i 0.821279i
\(635\) 129900. + 129900.i 0.322152 + 0.322152i
\(636\) 29915.1i 0.0739565i
\(637\) −154034. 288176.i −0.379609 0.710197i
\(638\) −707719. −1.73868
\(639\) 441718. 441718.i 1.08179 1.08179i
\(640\) −165964. −0.405185
\(641\) 359360.i 0.874608i 0.899314 + 0.437304i \(0.144067\pi\)
−0.899314 + 0.437304i \(0.855933\pi\)
\(642\) 1863.36 1863.36i 0.00452092 0.00452092i
\(643\) 75424.7 75424.7i 0.182428 0.182428i −0.609985 0.792413i \(-0.708825\pi\)
0.792413 + 0.609985i \(0.208825\pi\)
\(644\) 39551.3 + 39551.3i 0.0953649 + 0.0953649i
\(645\) 29614.5 + 29614.5i 0.0711843 + 0.0711843i
\(646\) 531665. 1.27401
\(647\) 124143.i 0.296561i −0.988945 0.148280i \(-0.952626\pi\)
0.988945 0.148280i \(-0.0473738\pi\)
\(648\) 163461. + 163461.i 0.389282 + 0.389282i
\(649\) 35866.9i 0.0851539i
\(650\) 423798. + 128557.i 1.00307 + 0.304278i
\(651\) 13897.8 0.0327931
\(652\) 300595. 300595.i 0.707110 0.707110i
\(653\) 281319. 0.659741 0.329870 0.944026i \(-0.392995\pi\)
0.329870 + 0.944026i \(0.392995\pi\)
\(654\) 11143.8i 0.0260541i
\(655\) 1141.71 1141.71i 0.00266116 0.00266116i
\(656\) 449461. 449461.i 1.04444 1.04444i
\(657\) −26015.4 26015.4i −0.0602698 0.0602698i
\(658\) −261413. 261413.i −0.603776 0.603776i
\(659\) 380522. 0.876211 0.438105 0.898924i \(-0.355650\pi\)
0.438105 + 0.898924i \(0.355650\pi\)
\(660\) 14640.6i 0.0336102i
\(661\) −228096. 228096.i −0.522053 0.522053i 0.396138 0.918191i \(-0.370350\pi\)
−0.918191 + 0.396138i \(0.870350\pi\)
\(662\) 80917.1i 0.184639i
\(663\) 37915.7 + 70935.1i 0.0862566 + 0.161374i
\(664\) 295248. 0.669655
\(665\) 45607.9 45607.9i 0.103133 0.103133i
\(666\) 253264. 0.570985
\(667\) 333923.i 0.750576i
\(668\) 96685.7 96685.7i 0.216675 0.216675i
\(669\) 50186.5 50186.5i 0.112133 0.112133i
\(670\) −96125.8 96125.8i −0.214136 0.214136i
\(671\) −331036. 331036.i −0.735242 0.735242i
\(672\) −28621.3 −0.0633799
\(673\) 344055.i 0.759623i 0.925064 + 0.379812i \(0.124011\pi\)
−0.925064 + 0.379812i \(0.875989\pi\)
\(674\) 176420. + 176420.i 0.388354 + 0.388354i
\(675\) 115710.i 0.253959i
\(676\) −197979. 132285.i −0.433238 0.289479i
\(677\) −587949. −1.28281 −0.641405 0.767203i \(-0.721648\pi\)
−0.641405 + 0.767203i \(0.721648\pi\)
\(678\) −27886.6 + 27886.6i −0.0606647 + 0.0606647i
\(679\) −332245. −0.720640
\(680\) 128117.i 0.277070i
\(681\) 22960.7 22960.7i 0.0495098 0.0495098i
\(682\) 219755. 219755.i 0.472465 0.472465i
\(683\) 196194. + 196194.i 0.420577 + 0.420577i 0.885402 0.464826i \(-0.153883\pi\)
−0.464826 + 0.885402i \(0.653883\pi\)
\(684\) −143709. 143709.i −0.307165 0.307165i
\(685\) 72428.5 0.154358
\(686\) 462345.i 0.982467i
