Properties

Label 1425.2.a.c.1.1
Level $1425$
Weight $2$
Character 1425.1
Self dual yes
Analytic conductor $11.379$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1425,2,Mod(1,1425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1425.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1425.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.3786822880\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 285)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1425.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} -1.00000 q^{4} -1.00000 q^{6} -4.00000 q^{7} +3.00000 q^{8} +1.00000 q^{9} +4.00000 q^{11} -1.00000 q^{12} -2.00000 q^{13} +4.00000 q^{14} -1.00000 q^{16} -2.00000 q^{17} -1.00000 q^{18} -1.00000 q^{19} -4.00000 q^{21} -4.00000 q^{22} +4.00000 q^{23} +3.00000 q^{24} +2.00000 q^{26} +1.00000 q^{27} +4.00000 q^{28} -2.00000 q^{29} -5.00000 q^{32} +4.00000 q^{33} +2.00000 q^{34} -1.00000 q^{36} +6.00000 q^{37} +1.00000 q^{38} -2.00000 q^{39} -6.00000 q^{41} +4.00000 q^{42} -8.00000 q^{43} -4.00000 q^{44} -4.00000 q^{46} +12.0000 q^{47} -1.00000 q^{48} +9.00000 q^{49} -2.00000 q^{51} +2.00000 q^{52} +14.0000 q^{53} -1.00000 q^{54} -12.0000 q^{56} -1.00000 q^{57} +2.00000 q^{58} +4.00000 q^{59} +14.0000 q^{61} -4.00000 q^{63} +7.00000 q^{64} -4.00000 q^{66} +4.00000 q^{67} +2.00000 q^{68} +4.00000 q^{69} +3.00000 q^{72} +14.0000 q^{73} -6.00000 q^{74} +1.00000 q^{76} -16.0000 q^{77} +2.00000 q^{78} +16.0000 q^{79} +1.00000 q^{81} +6.00000 q^{82} +4.00000 q^{84} +8.00000 q^{86} -2.00000 q^{87} +12.0000 q^{88} -6.00000 q^{89} +8.00000 q^{91} -4.00000 q^{92} -12.0000 q^{94} -5.00000 q^{96} +10.0000 q^{97} -9.00000 q^{98} +4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107 −0.353553 0.935414i \(-0.615027\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 3.00000 1.06066
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) −1.00000 −0.288675
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 4.00000 1.06904
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) −1.00000 −0.235702
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) −4.00000 −0.852803
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 3.00000 0.612372
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) 1.00000 0.192450
\(28\) 4.00000 0.755929
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −5.00000 −0.883883
\(33\) 4.00000 0.696311
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 1.00000 0.162221
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 4.00000 0.617213
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) −4.00000 −0.603023
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) 12.0000 1.75038 0.875190 0.483779i \(-0.160736\pi\)
0.875190 + 0.483779i \(0.160736\pi\)
\(48\) −1.00000 −0.144338
\(49\) 9.00000 1.28571
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 2.00000 0.277350
\(53\) 14.0000 1.92305 0.961524 0.274721i \(-0.0885855\pi\)
0.961524 + 0.274721i \(0.0885855\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) −12.0000 −1.60357
\(57\) −1.00000 −0.132453
\(58\) 2.00000 0.262613
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) 14.0000 1.79252 0.896258 0.443533i \(-0.146275\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 0 0
\(63\) −4.00000 −0.503953
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) −4.00000 −0.492366
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 2.00000 0.242536
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 3.00000 0.353553
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) −6.00000 −0.697486
\(75\) 0 0
\(76\) 1.00000 0.114708
\(77\) −16.0000 −1.82337
\(78\) 2.00000 0.226455
\(79\) 16.0000 1.80014 0.900070 0.435745i \(-0.143515\pi\)
0.900070 + 0.435745i \(0.143515\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 6.00000 0.662589
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 4.00000 0.436436
\(85\) 0 0
\(86\) 8.00000 0.862662
\(87\) −2.00000 −0.214423
\(88\) 12.0000 1.27920
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 8.00000 0.838628
\(92\) −4.00000 −0.417029
\(93\) 0 0
\(94\) −12.0000 −1.23771
\(95\) 0 0
\(96\) −5.00000 −0.510310
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) −9.00000 −0.909137
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 2.00000 0.198030
