Properties

Label 1305.4.a.h.1.6
Level $1305$
Weight $4$
Character 1305.1
Self dual yes
Analytic conductor $76.997$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,4,Mod(1,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1305.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.9974925575\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 49x^{4} + 27x^{3} + 692x^{2} - 82x - 2588 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-5.05047\) of defining polynomial
Character \(\chi\) \(=\) 1305.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.05047 q^{2} +17.5072 q^{4} +5.00000 q^{5} +19.3889 q^{7} +48.0160 q^{8} +25.2523 q^{10} -6.81451 q^{11} +36.9473 q^{13} +97.9229 q^{14} +102.445 q^{16} +71.5529 q^{17} +88.3064 q^{19} +87.5361 q^{20} -34.4164 q^{22} -185.418 q^{23} +25.0000 q^{25} +186.601 q^{26} +339.446 q^{28} -29.0000 q^{29} -120.393 q^{31} +133.269 q^{32} +361.376 q^{34} +96.9444 q^{35} -117.351 q^{37} +445.989 q^{38} +240.080 q^{40} +229.591 q^{41} +66.8319 q^{43} -119.303 q^{44} -936.448 q^{46} +42.0170 q^{47} +32.9286 q^{49} +126.262 q^{50} +646.845 q^{52} -9.42394 q^{53} -34.0725 q^{55} +930.976 q^{56} -146.464 q^{58} +232.484 q^{59} -546.541 q^{61} -608.042 q^{62} -146.492 q^{64} +184.737 q^{65} +953.049 q^{67} +1252.69 q^{68} +489.615 q^{70} -429.898 q^{71} +554.903 q^{73} -592.675 q^{74} +1546.00 q^{76} -132.126 q^{77} +965.168 q^{79} +512.226 q^{80} +1159.54 q^{82} -625.186 q^{83} +357.765 q^{85} +337.532 q^{86} -327.205 q^{88} +271.169 q^{89} +716.367 q^{91} -3246.16 q^{92} +212.206 q^{94} +441.532 q^{95} +1167.66 q^{97} +166.305 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} + 51 q^{4} + 30 q^{5} + 47 q^{7} - 51 q^{8} - 5 q^{10} - 81 q^{11} + 169 q^{13} + 30 q^{14} + 131 q^{16} + q^{17} + 116 q^{19} + 255 q^{20} + 90 q^{22} + 52 q^{23} + 150 q^{25} - 294 q^{26}+ \cdots + 1433 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.05047 1.78561 0.892805 0.450443i \(-0.148734\pi\)
0.892805 + 0.450443i \(0.148734\pi\)
\(3\) 0 0
\(4\) 17.5072 2.18840
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 19.3889 1.04690 0.523451 0.852056i \(-0.324644\pi\)
0.523451 + 0.852056i \(0.324644\pi\)
\(8\) 48.0160 2.12203
\(9\) 0 0
\(10\) 25.2523 0.798549
\(11\) −6.81451 −0.186786 −0.0933932 0.995629i \(-0.529771\pi\)
−0.0933932 + 0.995629i \(0.529771\pi\)
\(12\) 0 0
\(13\) 36.9473 0.788257 0.394128 0.919055i \(-0.371046\pi\)
0.394128 + 0.919055i \(0.371046\pi\)
\(14\) 97.9229 1.86936
\(15\) 0 0
\(16\) 102.445 1.60071
\(17\) 71.5529 1.02083 0.510416 0.859928i \(-0.329492\pi\)
0.510416 + 0.859928i \(0.329492\pi\)
\(18\) 0 0
\(19\) 88.3064 1.06626 0.533129 0.846034i \(-0.321016\pi\)
0.533129 + 0.846034i \(0.321016\pi\)
\(20\) 87.5361 0.978684
\(21\) 0 0
\(22\) −34.4164 −0.333528
\(23\) −185.418 −1.68097 −0.840486 0.541834i \(-0.817730\pi\)
−0.840486 + 0.541834i \(0.817730\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 186.601 1.40752
\(27\) 0 0
\(28\) 339.446 2.29104
\(29\) −29.0000 −0.185695
\(30\) 0 0
\(31\) −120.393 −0.697524 −0.348762 0.937211i \(-0.613398\pi\)
−0.348762 + 0.937211i \(0.613398\pi\)
\(32\) 133.269 0.736213
\(33\) 0 0
\(34\) 361.376 1.82281
\(35\) 96.9444 0.468188
\(36\) 0 0
\(37\) −117.351 −0.521414 −0.260707 0.965418i \(-0.583956\pi\)
−0.260707 + 0.965418i \(0.583956\pi\)
\(38\) 445.989 1.90392
\(39\) 0 0
\(40\) 240.080 0.948999
\(41\) 229.591 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(42\) 0 0
\(43\) 66.8319 0.237018 0.118509 0.992953i \(-0.462189\pi\)
0.118509 + 0.992953i \(0.462189\pi\)
\(44\) −119.303 −0.408764
\(45\) 0 0
\(46\) −936.448 −3.00156
\(47\) 42.0170 0.130400 0.0652001 0.997872i \(-0.479231\pi\)
0.0652001 + 0.997872i \(0.479231\pi\)
\(48\) 0 0
\(49\) 32.9286 0.0960018
\(50\) 126.262 0.357122
\(51\) 0 0
\(52\) 646.845 1.72502
\(53\) −9.42394 −0.0244241 −0.0122121 0.999925i \(-0.503887\pi\)
−0.0122121 + 0.999925i \(0.503887\pi\)
\(54\) 0 0
\(55\) −34.0725 −0.0835334
\(56\) 930.976 2.22155
\(57\) 0 0
\(58\) −146.464 −0.331579
\(59\) 232.484 0.512996 0.256498 0.966545i \(-0.417431\pi\)
0.256498 + 0.966545i \(0.417431\pi\)
\(60\) 0 0
\(61\) −546.541 −1.14717 −0.573586 0.819146i \(-0.694448\pi\)
−0.573586 + 0.819146i \(0.694448\pi\)
\(62\) −608.042 −1.24551
\(63\) 0 0
\(64\) −146.492 −0.286118
\(65\) 184.737 0.352519
\(66\) 0 0
\(67\) 953.049 1.73781 0.868907 0.494976i \(-0.164823\pi\)
0.868907 + 0.494976i \(0.164823\pi\)
\(68\) 1252.69 2.23399
\(69\) 0 0