\(687\) 7882.61 + 7882.61i 0.0167015 + 0.0167015i
\(688\) 1.01699e6i 2.14853i
\(689\) −393205. + 210173.i −0.828287 + 0.442730i
\(690\) 20165.5 0.0423555
\(691\) 365985. 365985.i 0.766491 0.766491i −0.210996 0.977487i \(-0.567671\pi\)
0.977487 + 0.210996i \(0.0676708\pi\)
\(692\) 169465. 0.353889
\(693\) 228144.i 0.475054i
\(694\) −529976. + 529976.i −1.10037 + 1.10037i
\(695\) −226660. + 226660.i −0.469250 + 0.469250i
\(696\) −39127.5 39127.5i −0.0807726 0.0807726i
\(697\) −491646. 491646.i −1.01201 1.01201i
\(698\) −983825. −2.01933
\(699\) 5932.02i 0.0121408i
\(700\) 67707.5 + 67707.5i 0.138179 + 0.138179i
\(701\) 98155.0i 0.199745i 0.995000 + 0.0998727i \(0.0318435\pi\)
−0.995000 + 0.0998727i \(0.968156\pi\)
\(702\) 52717.7 173788.i 0.106975 0.352650i
\(703\) 199774. 0.404230
\(704\) 29894.3 29894.3i 0.0603174 0.0603174i
\(705\) −45657.4 −0.0918614
\(706\) 780136.i 1.56517i
\(707\) −127839. + 127839.i −0.255755 + 0.255755i
\(708\) 2157.27 2157.27i 0.00430367 0.00430367i
\(709\) 355920. + 355920.i 0.708044 + 0.708044i 0.966124 0.258080i \(-0.0830898\pi\)
−0.258080 + 0.966124i \(0.583090\pi\)
\(710\) −266646. 266646.i −0.528955 0.528955i
\(711\) −319772. −0.632559
\(712\) 313433.i 0.618279i
\(713\) −103687. 103687.i −0.203960 0.203960i
\(714\) 50766.1i 0.0995812i
\(715\) 192436. 102860.i 0.376422 0.201202i
\(716\) 351120. 0.684904
\(717\) 9168.65 9168.65i 0.0178348 0.0178348i
\(718\) −116500. −0.225984
\(719\) 210007.i 0.406234i −0.979154 0.203117i \(-0.934893\pi\)
0.979154 0.203117i \(-0.0651072\pi\)
\(720\) 173397. 173397.i 0.334484 0.334484i
\(721\) 135022. 135022.i 0.259737 0.259737i
\(722\) 123688. + 123688.i 0.237275 + 0.237275i
\(723\) −56953.0 56953.0i −0.108953 0.108953i
\(724\) −95544.5 −0.182276
\(725\) 571640.i 1.08754i
\(726\) −14853.1 14853.1i −0.0281801 0.0281801i
\(727\) 577302.i 1.09228i −0.837694 0.546140i \(-0.816097\pi\)
0.837694 0.546140i \(-0.183903\pi\)
\(728\) 65119.8 + 121830.i 0.122871 + 0.229875i
\(729\) −459993. −0.865558
\(730\) −15704.4 + 15704.4i −0.0294696 + 0.0294696i
\(731\) 1.11244e6 2.08182
\(732\) 39821.4i 0.0743181i
\(733\) 275772. 275772.i 0.513267 0.513267i −0.402259 0.915526i \(-0.631775\pi\)
0.915526 + 0.402259i \(0.131775\pi\)
\(734\) 829646. 829646.i 1.53993 1.53993i
\(735\) −18010.4 18010.4i −0.0333387 0.0333387i
\(736\) 213535. + 213535.i 0.394197 + 0.394197i
\(737\) 379294. 0.698298
\(738\) 775878.i 1.42456i
\(739\) 85132.1 + 85132.1i 0.155885 + 0.155885i 0.780740 0.624855i \(-0.214842\pi\)
−0.624855 + 0.780740i \(0.714842\pi\)
\(740\) 52372.0i 0.0956391i
\(741\) 20551.7 67750.0i 0.0374292 0.123388i
\(742\) −281405. −0.511121
