Properties

Label 1368.2.e.c.379.1
Level $1368$
Weight $2$
Character 1368.379
Analytic conductor $10.924$
Analytic rank $0$
Dimension $8$
CM discriminant -456
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1368,2,Mod(379,1368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1368.379");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1368.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.9235349965\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.4919453024256.11
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 12x^{6} + 96x^{4} + 248x^{2} + 900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 379.1
Root \(-3.05923 - 1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 1368.379
Dual form 1368.2.e.c.379.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} -4.32641i q^{5} +2.82843i q^{8} +O(q^{10})\) \(q-1.41421i q^{2} -2.00000 q^{4} -4.32641i q^{5} +2.82843i q^{8} -6.11846 q^{10} -4.15719 q^{13} +4.00000 q^{16} -4.35890 q^{19} +8.65281i q^{20} -1.55274i q^{23} -13.7178 q^{25} +5.87915i q^{26} +10.2757 q^{31} -5.65685i q^{32} -8.07974 q^{37} +6.16441i q^{38} +12.2369 q^{40} +12.3288i q^{41} -8.71780 q^{43} -2.19591 q^{46} -7.10007i q^{47} +7.00000 q^{49} +19.3999i q^{50} +8.31437 q^{52} -2.82843i q^{59} -14.5320i q^{62} -8.00000 q^{64} +17.9857i q^{65} -8.71780 q^{73} +11.4265i q^{74} +8.71780 q^{76} +14.1982 q^{79} -17.3056i q^{80} +17.4356 q^{82} +12.3288i q^{86} -11.3137i q^{89} +3.10549i q^{92} -10.0410 q^{94} +18.8584i q^{95} -9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 16 q^{4} + 32 q^{16} - 40 q^{25} + 56 q^{49} - 64 q^{64}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1368\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(685\) \(1009\) \(1217\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 1.00000i
\(3\) 0 0
\(4\) −2.00000 −1.00000
\(5\) − 4.32641i − 1.93483i −0.253200 0.967414i \(-0.581483\pi\)
0.253200 0.967414i \(-0.418517\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 2.82843i 1.00000i
\(9\) 0 0
\(10\) −6.11846 −1.93483
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −4.15719 −1.15300 −0.576498 0.817099i \(-0.695581\pi\)
−0.576498 + 0.817099i \(0.695581\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −4.35890 −1.00000
\(20\) 8.65281i 1.93483i
\(21\) 0 0
\(22\) 0 0
\(23\) − 1.55274i − 0.323769i −0.986810 0.161885i \(-0.948243\pi\)
0.986810 0.161885i \(-0.0517572\pi\)
\(24\) 0 0
\(25\) −13.7178 −2.74356
\(26\) 5.87915i 1.15300i
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 10.2757 1.84556 0.922781 0.385326i \(-0.125911\pi\)
0.922781 + 0.385326i \(0.125911\pi\)
\(32\) − 5.65685i − 1.00000i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −8.07974 −1.32830 −0.664151 0.747599i \(-0.731207\pi\)
−0.664151 + 0.747599i \(0.731207\pi\)
\(38\) 6.16441i 1.00000i
\(39\) 0 0
\(40\) 12.2369 1.93483
\(41\) 12.3288i 1.92544i 0.270501 + 0.962720i \(0.412811\pi\)
−0.270501 + 0.962720i \(0.587189\pi\)
\(42\) 0 0
\(43\) −8.71780 −1.32945 −0.664726 0.747087i \(-0.731452\pi\)
−0.664726 + 0.747087i \(0.731452\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −2.19591 −0.323769
\(47\) − 7.10007i − 1.03565i −0.855486 0.517826i \(-0.826741\pi\)
0.855486 0.517826i \(-0.173259\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 19.3999i 2.74356i
\(51\) 0 0
\(52\) 8.31437 1.15300
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 2.82843i − 0.368230i −0.982905 0.184115i \(-0.941058\pi\)
0.982905 0.184115i \(-0.0589419\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) − 14.5320i − 1.84556i