\(70\) 489.615 0.836002
\(71\) −429.898 −0.718584 −0.359292 0.933225i \(-0.616982\pi\)
−0.359292 + 0.933225i \(0.616982\pi\)
\(72\) 0 0
\(73\) 554.903 0.889678 0.444839 0.895611i \(-0.353261\pi\)
0.444839 + 0.895611i \(0.353261\pi\)
\(74\) −592.675 −0.931041
\(75\) 0 0
\(76\) 1546.00 2.33340
\(77\) −132.126 −0.195547
\(78\) 0 0
\(79\) 965.168 1.37456 0.687278 0.726395i \(-0.258805\pi\)
0.687278 + 0.726395i \(0.258805\pi\)
\(80\) 512.226 0.715858
\(81\) 0 0
\(82\) 1159.54 1.56158
\(83\) −625.186 −0.826784 −0.413392 0.910553i \(-0.635656\pi\)
−0.413392 + 0.910553i \(0.635656\pi\)
\(84\) 0 0
\(85\) 357.765 0.456530
\(86\) 337.532 0.423222
\(87\) 0 0
\(88\) −327.205 −0.396366
\(89\) 271.169 0.322964 0.161482 0.986876i \(-0.448373\pi\)
0.161482 + 0.986876i \(0.448373\pi\)
\(90\) 0 0
\(91\) 716.367 0.825227
\(92\) −3246.16 −3.67864
\(93\) 0 0
\(94\) 212.206 0.232844
\(95\) 441.532 0.476845
\(96\) 0 0
\(97\) 1167.66 1.22225 0.611125 0.791534i \(-0.290717\pi\)
0.611125 + 0.791534i \(0.290717\pi\)
\(98\) 166.305 0.171422
\(99\) 0 0
\(100\) 437.681 0.437681
\(101\) −1004.86 −0.989977 −0.494989 0.868899i \(-0.664828\pi\)
−0.494989 + 0.868899i \(0.664828\pi\)
\(102\) 0 0
\(103\) 704.225 0.673683 0.336842 0.941561i \(-0.390641\pi\)
0.336842 + 0.941561i \(0.390641\pi\)
\(104\) 1774.06 1.67270
\(105\) 0 0
\(106\) −47.5953 −0.0436119
\(107\) −1116.49 −1.00874 −0.504371 0.863487i \(-0.668276\pi\)
−0.504371 + 0.863487i \(0.668276\pi\)
\(108\) 0 0
\(109\) −1306.48 −1.14806 −0.574029 0.818835i \(-0.694621\pi\)
−0.574029 + 0.818835i \(0.694621\pi\)
\(110\) −172.082 −0.149158
\(111\) 0 0
\(112\) 1986.30 1.67578
\(113\) −256.295 −0.213364 −0.106682 0.994293i \(-0.534023\pi\)
−0.106682 + 0.994293i \(0.534023\pi\)
\(114\) 0 0
\(115\) −927.090 −0.751753
\(116\) −507.710 −0.406376
\(117\) 0 0
\(118\) 1174.15 0.916011
\(119\) 1387.33 1.06871
\(120\) 0 0
\(121\) −1284.56 −0.965111
\(122\) −2760.29 −2.04840
\(123\) 0 0
\(124\) −2107.75 −1.52646
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −1201.30 −0.839355 −0.419677 0.907673i \(-0.637857\pi\)
−0.419677 + 0.907673i \(0.637857\pi\)
\(128\) −1806.01 −1.24711
\(129\) 0 0
\(130\) 933.006 0.629462
\(131\) −1049.57 −0.700008 −0.350004 0.936748i \(-0.613820\pi\)
−0.350004 + 0.936748i \(0.613820\pi\)
\(132\) 0 0
\(133\) 1712.16 1.11627
\(134\) 4813.34 3.10306
\(135\) 0 0
\(136\) 3435.68 2.16623
\(137\) −2881.21 −1.79678 −0.898388 0.439202i \(-0.855261\pi\)
−0.898388 + 0.439202i \(0.855261\pi\)
\(138\) 0 0
\(139\) 2584.43 1.57704 0.788521 0.615008i \(-0.210847\pi\)
0.788521 + 0.615008i \(0.210847\pi\)
\(140\) 1697.23 1.02459
\(141\) 0 0
\(142\) −2171.18 −1.28311
\(143\) −251.778 −0.147236
\(144\) 0 0
\(145\) −145.000 −0.0830455
\(146\) 2802.52 1.58862
\(147\) 0 0
\(148\) −2054.48 −1.14106
\(149\) 1449.23 0.796813 0.398407 0.917209i \(-0.369563\pi\)
0.398407 + 0.917209i \(0.369563\pi\)
\(150\) 0 0
\(151\) 2760.46 1.48770 0.743851 0.668345i \(-0.232997\pi\)
0.743851 + 0.668345i \(0.232997\pi\)
\(152\) 4240.12 2.26262
\(153\) 0 0
\(154\) −667.296 −0.349171
\(155\) −601.966 −0.311942
\(156\) 0 0
\(157\) 766.465 0.389621 0.194811 0.980841i \(-0.437591\pi\)
0.194811 + 0.980841i \(0.437591\pi\)
\(158\) 4874.55 2.45442
\(159\) 0 0
\(160\) 666.344 0.329244
\(161\) −3595.05 −1.75981
\(162\) 0 0
\(163\) −1871.11 −0.899119 −0.449560 0.893250i \(-0.648419\pi\)
−0.449560 + 0.893250i \(0.648419\pi\)
\(164\) 4019.50 1.91384
\(165\) 0 0
\(166\) −3157.48 −1.47631
\(167\) −2343.62 −1.08596 −0.542978 0.839747i \(-0.682703\pi\)
−0.542978 + 0.839747i \(0.682703\pi\)
\(168\) 0 0
\(169\) −831.896 −0.378651
\(170\) 1806.88 0.815184
\(171\) 0 0
\(172\) 1170.04 0.518691
\(173\) 1485.73 0.652935 0.326468 0.945208i \(-0.394142\pi\)
0.326468 + 0.945208i \(0.394142\pi\)
\(174\) 0 0
\(175\) 484.722 0.209380
\(176\) −698.114 −0.298990
\(177\) 0 0
\(178\) 1369.53 0.576689
\(179\) −71.4418 −0.0298314 −0.0149157 0.999889i \(-0.504748\pi\)
−0.0149157 + 0.999889i \(0.504748\pi\)
\(180\) 0 0
\(181\) −1696.31 −0.696607 −0.348304 0.937382i \(-0.613242\pi\)
−0.348304 + 0.937382i \(0.613242\pi\)
\(182\) 3617.99 1.47353
\(183\) 0 0
\(184\) −8903.03 −3.56706
\(185\) −586.753 −0.233183
\(186\) 0 0
\(187\) −487.598 −0.190677
\(188\) 735.601 0.285368
\(189\) 0 0
\(190\) 2229.94 0.851459
\(191\) 3657.80 1.38570 0.692852 0.721080i \(-0.256354\pi\)
0.692852 + 0.721080i \(0.256354\pi\)
\(192\) 0 0
\(193\) −3156.73 −1.17734 −0.588669 0.808374i \(-0.700348\pi\)