\(743\) 424331. 424331.i 0.768648 0.768648i −0.209221 0.977868i \(-0.567093\pi\)
0.977868 + 0.209221i \(0.0670927\pi\)
\(744\) 24299.1 0.0438979
\(745\) 84944.5i 0.153046i
\(746\) −615265. + 615265.i −1.10557 + 1.10557i
\(747\) −437101. + 437101.i −0.783322 + 0.783322i
\(748\) 274981. + 274981.i 0.491473 + 0.491473i
\(749\) −6004.46 6004.46i −0.0107031 0.0107031i
\(750\) 75138.2 0.133579
\(751\) 503003.i 0.891847i −0.895071 0.445924i \(-0.852875\pi\)
0.895071 0.445924i \(-0.147125\pi\)
\(752\) −783961. 783961.i −1.38631 1.38631i
\(753\) 102119.i 0.180102i
\(754\) 260440. 858560.i 0.458106 1.51018i
\(755\) 344808. 0.604899
\(756\) 27764.9 27764.9i 0.0485795 0.0485795i
\(757\) −57856.7 −0.100963 −0.0504815 0.998725i \(-0.516076\pi\)
−0.0504815 + 0.998725i \(0.516076\pi\)
\(758\) 1.01698e6i 1.77001i
\(759\) −39784.5 + 39784.5i −0.0690606 + 0.0690606i
\(760\) 79741.6 79741.6i 0.138057 0.138057i
\(761\) 104906. + 104906.i 0.181147 + 0.181147i 0.791855 0.610709i \(-0.209115\pi\)
−0.610709 + 0.791855i \(0.709115\pi\)
\(762\) 89995.1 + 89995.1i 0.154992 + 0.154992i
\(763\) −35909.5 −0.0616822
\(764\) 247992.i 0.424864i
\(765\) −189671. 189671.i −0.324100 0.324100i
\(766\) 652188.i 1.11151i
\(767\) −43511.5 13199.0i −0.0739628 0.0224363i
\(768\) −108079. −0.183239
\(769\) −708587. + 708587.i −1.19823 + 1.19823i −0.223535 + 0.974696i \(0.571760\pi\)
−0.974696 + 0.223535i \(0.928240\pi\)
\(770\) 137721. 0.232283
\(771\) 44673.0i 0.0751513i
\(772\) −131211. + 131211.i −0.220159 + 0.220159i
\(773\) −316939. + 316939.i −0.530417 + 0.530417i −0.920696 0.390280i \(-0.872378\pi\)
0.390280 + 0.920696i \(0.372378\pi\)
\(774\) −877787. 877787.i −1.46523 1.46523i
\(775\) −177501. 177501.i −0.295526 0.295526i
\(776\) −580902. −0.964672
\(777\) 19075.5i 0.0315961i
\(778\) 805323. + 805323.i 1.33049 + 1.33049i
\(779\) 612012.i 1.00852i
\(780\) −17761.1 5387.74i −0.0291930 0.00885558i
\(781\) 1.05213e6 1.72492
\(782\) 378750. 378750.i 0.619354 0.619354i
\(783\) 234413. 0.382348
\(784\) 618496.i 1.00625i
\(785\) −52150.0 + 52150.0i −0.0846281 + 0.0846281i
\(786\) 790.979 790.979i 0.00128032 0.00128032i
\(787\) 1612.16 + 1612.16i 0.00260291 + 0.00260291i 0.708407 0.705804i \(-0.249414\pi\)
−0.705804 + 0.708407i \(0.749414\pi\)
\(788\) −184075. 184075.i −0.296443 0.296443i
\(789\) 83279.3 0.133778
\(790\) 193032.i 0.309297i
\(791\) 89861.2 + 89861.2i 0.143621 + 0.143621i
\(792\) 398891.i 0.635922i
\(793\) 523414. 279771.i 0.832336 0.444894i
\(794\) −368788. −0.584972
\(795\) −24574.5 + 24574.5i −0.0388822 + 0.0388822i
\(796\) −529693. −0.835984
\(797\) 271788.i 0.427872i −0.976848 0.213936i \(-0.931372\pi\)