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 17.9857i 2.23085i
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −8.71780 −1.02034 −0.510171 0.860073i \(-0.670418\pi\)
−0.510171 + 0.860073i \(0.670418\pi\)
\(74\) 11.4265i 1.32830i
\(75\) 0 0
\(76\) 8.71780 1.00000
\(77\) 0 0
\(78\) 0 0
\(79\) 14.1982 1.59742 0.798711 0.601714i \(-0.205515\pi\)
0.798711 + 0.601714i \(0.205515\pi\)
\(80\) − 17.3056i − 1.93483i
\(81\) 0 0
\(82\) 17.4356 1.92544
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 12.3288i 1.32945i
\(87\) 0 0
\(88\) 0 0
\(89\) − 11.3137i − 1.19925i −0.800281 0.599625i \(-0.795316\pi\)
0.800281 0.599625i \(-0.204684\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 3.10549i 0.323769i
\(93\) 0 0
\(94\) −10.0410 −1.03565
\(95\) 18.8584i 1.93483i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) − 9.89949i − 1.00000i
\(99\) 0 0
\(100\) 27.4356 2.74356
\(101\) 1.22092i 0.121486i 0.998153 + 0.0607431i \(0.0193470\pi\)
−0.998153 + 0.0607431i \(0.980653\pi\)
\(102\) 0 0
\(103\) 6.35310 0.625989 0.312995 0.949755i \(-0.398668\pi\)
0.312995 + 0.949755i \(0.398668\pi\)
\(104\) − 11.7583i − 1.15300i
\(105\) 0 0
\(106\) 0 0
\(107\) 14.1421i 1.36717i 0.729870 + 0.683586i \(0.239581\pi\)
−0.729870 + 0.683586i \(0.760419\pi\)
\(108\) 0 0
\(109\) −0.234633 −0.0224738 −0.0112369 0.999937i \(-0.503577\pi\)
−0.0112369 + 0.999937i \(0.503577\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.3288i 1.15980i 0.814688 + 0.579899i \(0.196908\pi\)
−0.814688 + 0.579899i \(0.803092\pi\)
\(114\) 0 0
\(115\) −6.71780 −0.626438
\(116\) 0 0
\(117\) 0 0
\(118\) −4.00000 −0.368230
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) −20.5513 −1.84556
\(125\) 37.7167i 3.37349i
\(126\) 0 0
\(127\) −22.5126 −1.99767 −0.998834 0.0482746i \(-0.984628\pi\)
−0.998834 + 0.0482746i \(0.984628\pi\)
\(128\) 11.3137i 1.00000i
\(129\) 0 0
\(130\) 25.4356 2.23085
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) −10.0000 −0.848189 −0.424094 0.905618i \(-0.639408\pi\)
−0.424094 + 0.905618i \(0.639408\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 12.3288i 1.02034i
\(147\) 0 0
\(148\) 16.1595 1.32830
\(149\) − 9.87374i − 0.808888i −0.914563 0.404444i \(-0.867465\pi\)
0.914563 0.404444i \(-0.132535\pi\)
\(150\) 0 0
\(151\) −18.5900 −1.51283 −0.756417 0.654089i \(-0.773052\pi\)
−0.756417 + 0.654089i \(0.773052\pi\)
\(152\) − 12.3288i − 1.00000i
\(153\) 0 0
\(154\) 0 0
\(155\) − 44.4566i − 3.57084i
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) − 20.0793i − 1.59742i
\(159\) 0 0
\(160\) −24.4739 −1.93483
\(161\) 0 0
\(162\) 0 0
\(163\) 14.0000 1.09656 0.548282 0.836293i \(-0.315282\pi\)
0.548282 + 0.836293i \(0.315282\pi\)
\(164\) − 24.6577i − 1.92544i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 4.28220 0.329400
\(170\) 0 0
\(171\) 0 0
\(172\) 17.4356 1.32945
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −16.0000 −1.19925
\(179\) − 24.6577i − 1.84300i −0.388379 0.921500i \(-0.626965\pi\)
0.388379 0.921500i \(-0.373035\pi\)
\(180\) 0 0
\(181\) −12.0023 −0.892123 −0.446062 0.895002i \(-0.647174\pi\)
−0.446062 + 0.895002i \(0.647174\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 4.39182 0.323769
\(185\) 34.9562i 2.57003i
\(186\) 0 0
\(187\) 0 0
\(188\) 14.2001i 1.03565i
\(189\) 0 0
\(190\) 26.6698 1.93483
\(191\) − 27.5112i − 1.99064i −0.0966364 0.995320i \(-0.530808\pi\)
0.0966364 0.995320i \(-0.469192\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −14.0000 −1.00000
\(197\) − 24.7375i − 1.76248i −0.472673 0.881238i \(-0.656711\pi\)