−0.588669 + 0.808374i \(0.700348\pi\)
\(194\) 5897.25 2.18246
\(195\) 0 0
\(196\) 576.489 0.210091
\(197\) 969.523 0.350638 0.175319 0.984512i \(-0.443904\pi\)
0.175319 + 0.984512i \(0.443904\pi\)
\(198\) 0 0
\(199\) 5423.02 1.93180 0.965898 0.258921i \(-0.0833670\pi\)
0.965898 + 0.258921i \(0.0833670\pi\)
\(200\) 1200.40 0.424405
\(201\) 0 0
\(202\) −5075.03 −1.76771
\(203\) −562.277 −0.194405
\(204\) 0 0
\(205\) 1147.95 0.391106
\(206\) 3556.67 1.20294
\(207\) 0 0
\(208\) 3785.08 1.26177
\(209\) −601.765 −0.199162
\(210\) 0 0
\(211\) −2848.51 −0.929382 −0.464691 0.885473i \(-0.653835\pi\)
−0.464691 + 0.885473i \(0.653835\pi\)
\(212\) −164.987 −0.0534498
\(213\) 0 0
\(214\) −5638.81 −1.80122
\(215\) 334.160 0.105998
\(216\) 0 0
\(217\) −2334.29 −0.730239
\(218\) −6598.35 −2.04999
\(219\) 0 0
\(220\) −596.516 −0.182805
\(221\) 2643.69 0.804678
\(222\) 0 0
\(223\) 502.488 0.150893 0.0754465 0.997150i \(-0.475962\pi\)
0.0754465 + 0.997150i \(0.475962\pi\)
\(224\) 2583.93 0.770742
\(225\) 0 0
\(226\) −1294.41 −0.380985
\(227\) −1336.83 −0.390876 −0.195438 0.980716i \(-0.562613\pi\)
−0.195438 + 0.980716i \(0.562613\pi\)
\(228\) 0 0
\(229\) −1131.26 −0.326445 −0.163223 0.986589i \(-0.552189\pi\)
−0.163223 + 0.986589i \(0.552189\pi\)
\(230\) −4682.24 −1.34234
\(231\) 0 0
\(232\) −1392.46 −0.394050
\(233\) −1271.63 −0.357541 −0.178770 0.983891i \(-0.557212\pi\)
−0.178770 + 0.983891i \(0.557212\pi\)
\(234\) 0 0
\(235\) 210.085 0.0583168
\(236\) 4070.14 1.12264
\(237\) 0 0
\(238\) 7006.67 1.90830
\(239\) −1507.40 −0.407973 −0.203987 0.978974i \(-0.565390\pi\)
−0.203987 + 0.978974i \(0.565390\pi\)
\(240\) 0 0
\(241\) 4251.32 1.13631 0.568156 0.822921i \(-0.307657\pi\)
0.568156 + 0.822921i \(0.307657\pi\)
\(242\) −6487.64 −1.72331
\(243\) 0 0
\(244\) −9568.42 −2.51047
\(245\) 164.643 0.0429333
\(246\) 0 0
\(247\) 3262.69 0.840485
\(248\) −5780.79 −1.48016
\(249\) 0 0
\(250\) 631.309 0.159710
\(251\) −7219.41 −1.81548 −0.907739 0.419535i \(-0.862193\pi\)
−0.907739 + 0.419535i \(0.862193\pi\)
\(252\) 0 0
\(253\) 1263.53 0.313983
\(254\) −6067.12 −1.49876
\(255\) 0 0
\(256\) −7949.23 −1.94073
\(257\) −3436.04 −0.833986 −0.416993 0.908910i \(-0.636916\pi\)
−0.416993 + 0.908910i \(0.636916\pi\)
\(258\) 0 0
\(259\) −2275.29 −0.545868
\(260\) 3234.23 0.771454
\(261\) 0 0
\(262\) −5300.80 −1.24994
\(263\) −1494.14 −0.350314 −0.175157 0.984540i \(-0.556043\pi\)
−0.175157 + 0.984540i \(0.556043\pi\)
\(264\) 0 0
\(265\) −47.1197 −0.0109228
\(266\) 8647.22 1.99322
\(267\) 0 0
\(268\) 16685.2 3.80304
\(269\) 1692.06 0.383520 0.191760 0.981442i \(-0.438581\pi\)
0.191760 + 0.981442i \(0.438581\pi\)
\(270\) 0 0
\(271\) 3147.75 0.705581 0.352790 0.935702i \(-0.385233\pi\)
0.352790 + 0.935702i \(0.385233\pi\)
\(272\) 7330.26 1.63405
\(273\) 0 0
\(274\) −14551.5 −3.20834
\(275\) −170.363 −0.0373573
\(276\) 0 0
\(277\) −3873.16 −0.840129 −0.420065 0.907494i \(-0.637993\pi\)
−0.420065 + 0.907494i \(0.637993\pi\)
\(278\) 13052.6 2.81598
\(279\) 0 0
\(280\) 4654.88 0.993508
\(281\) 4951.42 1.05116 0.525582 0.850743i \(-0.323848\pi\)
0.525582 + 0.850743i \(0.323848\pi\)
\(282\) 0 0
\(283\) −4895.30 −1.02825 −0.514126 0.857715i \(-0.671884\pi\)
−0.514126 + 0.857715i \(0.671884\pi\)
\(284\) −7526.32 −1.57255
\(285\) 0 0
\(286\) −1271.60 −0.262906
\(287\) 4451.51 0.915555
\(288\) 0 0
\(289\) 206.822 0.0420969
\(290\) −732.318 −0.148287
\(291\) 0 0
\(292\) 9714.82 1.94697
\(293\) 8978.98 1.79030 0.895150 0.445766i \(-0.147068\pi\)
0.895150 + 0.445766i \(0.147068\pi\)
\(294\) 0 0
\(295\) 1162.42 0.229419
\(296\) −5634.70 −1.10645
\(297\) 0 0
\(298\) 7319.27 1.42280
\(299\) −6850.70 −1.32504
\(300\) 0 0
\(301\) 1295.80 0.248134
\(302\) 13941.6 2.65646
\(303\) 0 0
\(304\) 9046.57 1.70676
\(305\) −2732.71 −0.513031
\(306\) 0 0
\(307\) 7282.96 1.35394 0.676972 0.736009i \(-0.263292\pi\)
0.676972 + 0.736009i \(0.263292\pi\)
\(308\) −2313.15 −0.427936
\(309\) 0 0
\(310\) −3040.21 −0.557007
\(311\) 2424.98 0.442149 0.221074 0.975257i \(-0.429044\pi\)
0.221074 + 0.975257i \(0.429044\pi\)
\(312\) 0 0
\(313\) −6511.66 −1.17591 −0.587957 0.808892i \(-0.700068\pi\)
−0.587957 + 0.808892i \(0.700068\pi\)
\(314\) 3871.01 0.695712
\(315\) 0 0
\(316\) 16897.4 3.00808
\(317\) −6634.14 −1.17543 −0.587713 0.809069i \(-0.699972\pi\)
−0.587713 + 0.809069i \(0.699972\pi\)
\(318\) 0 0
\(319\) 197.621 0.0346854
\(320\) −732.462 −0.127956
\(321\) 0 0
\(322\) −18156.7 −3.14234
\(323\) 6318.58 1.08847
\(324\) 0 0