0.976848 0.213936i \(-0.0686284\pi\)
\(798\) 31597.4 31597.4i 0.0496187 0.0496187i
\(799\) −857542. + 857542.i −1.34327 + 1.34327i
\(800\) 365549. + 365549.i 0.571170 + 0.571170i
\(801\) 464022. + 464022.i 0.723225 + 0.723225i
\(802\) −387077. −0.601796
\(803\) 61966.4i 0.0961004i
\(804\) −22813.2 22813.2i −0.0352919 0.0352919i
\(805\) 64980.8i 0.100275i
\(806\) 185723. + 347462.i 0.285887 + 0.534857i
\(807\) −172963. −0.265587
\(808\) −223516. + 223516.i −0.342362 + 0.342362i
\(809\) 1.21512e6 1.85661 0.928307 0.371816i \(-0.121265\pi\)
0.928307 + 0.371816i \(0.121265\pi\)
\(810\) 292165.i 0.445305i
\(811\) −412152. + 412152.i −0.626637 + 0.626637i −0.947220 0.320583i \(-0.896121\pi\)
0.320583 + 0.947220i \(0.396121\pi\)
\(812\) 137167. 137167.i 0.208035 0.208035i
\(813\) −29546.4 29546.4i −0.0447016 0.0447016i
\(814\) 301626. + 301626.i 0.455219 + 0.455219i
\(815\) −493863. −0.743518
\(816\) 152244.i 0.228645i
\(817\) −692398. 692398.i −1.03732 1.03732i
\(818\) 1.54920e6i 2.31526i
\(819\) −276770. 83957.0i −0.412621 0.125167i
\(820\) 160442. 0.238612
\(821\) −179399. + 179399.i −0.266155 + 0.266155i −0.827549 0.561394i \(-0.810265\pi\)
0.561394 + 0.827549i \(0.310265\pi\)
\(822\) 50178.9 0.0742638
\(823\) 184011.i 0.271672i −0.990731 0.135836i \(-0.956628\pi\)
0.990731 0.135836i \(-0.0433720\pi\)
\(824\) 236075. 236075.i 0.347692 0.347692i
\(825\) −68106.8 + 68106.8i −0.100065 + 0.100065i
\(826\) −20293.0 20293.0i −0.0297431 0.0297431i
\(827\) 576070. + 576070.i 0.842295 + 0.842295i 0.989157 0.146862i \(-0.0469173\pi\)
−0.146862 + 0.989157i \(0.546917\pi\)
\(828\) −204752. −0.298654
\(829\) 563450.i 0.819872i −0.912114 0.409936i \(-0.865551\pi\)
0.912114 0.409936i \(-0.134449\pi\)
\(830\) 263859. + 263859.i 0.383015 + 0.383015i
\(831\) 95597.2i 0.138434i
\(832\) 25264.8 + 47266.9i 0.0364980 + 0.0682827i
\(833\) −676547. −0.975007
\(834\) −157031. + 157031.i −0.225763 + 0.225763i
\(835\) −158850. −0.227832
\(836\) 342303.i 0.489777i
\(837\) −72788.0 + 72788.0i −0.103898 + 0.103898i
\(838\) −372836. + 372836.i −0.530921 + 0.530921i
\(839\) −48831.3 48831.3i −0.0693705 0.0693705i 0.671570 0.740941i \(-0.265620\pi\)
−0.740941 + 0.671570i \(0.765620\pi\)
\(840\) 7614.15 + 7614.15i 0.0107910 + 0.0107910i
\(841\) 450788. 0.637354
\(842\) 223314.i 0.314987i
\(843\) −44363.5 44363.5i −0.0624267 0.0624267i
\(844\) 78685.5i 0.110461i
\(845\) 53966.3 + 271304.i 0.0755804 + 0.379964i
\(846\) 1.35331e6 1.89084
\(847\) −47862.2 + 47862.2i −0.0667154 + 0.0667154i
\(848\) −843915. −1.17357
\(849\) 84199.1i 0.116813i
\(850\) 648379. 648379.i 0.897410 0.897410i
\(851\) 142316. 142316.i 0.196515 0.196515i