0.472673 0.881238i \(-0.343289\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) − 38.7998i − 2.74356i
\(201\) 0 0
\(202\) 1.72664 0.121486
\(203\) 0 0
\(204\) 0 0
\(205\) 53.3395 3.72539
\(206\) − 8.98464i − 0.625989i
\(207\) 0 0
\(208\) −16.6287 −1.15300
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 20.0000 1.36717
\(215\) 37.7167i 2.57226i
\(216\) 0 0
\(217\) 0 0
\(218\) 0.331822i 0.0224738i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −26.4351 −1.77023 −0.885114 0.465375i \(-0.845919\pi\)
−0.885114 + 0.465375i \(0.845919\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 17.4356 1.15980
\(227\) − 24.6577i − 1.63659i −0.574801 0.818293i \(-0.694921\pi\)
0.574801 0.818293i \(-0.305079\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 9.50040i 0.626438i
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) −30.7178 −2.00381
\(236\) 5.65685i 0.368230i
\(237\) 0 0
\(238\) 0 0
\(239\) 3.99459i 0.258388i 0.991619 + 0.129194i \(0.0412390\pi\)
−0.991619 + 0.129194i \(0.958761\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 15.5563i 1.00000i
\(243\) 0 0
\(244\) 0 0
\(245\) − 30.2848i − 1.93483i
\(246\) 0 0
\(247\) 18.1208 1.15300
\(248\) 29.0639i 1.84556i
\(249\) 0 0
\(250\) 53.3395 3.37349
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 31.8376i 1.99767i
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) − 28.2843i − 1.76432i −0.470946 0.882162i \(-0.656087\pi\)
0.470946 0.882162i \(-0.343913\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) − 35.9714i − 2.23085i
\(261\) 0 0
\(262\) 0 0
\(263\) − 21.9639i − 1.35435i −0.735822 0.677175i \(-0.763204\pi\)
0.735822 0.677175i \(-0.236796\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 14.1421i 0.848189i
\(279\) 0 0
\(280\) 0 0
\(281\) 12.3288i 0.735476i 0.929929 + 0.367738i \(0.119868\pi\)
−0.929929 + 0.367738i \(0.880132\pi\)
\(282\) 0 0
\(283\) 26.0000 1.54554 0.772770 0.634686i \(-0.218871\pi\)
0.772770 + 0.634686i \(0.218871\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 17.4356 1.02034
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) −12.2369 −0.712461
\(296\) − 22.8530i − 1.32830i
\(297\) 0 0
\(298\) −13.9636 −0.808888
\(299\) 6.45504i 0.373305i
\(300\) 0 0
\(301\) 0 0
\(302\) 26.2903i 1.51283i
\(303\) 0 0
\(304\) −17.4356 −1.00000
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −62.8712 −3.57084
\(311\) − 12.6474i − 0.717168i −0.933497 0.358584i \(-0.883260\pi\)
0.933497 0.358584i \(-0.116740\pi\)
\(312\) 0 0
\(313\) −8.71780 −0.492759 −0.246380 0.969173i \(-0.579241\pi\)
−0.246380 + 0.969173i \(0.579241\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −28.3964 −1.59742
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 34.6113i 1.93483i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 57.0274 3.16331
\(326\) − 19.7990i − 1.09656i
\(327\) 0 0
\(328\) −34.8712 −1.92544
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) − 6.05595i − 0.329400i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) − 24.6577i − 1.32945i
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 22.6274i 1.19925i
\(357\) 0 0
\(358\) −34.8712 −1.84300
\(359\) − 33.0585i − 1.74476i −0.488827 0.872381i \(-0.662575\pi\)
0.488827 0.872381i \(-0.337425\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 16.9738i 0.892123i
\(363\) 0 0
\(364\) 0 0
\(365\) 37.7167i 1.97418i
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) − 6.21097i − 0.323769i
\(369\) 0 0
\(370\) 49.4356 2.57003
\(371\) 0 0
\(372\) 0 0
\(373\) −36.9454 −1.91296 −0.956481 0.291796i \(-0.905747\pi\)