\(325\) 923.683 0.157651
\(326\) −9449.97 −1.60548
\(327\) 0 0
\(328\) 11024.0 1.85579
\(329\) 814.663 0.136516
\(330\) 0 0
\(331\) −6727.98 −1.11723 −0.558615 0.829427i \(-0.688667\pi\)
−0.558615 + 0.829427i \(0.688667\pi\)
\(332\) −10945.3 −1.80934
\(333\) 0 0
\(334\) −11836.4 −1.93909
\(335\) 4765.25 0.777174
\(336\) 0 0
\(337\) −7683.33 −1.24195 −0.620976 0.783830i \(-0.713264\pi\)
−0.620976 + 0.783830i \(0.713264\pi\)
\(338\) −4201.46 −0.676123
\(339\) 0 0
\(340\) 6263.47 0.999071
\(341\) 820.420 0.130288
\(342\) 0 0
\(343\) −6011.94 −0.946397
\(344\) 3209.00 0.502958
\(345\) 0 0
\(346\) 7503.62 1.16589
\(347\) −1401.55 −0.216827 −0.108413 0.994106i \(-0.534577\pi\)
−0.108413 + 0.994106i \(0.534577\pi\)
\(348\) 0 0
\(349\) −10253.9 −1.57272 −0.786362 0.617766i \(-0.788038\pi\)
−0.786362 + 0.617766i \(0.788038\pi\)
\(350\) 2448.07 0.373871
\(351\) 0 0
\(352\) −908.160 −0.137515
\(353\) 3309.99 0.499074 0.249537 0.968365i \(-0.419722\pi\)
0.249537 + 0.968365i \(0.419722\pi\)
\(354\) 0 0
\(355\) −2149.49 −0.321361
\(356\) 4747.41 0.706777
\(357\) 0 0
\(358\) −360.815 −0.0532672
\(359\) −10427.4 −1.53297 −0.766483 0.642264i \(-0.777995\pi\)
−0.766483 + 0.642264i \(0.777995\pi\)
\(360\) 0 0
\(361\) 939.026 0.136904
\(362\) −8567.17 −1.24387
\(363\) 0 0
\(364\) 12541.6 1.80593
\(365\) 2774.52 0.397876
\(366\) 0 0
\(367\) −6667.61 −0.948356 −0.474178 0.880429i \(-0.657255\pi\)
−0.474178 + 0.880429i \(0.657255\pi\)
\(368\) −18995.2 −2.69074
\(369\) 0 0
\(370\) −2963.37 −0.416374
\(371\) −182.720 −0.0255696
\(372\) 0 0
\(373\) 6100.55 0.846849 0.423424 0.905931i \(-0.360828\pi\)
0.423424 + 0.905931i \(0.360828\pi\)
\(374\) −2462.60 −0.340476
\(375\) 0 0
\(376\) 2017.49 0.276713
\(377\) −1071.47 −0.146376
\(378\) 0 0
\(379\) 6291.88 0.852750 0.426375 0.904546i \(-0.359790\pi\)
0.426375 + 0.904546i \(0.359790\pi\)
\(380\) 7730.00 1.04353
\(381\) 0 0
\(382\) 18473.6 2.47433
\(383\) −10349.3 −1.38074 −0.690369 0.723457i \(-0.742552\pi\)
−0.690369 + 0.723457i \(0.742552\pi\)
\(384\) 0 0
\(385\) −660.628 −0.0874512
\(386\) −15943.0 −2.10227
\(387\) 0 0
\(388\) 20442.6 2.67478
\(389\) 2361.08 0.307742 0.153871 0.988091i \(-0.450826\pi\)
0.153871 + 0.988091i \(0.450826\pi\)
\(390\) 0 0
\(391\) −13267.2 −1.71599
\(392\) 1581.10 0.203718
\(393\) 0 0
\(394\) 4896.55 0.626103
\(395\) 4825.84 0.614720
\(396\) 0 0
\(397\) 6963.12 0.880274 0.440137 0.897931i \(-0.354930\pi\)
0.440137 + 0.897931i \(0.354930\pi\)
\(398\) 27388.8 3.44944
\(399\) 0 0
\(400\) 2561.13 0.320141
\(401\) 1419.32 0.176752 0.0883759 0.996087i \(-0.471832\pi\)
0.0883759 + 0.996087i \(0.471832\pi\)
\(402\) 0 0
\(403\) −4448.20 −0.549828
\(404\) −17592.4 −2.16647
\(405\) 0 0
\(406\) −2839.76 −0.347131
\(407\) 799.686 0.0973930
\(408\) 0 0
\(409\) −5199.93 −0.628655 −0.314327 0.949315i \(-0.601779\pi\)
−0.314327 + 0.949315i \(0.601779\pi\)
\(410\) 5797.71 0.698362
\(411\) 0 0
\(412\) 12329.0 1.47429
\(413\) 4507.60 0.537056
\(414\) 0 0
\(415\) −3125.93 −0.369749
\(416\) 4923.92 0.580325
\(417\) 0 0
\(418\) −3039.19 −0.355626
\(419\) −4476.06 −0.521885 −0.260943 0.965354i \(-0.584033\pi\)
−0.260943 + 0.965354i \(0.584033\pi\)
\(420\) 0 0
\(421\) 2924.54 0.338558 0.169279 0.985568i \(-0.445856\pi\)
0.169279 + 0.985568i \(0.445856\pi\)
\(422\) −14386.3 −1.65951
\(423\) 0 0
\(424\) −452.499 −0.0518286
\(425\) 1788.82 0.204166
\(426\) 0 0
\(427\) −10596.8 −1.20097
\(428\) −19546.7 −2.20754
\(429\) 0 0
\(430\) 1687.66 0.189270
\(431\) −1488.98 −0.166408 −0.0832039 0.996533i \(-0.526515\pi\)
−0.0832039 + 0.996533i \(0.526515\pi\)
\(432\) 0 0
\(433\) −8411.84 −0.933597 −0.466798 0.884364i \(-0.654593\pi\)
−0.466798 + 0.884364i \(0.654593\pi\)
\(434\) −11789.3 −1.30392
\(435\) 0 0
\(436\) −22872.9 −2.51242
\(437\) −16373.6 −1.79235
\(438\) 0 0
\(439\) −10584.7 −1.15076 −0.575378 0.817887i \(-0.695145\pi\)
−0.575378 + 0.817887i \(0.695145\pi\)
\(440\) −1636.02 −0.177260
\(441\) 0 0
\(442\) 13351.9 1.43684
\(443\) 10335.6 1.10848 0.554242 0.832356i \(-0.313008\pi\)
0.554242 + 0.832356i \(0.313008\pi\)
\(444\) 0 0
\(445\) 1355.84 0.144434
\(446\) 2537.80 0.269436
\(447\) 0 0
\(448\) −2840.32 −0.299537
\(449\) −16626.7 −1.74758 −0.873788 0.486306i \(-0.838344\pi\)
−0.873788 + 0.486306i \(0.838344\pi\)
\(450\) 0 0
\(451\) −1564.55 −0.163352
\(452\) −4487.01 −0.466927
\(453\) 0 0
\(454\) −6751.63 −0.697951
\(455\) 3581.83 0.369053
\(456\) 0 0
\(457\) −9008.26 −0.922076 −0.461038 0.887380i \(-0.652523\pi\)