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) −6.00000 −0.588348
\(105\) 0 0
\(106\) −14.0000 −1.35980
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 6.00000 0.569495
\(112\) 4.00000 0.377964
\(113\) 10.0000 0.940721 0.470360 0.882474i \(-0.344124\pi\)
0.470360 + 0.882474i \(0.344124\pi\)
\(114\) 1.00000 0.0936586
\(115\) 0 0
\(116\) 2.00000 0.185695
\(117\) −2.00000 −0.184900
\(118\) −4.00000 −0.368230
\(119\) 8.00000 0.733359
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) −14.0000 −1.26750
\(123\) −6.00000 −0.541002
\(124\) 0 0
\(125\) 0 0
\(126\) 4.00000 0.356348
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 3.00000 0.265165
\(129\) −8.00000 −0.704361
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) −4.00000 −0.348155
\(133\) 4.00000 0.346844
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) −6.00000 −0.514496
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) −4.00000 −0.340503
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 12.0000 1.01058
\(142\) 0 0
\(143\) −8.00000 −0.668994
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) −14.0000 −1.15865
\(147\) 9.00000 0.742307
\(148\) −6.00000 −0.493197
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) −3.00000 −0.243332
\(153\) −2.00000 −0.161690
\(154\) 16.0000 1.28932
\(155\) 0 0
\(156\) 2.00000 0.160128
\(157\) 18.0000 1.43656 0.718278 0.695756i \(-0.244931\pi\)
0.718278 + 0.695756i \(0.244931\pi\)
\(158\) −16.0000 −1.27289
\(159\) 14.0000 1.11027
\(160\) 0 0
\(161\) −16.0000 −1.26098
\(162\) −1.00000 −0.0785674
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) 0 0
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) −12.0000 −0.925820
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) 8.00000 0.609994
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 2.00000 0.151620
\(175\) 0 0
\(176\) −4.00000 −0.301511
\(177\) 4.00000 0.300658
\(178\) 6.00000 0.449719
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) −8.00000 −0.592999
\(183\) 14.0000 1.03491
\(184\) 12.0000 0.884652
\(185\) 0 0
\(186\) 0 0
\(187\) −8.00000 −0.585018
\(188\) −12.0000 −0.875190
\(189\) −4.00000 −0.290957
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 7.00000 0.505181
\(193\) −22.0000 −1.58359 −0.791797 0.610784i \(-0.790854\pi\)
−0.791797 + 0.610784i \(0.790854\pi\)
\(194\) −10.0000 −0.717958
\(195\) 0 0
\(196\) −9.00000 −0.642857
\(197\) −22.0000 −1.56744 −0.783718 0.621117i \(-0.786679\pi\)
−0.783718 + 0.621117i \(0.786679\pi\)
\(198\) −4.00000 −0.284268
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) 10.0000 0.703598
\(203\) 8.00000 0.561490
\(204\) 2.00000 0.140028
\(205\) 0 0
\(206\) 16.0000 1.11477
\(207\) 4.00000 0.278019
\(208\) 2.00000 0.138675
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) −14.0000 −0.961524
\(213\) 0 0
\(214\) 12.0000 0.820303
\(215\) 0 0
\(216\) 3.00000 0.204124
\(217\) 0 0
\(218\) 2.00000 0.135457
\(219\) 14.0000 0.946032
\(220\) 0 0
\(221\) 4.00000 0.269069
\(222\) −6.00000 −0.402694
\(223\) 24.0000 1.60716 0.803579 0.595198i \(-0.202926\pi\)
0.803579 + 0.595198i \(0.202926\pi\)
\(224\) 20.0000 1.33631
\(225\) 0 0
\(226\) −10.0000 −0.665190
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 1.00000 0.0662266
\(229\) −26.0000 −1.71813 −0.859064 0.511868i \(-0.828954\pi\)
−0.859064 + 0.511868i \(0.828954\pi\)
\(230\) 0 0
\(231\) −16.0000 −1.05272
\(232\) −6.00000 −0.393919
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 2.00000 0.130744
\(235\) 0 0
\(236\) −4.00000 −0.260378
\(237\) 16.0000 1.03931
\(238\) −8.00000 −0.518563
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) −5.00000 −0.321412
\(243\) 1.00000 0.0641500
\(244\) −14.0000 −0.896258
\(245\) 0 0
\(246\) 6.00000 0.382546
\(247\) 2.00000 0.127257
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 28.0000 1.76734 0.883672 0.468106i \(-0.155064\pi\)
0.883672 + 0.468106i \(0.155064\pi\)
\(252\) 4.00000 0.251976
\(253\) 16.0000 1.00591
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 2.00000 0.124757 0.0623783 0.998053i \(-0.480131\pi\)
0.0623783 + 0.998053i \(0.480131\pi\)
\(258\) 8.00000 0.498058
\(259\) −24.0000 −1.49129
\(260\) 0 0
\(261\) −2.00000 −0.123797
\(262\) −4.00000 −0.247121