−0.956481 + 0.291796i \(0.905747\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 20.0820 1.03565
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) − 37.7167i − 1.93483i
\(381\) 0 0
\(382\) −38.9067 −1.99064
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 19.1902i − 0.972981i −0.873686 0.486491i \(-0.838277\pi\)
0.873686 0.486491i \(-0.161723\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 19.7990i 1.00000i
\(393\) 0 0
\(394\) −34.9841 −1.76248
\(395\) − 61.4272i − 3.09074i
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −54.8712 −2.74356
\(401\) 12.3288i 0.615672i 0.951439 + 0.307836i \(0.0996049\pi\)
−0.951439 + 0.307836i \(0.900395\pi\)
\(402\) 0 0
\(403\) −42.7178 −2.12793
\(404\) − 2.44184i − 0.121486i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) − 75.4335i − 3.72539i
\(411\) 0 0
\(412\) −12.7062 −0.625989
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 23.5166i 1.15300i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −40.8680 −1.99178 −0.995891 0.0905552i \(-0.971136\pi\)
−0.995891 + 0.0905552i \(0.971136\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) − 28.2843i − 1.36717i
\(429\) 0 0
\(430\) 53.3395 2.57226
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.469267 0.0224738
\(437\) 6.76825i 0.323769i
\(438\) 0 0
\(439\) −30.3577 −1.44889 −0.724447 0.689331i \(-0.757905\pi\)
−0.724447 + 0.689331i \(0.757905\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) −48.9477 −2.32034
\(446\) 37.3849i 1.77023i
\(447\) 0 0
\(448\) 0 0
\(449\) 39.5980i 1.86874i 0.356299 + 0.934372i \(0.384039\pi\)
−0.356299 + 0.934372i \(0.615961\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) − 24.6577i − 1.15980i
\(453\) 0 0
\(454\) −34.8712 −1.63659
\(455\) 0 0
\(456\) 0 0
\(457\) 2.00000 0.0935561 0.0467780 0.998905i \(-0.485105\pi\)
0.0467780 + 0.998905i \(0.485105\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 13.4356 0.626438
\(461\) 42.0431i 1.95814i 0.203513 + 0.979072i \(0.434764\pi\)
−0.203513 + 0.979072i \(0.565236\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 43.4415i 2.00381i
\(471\) 0 0
\(472\) 8.00000 0.368230
\(473\) 0 0
\(474\) 0 0
\(475\) 59.7945 2.74356
\(476\) 0 0
\(477\) 0 0
\(478\) 5.64920 0.258388
\(479\) 39.2695i 1.79427i 0.441758 + 0.897134i \(0.354355\pi\)
−0.441758 + 0.897134i \(0.645645\pi\)
\(480\) 0 0
\(481\) 33.5890 1.53153
\(482\) 0 0
\(483\) 0 0
\(484\) 22.0000 1.00000
\(485\) 0 0
\(486\) 0 0
\(487\) 43.0639 1.95141 0.975705 0.219087i \(-0.0703079\pi\)
0.975705 + 0.219087i \(0.0703079\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −42.8292 −1.93483
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) − 25.6266i − 1.15300i
\(495\) 0 0
\(496\) 41.1026 1.84556
\(497\) 0 0
\(498\) 0 0
\(499\) 43.5890 1.95131 0.975656 0.219308i \(-0.0703801\pi\)
0.975656 + 0.219308i \(0.0703801\pi\)
\(500\) − 75.4335i − 3.37349i
\(501\) 0 0
\(502\) 0 0
\(503\) 44.8168i 1.99828i 0.0414285 + 0.999141i \(0.486809\pi\)
−0.0414285 + 0.999141i \(0.513191\pi\)
\(504\) 0 0
\(505\) 5.28220 0.235055
\(506\) 0 0
\(507\) 0 0
\(508\) 45.0252 1.99767
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) − 22.6274i − 1.00000i
\(513\) 0 0
\(514\) −40.0000 −1.76432
\(515\) − 27.4861i − 1.21118i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −50.8712 −2.23085
\(521\) 5.65685i 0.247831i 0.992293 + 0.123916i \(0.0395452\pi\)
−0.992293 + 0.123916i \(0.960455\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −31.0616 −1.35435
\(527\) 0 0
\(528\) 0 0
\(529\) 20.5890 0.895173