−0.461038 + 0.887380i \(0.652523\pi\)
\(458\) −5713.41 −0.582904
\(459\) 0 0
\(460\) −16230.8 −1.64514
\(461\) 8097.37 0.818074 0.409037 0.912518i \(-0.365865\pi\)
0.409037 + 0.912518i \(0.365865\pi\)
\(462\) 0 0
\(463\) 4897.89 0.491629 0.245815 0.969317i \(-0.420945\pi\)
0.245815 + 0.969317i \(0.420945\pi\)
\(464\) −2970.91 −0.297244
\(465\) 0 0
\(466\) −6422.31 −0.638429
\(467\) 3331.22 0.330087 0.165043 0.986286i \(-0.447224\pi\)
0.165043 + 0.986286i \(0.447224\pi\)
\(468\) 0 0
\(469\) 18478.6 1.81932
\(470\) 1061.03 0.104131
\(471\) 0 0
\(472\) 11162.9 1.08859
\(473\) −455.426 −0.0442717
\(474\) 0 0
\(475\) 2207.66 0.213251
\(476\) 24288.3 2.33877
\(477\) 0 0
\(478\) −7613.08 −0.728482
\(479\) 13606.3 1.29788 0.648942 0.760838i \(-0.275212\pi\)
0.648942 + 0.760838i \(0.275212\pi\)
\(480\) 0 0
\(481\) −4335.79 −0.411008
\(482\) 21471.1 2.02901
\(483\) 0 0
\(484\) −22489.1 −2.11205
\(485\) 5838.32 0.546607
\(486\) 0 0
\(487\) −15460.9 −1.43861 −0.719304 0.694696i \(-0.755539\pi\)
−0.719304 + 0.694696i \(0.755539\pi\)
\(488\) −26242.7 −2.43433
\(489\) 0 0
\(490\) 831.525 0.0766621
\(491\) 19016.4 1.74785 0.873927 0.486057i \(-0.161565\pi\)
0.873927 + 0.486057i \(0.161565\pi\)
\(492\) 0 0
\(493\) −2075.03 −0.189564
\(494\) 16478.1 1.50078
\(495\) 0 0
\(496\) −12333.7 −1.11653
\(497\) −8335.23 −0.752286
\(498\) 0 0
\(499\) −13675.0 −1.22681 −0.613406 0.789768i \(-0.710201\pi\)
−0.613406 + 0.789768i \(0.710201\pi\)
\(500\) 2188.40 0.195737
\(501\) 0 0
\(502\) −36461.4 −3.24174
\(503\) 1456.45 0.129105 0.0645525 0.997914i \(-0.479438\pi\)
0.0645525 + 0.997914i \(0.479438\pi\)
\(504\) 0 0
\(505\) −5024.32 −0.442731
\(506\) 6381.43 0.560651
\(507\) 0 0
\(508\) −21031.4 −1.83685
\(509\) −15219.7 −1.32535 −0.662674 0.748908i \(-0.730578\pi\)
−0.662674 + 0.748908i \(0.730578\pi\)
\(510\) 0 0
\(511\) 10758.9 0.931405
\(512\) −25699.3 −2.21828
\(513\) 0 0
\(514\) −17353.6 −1.48917
\(515\) 3521.13 0.301280
\(516\) 0 0
\(517\) −286.325 −0.0243570
\(518\) −11491.3 −0.974708
\(519\) 0 0
\(520\) 8870.30 0.748055
\(521\) −19988.9 −1.68086 −0.840432 0.541917i \(-0.817699\pi\)
−0.840432 + 0.541917i \(0.817699\pi\)
\(522\) 0 0
\(523\) 9728.36 0.813368 0.406684 0.913569i \(-0.366685\pi\)
0.406684 + 0.913569i \(0.366685\pi\)
\(524\) −18375.0 −1.53190
\(525\) 0 0
\(526\) −7546.11 −0.625525
\(527\) −8614.48 −0.712055
\(528\) 0 0
\(529\) 22212.9 1.82566
\(530\) −237.976 −0.0195038
\(531\) 0 0
\(532\) 29975.2 2.44284
\(533\) 8482.77 0.689361
\(534\) 0 0
\(535\) −5582.47 −0.451123
\(536\) 45761.6 3.68768
\(537\) 0 0
\(538\) 8545.70 0.684817
\(539\) −224.392 −0.0179318
\(540\) 0 0
\(541\) 15290.2 1.21511 0.607556 0.794277i \(-0.292150\pi\)
0.607556 + 0.794277i \(0.292150\pi\)
\(542\) 15897.6 1.25989
\(543\) 0 0
\(544\) 9535.77 0.751549
\(545\) −6532.42 −0.513428
\(546\) 0 0
\(547\) −9101.20 −0.711406 −0.355703 0.934599i \(-0.615759\pi\)
−0.355703 + 0.934599i \(0.615759\pi\)
\(548\) −50442.0 −3.93207
\(549\) 0 0
\(550\) −860.411 −0.0667055
\(551\) −2560.89 −0.197999
\(552\) 0 0
\(553\) 18713.5 1.43902
\(554\) −19561.3 −1.50014
\(555\) 0 0
\(556\) 45246.3 3.45120
\(557\) 3752.41 0.285448 0.142724 0.989763i \(-0.454414\pi\)
0.142724 + 0.989763i \(0.454414\pi\)
\(558\) 0 0
\(559\) 2469.26 0.186831
\(560\) 9931.49 0.749432
\(561\) 0 0
\(562\) 25007.0 1.87697
\(563\) −18097.1 −1.35471 −0.677356 0.735656i \(-0.736874\pi\)
−0.677356 + 0.735656i \(0.736874\pi\)
\(564\) 0 0
\(565\) −1281.47 −0.0954194
\(566\) −24723.6 −1.83606
\(567\) 0 0
\(568\) −20641.9 −1.52485
\(569\) 14101.9 1.03898 0.519492 0.854475i \(-0.326121\pi\)
0.519492 + 0.854475i \(0.326121\pi\)
\(570\) 0 0
\(571\) 2874.72 0.210689 0.105344 0.994436i \(-0.466406\pi\)
0.105344 + 0.994436i \(0.466406\pi\)
\(572\) −4407.93 −0.322211
\(573\) 0 0
\(574\) 22482.2 1.63482
\(575\) −4635.45 −0.336194
\(576\) 0 0
\(577\) 11659.8 0.841256 0.420628 0.907233i \(-0.361810\pi\)
0.420628 + 0.907233i \(0.361810\pi\)
\(578\) 1044.55 0.0751686
\(579\) 0 0
\(580\) −2538.55 −0.181737
\(581\) −12121.6 −0.865561
\(582\) 0 0
\(583\) 64.2195 0.00456209
\(584\) 26644.2 1.88792
\(585\) 0 0
\(586\) 45348.1 3.19678
\(587\) 14565.9 1.02419 0.512095 0.858929i \(-0.328870\pi\)
0.512095 + 0.858929i \(0.328870\pi\)
\(588\) 0 0
\(589\) −10631.5 −0.743740
\(590\) 5870.75 0.409653
\(591\) 0 0
\(592\) −12022.0 −0.834630
\(593\) 18632.6 1.29030 0.645152 0.764054i \(-0.276794\pi\)
0.645152 + 0.764054i \(0.276794\pi\)
\(594\) 0 0