\(852\) −63282.3 63282.3i −0.0871772 0.0871772i
\(853\) −848662. 848662.i −1.16637 1.16637i −0.983054 0.183317i \(-0.941316\pi\)
−0.183317 0.983054i \(-0.558684\pi\)
\(854\) 374591. 0.513620
\(855\) 236107.i 0.322981i
\(856\) −10498.3 10498.3i −0.0143275 0.0143275i
\(857\) 279281.i 0.380259i −0.981759 0.190129i \(-0.939109\pi\)
0.981759 0.190129i \(-0.0608908\pi\)
\(858\) 133321. 71261.7i 0.181102 0.0968014i
\(859\) 428907. 0.581268 0.290634 0.956834i \(-0.406134\pi\)
0.290634 + 0.956834i \(0.406134\pi\)
\(860\) −181516. + 181516.i −0.245425 + 0.245425i
\(861\) −58438.1 −0.0788297
\(862\) 30504.1i 0.0410528i
\(863\) 649915. 649915.i 0.872640 0.872640i −0.120120 0.992759i \(-0.538328\pi\)
0.992759 + 0.120120i \(0.0383278\pi\)
\(864\) 149901. 149901.i 0.200806 0.200806i
\(865\) −139211. 139211.i −0.186055 0.186055i
\(866\) 1.04319e6 + 1.04319e6i 1.39100 + 1.39100i
\(867\) 52932.1 0.0704175
\(868\) 85183.6i 0.113062i
\(869\) −380834. 380834.i −0.504309 0.504309i
\(870\) 69935.3i 0.0923970i
\(871\) −139580. + 460136.i −0.183987 + 0.606526i
\(872\) −62784.7 −0.0825697
\(873\) 859997. 859997.i 1.12841 1.12841i
\(874\) −471476. −0.617216
\(875\) 242124.i 0.316243i
\(876\) −3727.07 + 3727.07i −0.00485690 + 0.00485690i
\(877\) −19817.7 + 19817.7i −0.0257665 + 0.0257665i −0.719873 0.694106i \(-0.755800\pi\)
0.694106 + 0.719873i \(0.255800\pi\)
\(878\) 183533. + 183533.i 0.238081 + 0.238081i
\(879\) 42821.3 + 42821.3i 0.0554220 + 0.0554220i
\(880\) 413016. 0.533337
\(881\) 415393.i 0.535190i 0.963532 + 0.267595i \(0.0862288\pi\)
−0.963532 + 0.267595i \(0.913771\pi\)
\(882\) 533837. + 533837.i 0.686233 + 0.686233i
\(883\) 107872.i 0.138353i 0.997604 + 0.0691763i \(0.0220371\pi\)
−0.997604 + 0.0691763i \(0.977963\pi\)
\(884\) −434783. + 232397.i −0.556375 + 0.297390i
\(885\) −3544.29 −0.00452525
\(886\) −548574. + 548574.i −0.698824 + 0.698824i
\(887\) −745391. −0.947408 −0.473704 0.880684i \(-0.657083\pi\)
−0.473704 + 0.880684i \(0.657083\pi\)
\(888\) 33351.9i 0.0422955i
\(889\) 289998. 289998.i 0.366937 0.366937i
\(890\) 280110. 280110.i 0.353630 0.353630i
\(891\) −576413. 576413.i −0.726070 0.726070i
\(892\) 307608. + 307608.i 0.386606 + 0.386606i
\(893\) 1.06749e6 1.33863
\(894\) 58850.0i 0.0736328i
\(895\) −288436. 288436.i −0.360084 0.360084i
\(896\) 370511.i 0.461514i
\(897\) −33623.4 62904.8i −0.0417885 0.0781806i
\(898\) −1.09389e6 −1.35651
\(899\) −359593. + 359593.i −0.444931 + 0.444931i
\(900\) −350514. −0.432734
\(901\) 923123.i 1.13713i
\(902\) −924037. + 924037.i −1.13573 + 1.13573i
\(903\) 66113.7 66113.7i 0.0810804 0.0810804i
\(904\) 157115. + 157115.i 0.192256 + 0.192256i