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 51.2532i − 2.22002i
\(534\) 0 0
\(535\) 61.1846 2.64524
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.01512i 0.0434829i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 20.0000 0.848189
\(557\) 36.4958i 1.54638i 0.634176 + 0.773189i \(0.281339\pi\)
−0.634176 + 0.773189i \(0.718661\pi\)
\(558\) 0 0
\(559\) 36.2415 1.53285
\(560\) 0 0
\(561\) 0 0
\(562\) 17.4356 0.735476
\(563\) 14.1421i 0.596020i 0.954563 + 0.298010i \(0.0963229\pi\)
−0.954563 + 0.298010i \(0.903677\pi\)
\(564\) 0 0
\(565\) 53.3395 2.24401
\(566\) − 36.7696i − 1.54554i
\(567\) 0 0
\(568\) 0 0
\(569\) − 45.2548i − 1.89718i −0.316506 0.948591i \(-0.602510\pi\)
0.316506 0.948591i \(-0.397490\pi\)
\(570\) 0 0
\(571\) 43.5890 1.82414 0.912071 0.410032i \(-0.134482\pi\)
0.912071 + 0.410032i \(0.134482\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 21.3002i 0.888280i
\(576\) 0 0
\(577\) −22.0000 −0.915872 −0.457936 0.888985i \(-0.651411\pi\)
−0.457936 + 0.888985i \(0.651411\pi\)
\(578\) 24.0416i 1.00000i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) − 24.6577i − 1.02034i
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) −44.7905 −1.84556
\(590\) 17.3056i 0.712461i
\(591\) 0 0
\(592\) −32.3190 −1.32830
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 19.7475i 0.808888i
\(597\) 0 0
\(598\) 9.12881 0.373305
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 37.1800 1.51283
\(605\) 47.5905i 1.93483i
\(606\) 0 0
\(607\) −1.49201 −0.0605588 −0.0302794 0.999541i \(-0.509640\pi\)
−0.0302794 + 0.999541i \(0.509640\pi\)
\(608\) 24.6577i 1.00000i
\(609\) 0 0
\(610\) 0 0
\(611\) 29.5163i 1.19410i
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) −8.71780 −0.350398 −0.175199 0.984533i \(-0.556057\pi\)
−0.175199 + 0.984533i \(0.556057\pi\)
\(620\) 88.9133i 3.57084i
\(621\) 0 0
\(622\) −17.8861 −0.717168
\(623\) 0 0
\(624\) 0 0
\(625\) 94.5890 3.78356
\(626\) 12.3288i 0.492759i
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 40.1586i 1.59742i
\(633\) 0 0
\(634\) 0 0
\(635\) 97.3986i 3.86514i
\(636\) 0 0
\(637\) −29.1003 −1.15300
\(638\) 0 0
\(639\) 0 0
\(640\) 48.9477 1.93483
\(641\) 22.6274i 0.893729i 0.894602 + 0.446865i \(0.147459\pi\)
−0.894602 + 0.446865i \(0.852541\pi\)
\(642\) 0 0
\(643\) −46.0000 −1.81406 −0.907031 0.421063i \(-0.861657\pi\)
−0.907031 + 0.421063i \(0.861657\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 47.9223i − 1.88402i −0.335585 0.942010i \(-0.608934\pi\)
0.335585 0.942010i \(-0.391066\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) − 80.6490i − 3.16331i
\(651\) 0 0
\(652\) −28.0000 −1.09656
\(653\) − 50.6960i − 1.98389i −0.126684 0.991943i \(-0.540433\pi\)
0.126684 0.991943i \(-0.459567\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 49.3153i 1.92544i
\(657\) 0 0
\(658\) 0 0
\(659\) − 24.6577i − 0.960526i −0.877125 0.480263i \(-0.840541\pi\)
0.877125 0.480263i \(-0.159459\pi\)
\(660\) 0 0
\(661\) 7.61047 0.296013 0.148007 0.988986i \(-0.452714\pi\)
0.148007 + 0.988986i \(0.452714\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −8.56440 −0.329400
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 49.3153i 1.88700i 0.331375 + 0.943499i \(0.392487\pi\)
−0.331375 + 0.943499i \(0.607513\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −34.8712 −1.32945
\(689\) 0 0
\(690\) 0 0
\(691\) 43.5890 1.65820 0.829102 0.559098i \(-0.188852\pi\)
0.829102 + 0.559098i \(0.188852\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 43.2641i 1.64110i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 45.1486i − 1.70524i −0.522531 0.852620i \(-0.675012\pi\)