\(595\) 6936.66 0.477941
\(596\) 25371.9 1.74375
\(597\) 0 0
\(598\) −34599.2 −2.36600
\(599\) 11080.2 0.755802 0.377901 0.925846i \(-0.376646\pi\)
0.377901 + 0.925846i \(0.376646\pi\)
\(600\) 0 0
\(601\) −26806.7 −1.81941 −0.909706 0.415254i \(-0.863693\pi\)
−0.909706 + 0.415254i \(0.863693\pi\)
\(602\) 6544.38 0.443071
\(603\) 0 0
\(604\) 48328.0 3.25569
\(605\) −6422.81 −0.431611
\(606\) 0 0
\(607\) 2408.52 0.161052 0.0805262 0.996752i \(-0.474340\pi\)
0.0805262 + 0.996752i \(0.474340\pi\)
\(608\) 11768.5 0.784992
\(609\) 0 0
\(610\) −13801.4 −0.916073
\(611\) 1552.42 0.102789
\(612\) 0 0
\(613\) 24558.8 1.61814 0.809071 0.587710i \(-0.199971\pi\)
0.809071 + 0.587710i \(0.199971\pi\)
\(614\) 36782.4 2.41762
\(615\) 0 0
\(616\) −6344.14 −0.414956
\(617\) 6367.34 0.415461 0.207731 0.978186i \(-0.433392\pi\)
0.207731 + 0.978186i \(0.433392\pi\)
\(618\) 0 0
\(619\) 25893.6 1.68134 0.840671 0.541546i \(-0.182161\pi\)
0.840671 + 0.541546i \(0.182161\pi\)
\(620\) −10538.8 −0.682656
\(621\) 0 0
\(622\) 12247.3 0.789505
\(623\) 5257.66 0.338112
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −32887.0 −2.09972
\(627\) 0 0
\(628\) 13418.7 0.852649
\(629\) −8396.77 −0.532275
\(630\) 0 0
\(631\) −1864.31 −0.117618 −0.0588089 0.998269i \(-0.518730\pi\)
−0.0588089 + 0.998269i \(0.518730\pi\)
\(632\) 46343.5 2.91684
\(633\) 0 0
\(634\) −33505.5 −2.09885
\(635\) −6006.50 −0.375371
\(636\) 0 0
\(637\) 1216.62 0.0756741
\(638\) 998.077 0.0619345
\(639\) 0 0
\(640\) −9030.03 −0.557724
\(641\) 25891.1 1.59538 0.797689 0.603069i \(-0.206056\pi\)
0.797689 + 0.603069i \(0.206056\pi\)
\(642\) 0 0
\(643\) −19494.1 −1.19560 −0.597801 0.801645i \(-0.703959\pi\)
−0.597801 + 0.801645i \(0.703959\pi\)
\(644\) −62939.3 −3.85118
\(645\) 0 0
\(646\) 31911.8 1.94358
\(647\) 17987.6 1.09299 0.546495 0.837463i \(-0.315962\pi\)
0.546495 + 0.837463i \(0.315962\pi\)
\(648\) 0 0
\(649\) −1584.26 −0.0958207
\(650\) 4665.03 0.281504
\(651\) 0 0
\(652\) −32757.9 −1.96764
\(653\) −2069.77 −0.124037 −0.0620186 0.998075i \(-0.519754\pi\)
−0.0620186 + 0.998075i \(0.519754\pi\)
\(654\) 0 0
\(655\) −5247.83 −0.313053
\(656\) 23520.5 1.39988
\(657\) 0 0
\(658\) 4114.43 0.243765
\(659\) 15787.8 0.933239 0.466619 0.884458i \(-0.345472\pi\)
0.466619 + 0.884458i \(0.345472\pi\)
\(660\) 0 0
\(661\) 32239.9 1.89711 0.948554 0.316615i \(-0.102546\pi\)
0.948554 + 0.316615i \(0.102546\pi\)
\(662\) −33979.4 −1.99494
\(663\) 0 0
\(664\) −30018.9 −1.75446
\(665\) 8560.81 0.499209
\(666\) 0 0
\(667\) 5377.12 0.312149
\(668\) −41030.2 −2.37651
\(669\) 0 0
\(670\) 24066.7 1.38773
\(671\) 3724.41 0.214276
\(672\) 0 0
\(673\) 1039.67 0.0595488 0.0297744 0.999557i \(-0.490521\pi\)
0.0297744 + 0.999557i \(0.490521\pi\)
\(674\) −38804.4 −2.21764
\(675\) 0 0
\(676\) −14564.2 −0.828641
\(677\) 12781.5 0.725604 0.362802 0.931866i \(-0.381820\pi\)
0.362802 + 0.931866i \(0.381820\pi\)
\(678\) 0 0
\(679\) 22639.7 1.27958
\(680\) 17178.4 0.968768
\(681\) 0 0
\(682\) 4143.50 0.232644
\(683\) −176.490 −0.00988755 −0.00494378 0.999988i \(-0.501574\pi\)
−0.00494378 + 0.999988i \(0.501574\pi\)
\(684\) 0 0
\(685\) −14406.1 −0.803543
\(686\) −30363.1 −1.68990
\(687\) 0 0
\(688\) 6846.61 0.379396
\(689\) −348.189 −0.0192525
\(690\) 0 0
\(691\) 28767.9 1.58377 0.791884 0.610672i \(-0.209101\pi\)
0.791884 + 0.610672i \(0.209101\pi\)
\(692\) 26011.0 1.42889
\(693\) 0 0
\(694\) −7078.46 −0.387168
\(695\) 12922.2 0.705275
\(696\) 0 0
\(697\) 16427.9 0.892757
\(698\) −51787.2 −2.80827
\(699\) 0 0
\(700\) 8486.14 0.458208
\(701\) 27326.9 1.47236 0.736179 0.676787i \(-0.236628\pi\)
0.736179 + 0.676787i \(0.236628\pi\)
\(702\) 0 0
\(703\) −10362.8 −0.555961
\(704\) 998.274 0.0534430
\(705\) 0 0
\(706\) 16717.0 0.891152
\(707\) −19483.2 −1.03641
\(708\) 0 0
\(709\) 3138.76 0.166261 0.0831303 0.996539i \(-0.473508\pi\)
0.0831303 + 0.996539i \(0.473508\pi\)
\(710\) −10855.9 −0.573825
\(711\) 0 0
\(712\) 13020.4 0.685339
\(713\) 22323.1 1.17252
\(714\) 0 0
\(715\) −1258.89 −0.0658458
\(716\) −1250.75 −0.0652830
\(717\) 0 0
\(718\) −52663.1 −2.73728
\(719\) −21026.6 −1.09062 −0.545312 0.838233i \(-0.683589\pi\)
−0.545312 + 0.838233i \(0.683589\pi\)
\(720\) 0 0
\(721\) 13654.1 0.705280
\(722\) 4742.52 0.244458
\(723\) 0 0
\(724\) −29697.7 −1.52446
\(725\) −725.000 −0.0371391
\(726\) 0 0
\(727\) 4458.08 0.227429 0.113715 0.993513i \(-0.463725\pi\)
0.113715 + 0.993513i \(0.463725\pi\)
\(728\) 34397.0 1.75115
\(729\) 0 0
\(730\) 14012.6 0.710452