\(905\) 78487.4 + 78487.4i 0.0958303 + 0.0958303i
\(906\) 238885. 0.291026
\(907\) 639615.i 0.777507i −0.921342 0.388753i \(-0.872906\pi\)
0.921342 0.388753i \(-0.127094\pi\)
\(908\) 140733. + 140733.i 0.170697 + 0.170697i
\(909\) 661808.i 0.800948i
\(910\) −50681.2 + 167074.i −0.0612018 + 0.201756i
\(911\) −1.62099e6 −1.95319 −0.976593 0.215096i \(-0.930994\pi\)
−0.976593 + 0.215096i \(0.930994\pi\)
\(912\) 94758.6 94758.6i 0.113928 0.113928i
\(913\) −1.04114e6 −1.24901
\(914\) 484479.i 0.579940i
\(915\) 32712.3 32712.3i 0.0390723 0.0390723i
\(916\) −48314.9 + 48314.9i −0.0575825 + 0.0575825i
\(917\) −2548.84 2548.84i −0.00303112 0.00303112i
\(918\) −265882. 265882.i −0.315503 0.315503i
\(919\) −235731. −0.279116 −0.139558 0.990214i \(-0.544568\pi\)
−0.139558 + 0.990214i \(0.544568\pi\)
\(920\) 113613.i 0.134231i
\(921\) 1548.63 + 1548.63i 0.00182570 + 0.00182570i
\(922\) 767703.i 0.903091i
\(923\) −387185. + 1.27638e6i −0.454481 + 1.49823i
\(924\) 32684.9 0.0382827
\(925\) 243630. 243630.i 0.284739 0.284739i
\(926\) −389682. −0.454452
\(927\) 698994.i 0.813418i
\(928\) 740554. 740554.i 0.859926 0.859926i
\(929\) 144574. 144574.i 0.167517 0.167517i −0.618370 0.785887i \(-0.712207\pi\)
0.785887 + 0.618370i \(0.212207\pi\)
\(930\) 21715.7 + 21715.7i 0.0251077 + 0.0251077i
\(931\) 421091. + 421091.i 0.485821 + 0.485821i
\(932\) −36359.2 −0.0418584
\(933\) 41189.1i 0.0473172i
\(934\) 425998. + 425998.i 0.488331 + 0.488331i
\(935\) 451781.i 0.516778i
\(936\) −483910. 146792.i −0.552348 0.167552i
\(937\) 1.44059e6 1.64082 0.820412 0.571772i \(-0.193744\pi\)
0.820412 + 0.571772i \(0.193744\pi\)
\(938\) −214599. + 214599.i −0.243906 + 0.243906i
\(939\) 123925. 0.140550
\(940\) 279848.i 0.316713i
\(941\) 361157. 361157.i 0.407866 0.407866i −0.473128 0.880994i \(-0.656875\pi\)
0.880994 + 0.473128i \(0.156875\pi\)
\(942\) −36129.8 + 36129.8i −0.0407158 + 0.0407158i
\(943\) 435988. + 435988.i 0.490288 + 0.490288i
\(944\) −60857.4 60857.4i −0.0682919 0.0682919i
\(945\) −45616.4 −0.0510808
\(946\) 2.09081e6i 2.33632i
\(947\) 1.15625e6 + 1.15625e6i 1.28929 + 1.28929i 0.935216 + 0.354077i \(0.115205\pi\)
0.354077 + 0.935216i \(0.384795\pi\)
\(948\) 45811.8i 0.0509754i
\(949\) 75173.7 + 22803.6i 0.0834706 + 0.0253204i
\(950\) −807117. −0.894312
\(951\) −64359.2 + 64359.2i −0.0711623 + 0.0711623i
\(952\) 286019. 0.315589
\(953\) 880049.i 0.968994i −0.874793 0.484497i \(-0.839003\pi\)
0.874793 0.484497i \(-0.160997\pi\)
\(954\) 728401. 728401.i 0.800339 0.800339i
\(955\) 203719. 203719.i 0.223370 0.223370i
\(956\) 56197.4 + 56197.4i 0.0614895 + 0.0614895i