0.522531 0.852620i \(-0.324988\pi\)
\(702\) 0 0
\(703\) 35.2188 1.32830
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 32.0000 1.19925
\(713\) − 15.9554i − 0.597536i
\(714\) 0 0
\(715\) 0 0
\(716\) 49.3153i 1.84300i
\(717\) 0 0
\(718\) −46.7518 −1.74476
\(719\) − 53.4696i − 1.99408i −0.0768806 0.997040i \(-0.524496\pi\)
0.0768806 0.997040i \(-0.475504\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) − 26.8701i − 1.00000i
\(723\) 0 0
\(724\) 24.0046 0.892123
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 53.3395 1.97418
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −8.78364 −0.323769
\(737\) 0 0
\(738\) 0 0
\(739\) 50.0000 1.83928 0.919640 0.392763i \(-0.128481\pi\)
0.919640 + 0.392763i \(0.128481\pi\)
\(740\) − 69.9125i − 2.57003i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −42.7178 −1.56506
\(746\) 52.2487i 1.91296i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 50.9090 1.85770 0.928848 0.370462i \(-0.120801\pi\)
0.928848 + 0.370462i \(0.120801\pi\)
\(752\) − 28.4003i − 1.03565i
\(753\) 0 0
\(754\) 0 0
\(755\) 80.4280i 2.92707i
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −53.3395 −1.93483
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 55.0224i 1.99064i
\(765\) 0 0
\(766\) 0 0
\(767\) 11.7583i 0.424568i
\(768\) 0 0
\(769\) 43.5890 1.57186 0.785930 0.618316i \(-0.212185\pi\)
0.785930 + 0.618316i \(0.212185\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) −140.959 −5.06341
\(776\) 0 0
\(777\) 0 0
\(778\) −27.1390 −0.972981
\(779\) − 53.7401i − 1.92544i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 28.0000 1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 49.4750i 1.76248i
\(789\) 0 0
\(790\) −86.8712 −3.09074
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 77.5996i 2.74356i
\(801\) 0 0
\(802\) 17.4356 0.615672
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 60.4121i 2.12793i
\(807\) 0 0
\(808\) −3.45329 −0.121486
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 60.5697i − 2.12166i
\(816\) 0 0
\(817\) 38.0000 1.32945
\(818\) 0 0
\(819\) 0 0
\(820\) −106.679 −3.72539
\(821\) − 13.6429i − 0.476139i −0.971248 0.238070i \(-0.923485\pi\)
0.971248 0.238070i \(-0.0765146\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 17.9693i 0.625989i
\(825\) 0 0
\(826\) 0 0
\(827\) − 24.6577i − 0.857431i −0.903440 0.428715i \(-0.858966\pi\)
0.903440 0.428715i \(-0.141034\pi\)
\(828\) 0 0
\(829\) −19.8474 −0.689329 −0.344664 0.938726i \(-0.612007\pi\)
−0.344664 + 0.938726i \(0.612007\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 33.2575 1.15300
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 57.7960i 1.99178i
\(843\) 0 0
\(844\) 0 0
\(845\) − 18.5265i − 0.637333i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 12.5458i 0.430063i
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −40.0000 −1.36717
\(857\) 56.5685i 1.93234i 0.257897 + 0.966172i \(0.416970\pi\)
−0.257897 + 0.966172i \(0.583030\pi\)
\(858\) 0 0
\(859\) 43.5890 1.48724 0.743619 0.668604i \(-0.233108\pi\)
0.743619 + 0.668604i \(0.233108\pi\)
\(860\) − 75.4335i − 2.57226i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) − 0.663643i − 0.0224738i
\(873\) 0 0
\(874\) 9.57175 0.323769
\(875\) 0 0
\(876\) 0 0
\(877\) −48.7131 −1.64492 −0.822462 0.568820i \(-0.807400\pi\)
−0.822462 + 0.568820i \(0.807400\pi\)
\(878\) 42.9322i 1.44889i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −8.71780 −0.293377 −0.146689 0.989183i \(-0.546862\pi\)