\(731\) 4782.02 0.241955
\(732\) 0 0
\(733\) −28933.7 −1.45797 −0.728984 0.684531i \(-0.760007\pi\)
−0.728984 + 0.684531i \(0.760007\pi\)
\(734\) −33674.6 −1.69339
\(735\) 0 0
\(736\) −24710.4 −1.23755
\(737\) −6494.56 −0.324600
\(738\) 0 0
\(739\) −9135.10 −0.454723 −0.227361 0.973810i \(-0.573010\pi\)
−0.227361 + 0.973810i \(0.573010\pi\)
\(740\) −10272.4 −0.510299
\(741\) 0 0
\(742\) −922.819 −0.0456574
\(743\) 26380.8 1.30258 0.651290 0.758829i \(-0.274228\pi\)
0.651290 + 0.758829i \(0.274228\pi\)
\(744\) 0 0
\(745\) 7246.13 0.356346
\(746\) 30810.6 1.51214
\(747\) 0 0
\(748\) −8536.49 −0.417279
\(749\) −21647.6 −1.05605
\(750\) 0 0
\(751\) 18205.6 0.884597 0.442298 0.896868i \(-0.354163\pi\)
0.442298 + 0.896868i \(0.354163\pi\)
\(752\) 4304.44 0.208733
\(753\) 0 0
\(754\) −5411.44 −0.261370
\(755\) 13802.3 0.665321
\(756\) 0 0
\(757\) 14889.8 0.714902 0.357451 0.933932i \(-0.383646\pi\)
0.357451 + 0.933932i \(0.383646\pi\)
\(758\) 31777.0 1.52268
\(759\) 0 0
\(760\) 21200.6 1.01188
\(761\) −4359.81 −0.207678 −0.103839 0.994594i \(-0.533113\pi\)
−0.103839 + 0.994594i \(0.533113\pi\)
\(762\) 0 0
\(763\) −25331.2 −1.20190
\(764\) 64038.0 3.03248
\(765\) 0 0
\(766\) −52268.7 −2.46546
\(767\) 8589.64 0.404373
\(768\) 0 0
\(769\) −23823.7 −1.11717 −0.558585 0.829448i \(-0.688655\pi\)
−0.558585 + 0.829448i \(0.688655\pi\)
\(770\) −3336.48 −0.156154
\(771\) 0 0
\(772\) −55265.6 −2.57649
\(773\) −18653.0 −0.867922 −0.433961 0.900932i \(-0.642884\pi\)
−0.433961 + 0.900932i \(0.642884\pi\)
\(774\) 0 0
\(775\) −3009.83 −0.139505
\(776\) 56066.5 2.59365
\(777\) 0 0
\(778\) 11924.6 0.549508
\(779\) 20274.4 0.932483
\(780\) 0 0
\(781\) 2929.54 0.134222
\(782\) −67005.6 −3.06409
\(783\) 0 0
\(784\) 3373.38 0.153671
\(785\) 3832.32 0.174244
\(786\) 0 0
\(787\) 16426.1 0.743998 0.371999 0.928233i \(-0.378672\pi\)
0.371999 + 0.928233i \(0.378672\pi\)
\(788\) 16973.7 0.767337
\(789\) 0 0
\(790\) 24372.8 1.09765
\(791\) −4969.26 −0.223371
\(792\) 0 0
\(793\) −20193.2 −0.904266
\(794\) 35167.0 1.57183
\(795\) 0 0
\(796\) 94942.0 4.22755
\(797\) 8480.05 0.376887 0.188443 0.982084i \(-0.439656\pi\)
0.188443 + 0.982084i \(0.439656\pi\)
\(798\) 0 0
\(799\) 3006.44 0.133117
\(800\) 3331.72 0.147243
\(801\) 0 0
\(802\) 7168.23 0.315610
\(803\) −3781.39 −0.166180
\(804\) 0 0
\(805\) −17975.2 −0.787011
\(806\) −22465.5 −0.981779
\(807\) 0 0
\(808\) −48249.5 −2.10076
\(809\) 28294.8 1.22965 0.614827 0.788662i \(-0.289226\pi\)
0.614827 + 0.788662i \(0.289226\pi\)
\(810\) 0 0
\(811\) −28383.8 −1.22896 −0.614482 0.788931i \(-0.710635\pi\)
−0.614482 + 0.788931i \(0.710635\pi\)
\(812\) −9843.92 −0.425436
\(813\) 0 0
\(814\) 4038.79 0.173906
\(815\) −9355.54 −0.402098
\(816\) 0 0
\(817\) 5901.69 0.252722
\(818\) −26262.1 −1.12253
\(819\) 0 0
\(820\) 20097.5 0.855897
\(821\) −27288.2 −1.16001 −0.580003 0.814615i \(-0.696948\pi\)
−0.580003 + 0.814615i \(0.696948\pi\)
\(822\) 0 0
\(823\) −37261.0 −1.57818 −0.789088 0.614281i \(-0.789446\pi\)
−0.789088 + 0.614281i \(0.789446\pi\)
\(824\) 33814.1 1.42957
\(825\) 0 0
\(826\) 22765.5 0.958973
\(827\) −2964.91 −0.124668 −0.0623338 0.998055i \(-0.519854\pi\)
−0.0623338 + 0.998055i \(0.519854\pi\)
\(828\) 0 0
\(829\) 35023.4 1.46733 0.733664 0.679513i \(-0.237809\pi\)
0.733664 + 0.679513i \(0.237809\pi\)
\(830\) −15787.4 −0.660227
\(831\) 0 0
\(832\) −5412.50 −0.225535
\(833\) 2356.14 0.0980016
\(834\) 0 0
\(835\) −11718.1 −0.485654
\(836\) −10535.2 −0.435848
\(837\) 0 0
\(838\) −22606.2 −0.931884
\(839\) 5316.37 0.218762 0.109381 0.994000i \(-0.465113\pi\)
0.109381 + 0.994000i \(0.465113\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 14770.3 0.604533
\(843\) 0 0
\(844\) −49869.5 −2.03386
\(845\) −4159.48 −0.169338
\(846\) 0 0
\(847\) −24906.2 −1.01038
\(848\) −965.437 −0.0390958
\(849\) 0 0
\(850\) 9034.39 0.364561
\(851\) 21758.9 0.876481
\(852\) 0 0
\(853\) −40627.7 −1.63079 −0.815396 0.578904i \(-0.803481\pi\)
−0.815396 + 0.578904i \(0.803481\pi\)
\(854\) −53518.9 −2.14447
\(855\) 0 0
\(856\) −53609.5 −2.14058
\(857\) −22175.9 −0.883914 −0.441957 0.897036i \(-0.645716\pi\)
−0.441957 + 0.897036i \(0.645716\pi\)
\(858\) 0 0
\(859\) −39450.8 −1.56699 −0.783495 0.621399i \(-0.786565\pi\)
−0.783495 + 0.621399i \(0.786565\pi\)
\(860\) 5850.21 0.231966
\(861\) 0 0
\(862\) −7520.06 −0.297139
\(863\) −5285.21 −0.208471 −0.104236 0.994553i \(-0.533240\pi\)
−0.104236 + 0.994553i \(0.533240\pi\)
\(864\) 0 0