\(957\) 137976. + 137976.i 0.150653 + 0.150653i
\(958\) 1.59099e6 1.73355
\(959\) 161695.i 0.175817i
\(960\) 2954.09 + 2954.09i 0.00320539 + 0.00320539i
\(961\) 700206.i 0.758191i
\(962\) −476912. + 254915.i −0.515333 + 0.275452i
\(963\) 31084.4 0.0335189
\(964\) 349082. 349082.i 0.375642 0.375642i
\(965\) 215573. 0.231494
\(966\) 45019.0i 0.0482438i
\(967\) 41756.2 41756.2i 0.0446548 0.0446548i −0.684427 0.729082i \(-0.739947\pi\)
0.729082 + 0.684427i \(0.239947\pi\)
\(968\) −83683.1 + 83683.1i −0.0893073 + 0.0893073i
\(969\) −103652. 103652.i −0.110391 0.110391i
\(970\) −519143. 519143.i −0.551752 0.551752i
\(971\) 360542. 0.382399 0.191200 0.981551i \(-0.438762\pi\)
0.191200 + 0.981551i \(0.438762\pi\)
\(972\) 216434.i 0.229083i
\(973\) 506013. + 506013.i 0.534486 + 0.534486i
\(974\) 971779.i 1.02435i
\(975\) −57559.6 107686.i −0.0605492 0.113279i
\(976\) 1.12338e6 1.17930
\(977\) −747647. + 747647.i −0.783263 + 0.783263i −0.980380 0.197117i \(-0.936842\pi\)
0.197117 + 0.980380i \(0.436842\pi\)
\(978\) −342151. −0.357717
\(979\) 1.10526e6i 1.15319i
\(980\) 110391. 110391.i 0.114943 0.114943i
\(981\) 92949.7 92949.7i 0.0965850 0.0965850i
\(982\) −1.12261e6 1.12261e6i −1.16414 1.16414i
\(983\) −961229. 961229.i −0.994764 0.994764i 0.00522282 0.999986i \(-0.498338\pi\)
−0.999986 + 0.00522282i \(0.998338\pi\)
\(984\) −102174. −0.105524
\(985\) 302425.i 0.311707i
\(986\) −1.31353e6 1.31353e6i −1.35110 1.35110i
\(987\) 101929.i 0.104632i
\(988\) 415260. + 125967.i 0.425409 + 0.129046i
\(989\) −986507. −1.00857
\(990\) −356483. + 356483.i −0.363721 + 0.363721i
\(991\) 116023. 0.118140 0.0590700 0.998254i \(-0.481186\pi\)
0.0590700 + 0.998254i \(0.481186\pi\)
\(992\) 459901.i 0.467348i
\(993\) 15775.5 15775.5i 0.0159986 0.0159986i
\(994\) −595282. + 595282.i −0.602491 + 0.602491i
\(995\) 435130. + 435130.i 0.439514 + 0.439514i
\(996\) 62620.8 + 62620.8i 0.0631248 + 0.0631248i
\(997\) 206164. 0.207407 0.103704 0.994608i \(-0.466931\pi\)
0.103704 + 0.994608i \(0.466931\pi\)
\(998\) 1.59607e6i 1.60248i
\(999\) −99905.8 99905.8i −0.100106 0.100106i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 13.5.d.a.5.3 6
3.2 odd 2 117.5.j.a.109.1 6
4.3 odd 2 208.5.t.c.161.2 6
13.5 odd 4 169.5.d.a.99.1 6
13.8 odd 4 inner 13.5.d.a.8.3 yes 6
13.12 even 2 169.5.d.a.70.1 6
39.8 even 4 117.5.j.a.73.1 6
52.47 even 4 208.5.t.c.177.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.5.d.a.5.3 6 1.1 even 1 trivial
13.5.d.a.8.3 yes 6 13.8 odd 4 inner
117.5.j.a.73.1 6 39.8 even 4
117.5.j.a.109.1 6 3.2 odd 2
169.5.d.a.70.1 6 13.12 even 2
169.5.d.a.99.1 6 13.5 odd 4
208.5.t.c.161.2 6 4.3 odd 2
208.5.t.c.177.2 6 52.47 even 4