−0.146689 + 0.989183i \(0.546862\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 69.2225i 2.32034i
\(891\) 0 0
\(892\) 52.8703 1.77023
\(893\) 30.9485i 1.03565i
\(894\) 0 0
\(895\) −106.679 −3.56589
\(896\) 0 0
\(897\) 0 0
\(898\) 56.0000 1.86874
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −34.8712 −1.15980
\(905\) 51.9268i 1.72611i
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 49.3153i 1.63659i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) − 2.82843i − 0.0935561i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) − 19.0008i − 0.626438i
\(921\) 0 0
\(922\) 59.4580 1.95814
\(923\) 0 0
\(924\) 0 0
\(925\) 110.836 3.64427
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) −30.5123 −1.00000
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −61.0246 −1.99359 −0.996793 0.0800213i \(-0.974501\pi\)
−0.996793 + 0.0800213i \(0.974501\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 61.4356 2.00381
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 19.1435 0.623398
\(944\) − 11.3137i − 0.368230i
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 36.2415 1.17645
\(950\) − 84.5622i − 2.74356i
\(951\) 0 0
\(952\) 0 0
\(953\) − 61.6441i − 1.99685i −0.0561066 0.998425i \(-0.517869\pi\)
0.0561066 0.998425i \(-0.482131\pi\)
\(954\) 0 0
\(955\) −119.025 −3.85155
\(956\) − 7.98917i − 0.258388i
\(957\) 0 0
\(958\) 55.5354 1.79427
\(959\) 0 0
\(960\) 0 0
\(961\) 74.5890 2.40610
\(962\) − 47.5020i − 1.53153i
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) − 31.1127i − 1.00000i
\(969\) 0 0
\(970\) 0 0
\(971\) 49.3153i 1.58260i 0.611426 + 0.791302i \(0.290596\pi\)
−0.611426 + 0.791302i \(0.709404\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) − 60.9015i − 1.95141i
\(975\) 0 0
\(976\) 0 0
\(977\) − 61.6441i − 1.97217i −0.166240 0.986085i \(-0.553163\pi\)
0.166240 0.986085i \(-0.446837\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 60.5697i 1.93483i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) −107.025 −3.41009
\(986\) 0 0
\(987\) 0 0
\(988\) −36.2415 −1.15300
\(989\) 13.5365i 0.430436i
\(990\) 0 0
\(991\) 31.2962 0.994157 0.497079 0.867706i \(-0.334406\pi\)
0.497079 + 0.867706i \(0.334406\pi\)
\(992\) − 58.1279i − 1.84556i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) − 61.6441i − 1.95131i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1368.2.e.c.379.1 8
3.2 odd 2 inner 1368.2.e.c.379.8 yes 8
4.3 odd 2 5472.2.e.c.5167.1 8
8.3 odd 2 inner 1368.2.e.c.379.4 yes 8
8.5 even 2 5472.2.e.c.5167.8 8
12.11 even 2 5472.2.e.c.5167.7 8
19.18 odd 2 inner 1368.2.e.c.379.5 yes 8
24.5 odd 2 5472.2.e.c.5167.2 8
24.11 even 2 inner 1368.2.e.c.379.5 yes 8
57.56 even 2 inner 1368.2.e.c.379.4 yes 8
76.75 even 2 5472.2.e.c.5167.2 8
152.37 odd 2 5472.2.e.c.5167.7 8
152.75 even 2 inner 1368.2.e.c.379.8 yes 8
228.227 odd 2 5472.2.e.c.5167.8 8
456.227 odd 2 CM 1368.2.e.c.379.1 8
456.341 even 2 5472.2.e.c.5167.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1368.2.e.c.379.1 8 1.1 even 1 trivial
1368.2.e.c.379.1 8 456.227 odd 2 CM
1368.2.e.c.379.4 yes 8 8.3 odd 2 inner
1368.2.e.c.379.4 yes 8 57.56 even 2 inner
1368.2.e.c.379.5 yes 8 19.18 odd 2 inner
1368.2.e.c.379.5 yes 8 24.11 even 2 inner
1368.2.e.c.379.8 yes 8 3.2 odd 2 inner
1368.2.e.c.379.8 yes 8 152.75 even 2 inner
5472.2.e.c.5167.1 8 4.3 odd 2
5472.2.e.c.5167.1 8 456.341 even 2
5472.2.e.c.5167.2 8 24.5 odd 2
5472.2.e.c.5167.2 8 76.75 even 2
5472.2.e.c.5167.7 8 12.11 even 2
5472.2.e.c.5167.7 8 152.37 odd 2
5472.2.e.c.5167.8 8 8.5 even 2
5472.2.e.c.5167.8 8 228.227 odd 2