\(865\) 7428.64 0.292002
\(866\) −42483.7 −1.66704
\(867\) 0 0
\(868\) −40866.9 −1.59806
\(869\) −6577.14 −0.256748
\(870\) 0 0
\(871\) 35212.6 1.36984
\(872\) −62732.0 −2.43621
\(873\) 0 0
\(874\) −82694.4 −3.20043
\(875\) 2423.61 0.0936377
\(876\) 0 0
\(877\) 17785.8 0.684815 0.342407 0.939552i \(-0.388758\pi\)
0.342407 + 0.939552i \(0.388758\pi\)
\(878\) −53457.9 −2.05480
\(879\) 0 0
\(880\) −3490.57 −0.133713
\(881\) −19542.5 −0.747338 −0.373669 0.927562i \(-0.621900\pi\)
−0.373669 + 0.927562i \(0.621900\pi\)
\(882\) 0 0
\(883\) −1625.38 −0.0619460 −0.0309730 0.999520i \(-0.509861\pi\)
−0.0309730 + 0.999520i \(0.509861\pi\)
\(884\) 46283.7 1.76096
\(885\) 0 0
\(886\) 52199.5 1.97932
\(887\) 48250.9 1.82650 0.913251 0.407396i \(-0.133563\pi\)
0.913251 + 0.407396i \(0.133563\pi\)
\(888\) 0 0
\(889\) −23291.8 −0.878722
\(890\) 6847.65 0.257903
\(891\) 0 0
\(892\) 8797.18 0.330215
\(893\) 3710.37 0.139040
\(894\) 0 0
\(895\) −357.209 −0.0133410
\(896\) −35016.4 −1.30560
\(897\) 0 0
\(898\) −83972.6 −3.12049
\(899\) 3491.40 0.129527
\(900\) 0 0
\(901\) −674.310 −0.0249329
\(902\) −7901.70 −0.291683
\(903\) 0 0
\(904\) −12306.2 −0.452764
\(905\) −8481.56 −0.311532
\(906\) 0 0
\(907\) 20513.2 0.750971 0.375486 0.926828i \(-0.377476\pi\)
0.375486 + 0.926828i \(0.377476\pi\)
\(908\) −23404.2 −0.855393
\(909\) 0 0
\(910\) 18089.9 0.658984
\(911\) 33692.7 1.22534 0.612672 0.790338i \(-0.290095\pi\)
0.612672 + 0.790338i \(0.290095\pi\)
\(912\) 0 0
\(913\) 4260.33 0.154432
\(914\) −45495.9 −1.64647
\(915\) 0 0
\(916\) −19805.3 −0.714394
\(917\) −20349.9 −0.732839
\(918\) 0 0
\(919\) 36764.9 1.31966 0.659828 0.751417i \(-0.270629\pi\)
0.659828 + 0.751417i \(0.270629\pi\)
\(920\) −44515.1 −1.59524
\(921\) 0 0
\(922\) 40895.5 1.46076
\(923\) −15883.6 −0.566429
\(924\) 0 0
\(925\) −2933.76 −0.104283
\(926\) 24736.6 0.877858
\(927\) 0 0
\(928\) −3864.79 −0.136711
\(929\) −13533.8 −0.477965 −0.238982 0.971024i \(-0.576814\pi\)
−0.238982 + 0.971024i \(0.576814\pi\)
\(930\) 0 0
\(931\) 2907.81 0.102363
\(932\) −22262.7 −0.782444
\(933\) 0 0
\(934\) 16824.2 0.589406
\(935\) −2437.99 −0.0852736
\(936\) 0 0
\(937\) −54144.0 −1.88773 −0.943867 0.330325i \(-0.892842\pi\)
−0.943867 + 0.330325i \(0.892842\pi\)
\(938\) 93325.3 3.24859
\(939\) 0 0
\(940\) 3678.01 0.127621
\(941\) 8397.60 0.290918 0.145459 0.989364i \(-0.453534\pi\)
0.145459 + 0.989364i \(0.453534\pi\)
\(942\) 0 0
\(943\) −42570.3 −1.47007
\(944\) 23816.8 0.821157
\(945\) 0 0
\(946\) −2300.12 −0.0790521
\(947\) 4931.24 0.169212 0.0846059 0.996414i \(-0.473037\pi\)
0.0846059 + 0.996414i \(0.473037\pi\)
\(948\) 0 0
\(949\) 20502.2 0.701295
\(950\) 11149.7 0.380784
\(951\) 0 0
\(952\) 66614.0 2.26783
\(953\) 21509.1 0.731111 0.365555 0.930790i \(-0.380879\pi\)
0.365555 + 0.930790i \(0.380879\pi\)
\(954\) 0 0
\(955\) 18289.0 0.619705
\(956\) −26390.4 −0.892811
\(957\) 0 0
\(958\) 68718.0 2.31751
\(959\) −55863.4 −1.88105
\(960\) 0 0
\(961\) −15296.5 −0.513460
\(962\) −21897.7 −0.733900
\(963\) 0 0
\(964\) 74428.8 2.48671
\(965\) −15783.6 −0.526522
\(966\) 0 0
\(967\) 56174.6 1.86810 0.934051 0.357140i \(-0.116248\pi\)
0.934051 + 0.357140i \(0.116248\pi\)
\(968\) −61679.5 −2.04799
\(969\) 0 0
\(970\) 29486.2 0.976027
\(971\) −59470.2 −1.96549 −0.982745 0.184966i \(-0.940783\pi\)
−0.982745 + 0.184966i \(0.940783\pi\)
\(972\) 0 0
\(973\) 50109.3 1.65101
\(974\) −78084.9 −2.56879
\(975\) 0 0
\(976\) −55990.5 −1.83628
\(977\) 54861.4 1.79649 0.898245 0.439494i \(-0.144842\pi\)
0.898245 + 0.439494i \(0.144842\pi\)
\(978\) 0 0
\(979\) −1847.88 −0.0603254
\(980\) 2882.44 0.0939554
\(981\) 0 0
\(982\) 96041.5 3.12099
\(983\) 20759.3 0.673568 0.336784 0.941582i \(-0.390661\pi\)
0.336784 + 0.941582i \(0.390661\pi\)
\(984\) 0 0
\(985\) 4847.62 0.156810
\(986\) −10479.9 −0.338487
\(987\) 0 0
\(988\) 57120.6 1.83932
\(989\) −12391.8 −0.398420
\(990\) 0 0
\(991\) −25662.6 −0.822603 −0.411301 0.911499i \(-0.634926\pi\)
−0.411301 + 0.911499i \(0.634926\pi\)
\(992\) −16044.6 −0.513526
\(993\) 0 0
\(994\) −42096.8 −1.34329
\(995\) 27115.1 0.863926
\(996\) 0 0
\(997\) 43697.7 1.38808 0.694042 0.719935i \(-0.255828\pi\)
0.694042 + 0.719935i \(0.255828\pi\)
\(998\) −69065.4 −2.19061
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.4.a.h.1.6 6
3.2 odd 2 435.4.a.h.1.1 6
15.14 odd 2 2175.4.a.k.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.h.1.1 6 3.2 odd 2
1305.4.a.h.1.6 6 1.1 even 1 trivial
2175.4.a.k.1.6 6 15.14 odd 2