\(263\) 4.00000 0.246651 0.123325 0.992366i \(-0.460644\pi\)
0.123325 + 0.992366i \(0.460644\pi\)
\(264\) 12.0000 0.738549
\(265\) 0 0
\(266\) −4.00000 −0.245256
\(267\) −6.00000 −0.367194
\(268\) −4.00000 −0.244339
\(269\) −26.0000 −1.58525 −0.792624 0.609711i \(-0.791286\pi\)
−0.792624 + 0.609711i \(0.791286\pi\)
\(270\) 0 0
\(271\) 24.0000 1.45790 0.728948 0.684569i \(-0.240010\pi\)
0.728948 + 0.684569i \(0.240010\pi\)
\(272\) 2.00000 0.121268
\(273\) 8.00000 0.484182
\(274\) −6.00000 −0.362473
\(275\) 0 0
\(276\) −4.00000 −0.240772
\(277\) −22.0000 −1.32185 −0.660926 0.750451i \(-0.729836\pi\)
−0.660926 + 0.750451i \(0.729836\pi\)
\(278\) 4.00000 0.239904
\(279\) 0 0
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) −12.0000 −0.714590
\(283\) 16.0000 0.951101 0.475551 0.879688i \(-0.342249\pi\)
0.475551 + 0.879688i \(0.342249\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 8.00000 0.473050
\(287\) 24.0000 1.41668
\(288\) −5.00000 −0.294628
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 10.0000 0.586210
\(292\) −14.0000 −0.819288
\(293\) −2.00000 −0.116841 −0.0584206 0.998292i \(-0.518606\pi\)
−0.0584206 + 0.998292i \(0.518606\pi\)
\(294\) −9.00000 −0.524891
\(295\) 0 0
\(296\) 18.0000 1.04623
\(297\) 4.00000 0.232104
\(298\) −6.00000 −0.347571
\(299\) −8.00000 −0.462652
\(300\) 0 0
\(301\) 32.0000 1.84445
\(302\) 0 0
\(303\) −10.0000 −0.574485
\(304\) 1.00000 0.0573539
\(305\) 0 0
\(306\) 2.00000 0.114332
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 16.0000 0.911685
\(309\) −16.0000 −0.910208
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) −6.00000 −0.339683
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) −18.0000 −1.01580
\(315\) 0 0
\(316\) −16.0000 −0.900070
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) −14.0000 −0.785081
\(319\) −8.00000 −0.447914
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 16.0000 0.891645
\(323\) 2.00000 0.111283
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) 0 0
\(327\) −2.00000 −0.110600
\(328\) −18.0000 −0.993884
\(329\) −48.0000 −2.64633
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) 0 0
\(333\) 6.00000 0.328798
\(334\) −8.00000 −0.437741
\(335\) 0 0
\(336\) 4.00000 0.218218
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 9.00000 0.489535
\(339\) 10.0000 0.543125
\(340\) 0 0
\(341\) 0 0
\(342\) 1.00000 0.0540738
\(343\) −8.00000 −0.431959
\(344\) −24.0000 −1.29399
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) −32.0000 −1.71785 −0.858925 0.512101i \(-0.828867\pi\)
−0.858925 + 0.512101i \(0.828867\pi\)
\(348\) 2.00000 0.107211
\(349\) 30.0000 1.60586 0.802932 0.596071i \(-0.203272\pi\)
0.802932 + 0.596071i \(0.203272\pi\)
\(350\) 0 0
\(351\) −2.00000 −0.106752
\(352\) −20.0000 −1.06600
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) −4.00000 −0.212598
\(355\) 0 0
\(356\) 6.00000 0.317999
\(357\) 8.00000 0.423405
\(358\) −12.0000 −0.634220
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −22.0000 −1.15629
\(363\) 5.00000 0.262432
\(364\) −8.00000 −0.419314
\(365\) 0 0
\(366\) −14.0000 −0.731792
\(367\) 20.0000 1.04399 0.521996 0.852948i \(-0.325188\pi\)
0.521996 + 0.852948i \(0.325188\pi\)
\(368\) −4.00000 −0.208514
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) −56.0000 −2.90738
\(372\) 0 0
\(373\) −34.0000 −1.76045 −0.880227 0.474554i \(-0.842610\pi\)
−0.880227 + 0.474554i \(0.842610\pi\)
\(374\) 8.00000 0.413670
\(375\) 0 0
\(376\) 36.0000 1.85656
\(377\) 4.00000 0.206010
\(378\) 4.00000 0.205738
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) 0 0
\(381\) 8.00000 0.409852
\(382\) 0 0
\(383\) −32.0000 −1.63512 −0.817562 0.575841i \(-0.804675\pi\)
−0.817562 + 0.575841i \(0.804675\pi\)
\(384\) 3.00000 0.153093
\(385\) 0 0
\(386\) 22.0000 1.11977
\(387\) −8.00000 −0.406663
\(388\) −10.0000 −0.507673
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 27.0000 1.36371
\(393\) 4.00000 0.201773
\(394\) 22.0000 1.10834
\(395\) 0 0
\(396\) −4.00000 −0.201008
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) 0 0
\(399\) 4.00000 0.200250
\(400\) 0 0
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) −4.00000 −0.199502
\(403\) 0 0
\(404\) 10.0000 0.497519
\(405\) 0 0
\(406\) −8.00000 −0.397033
\(407\) 24.0000 1.18964
\(408\) −6.00000 −0.297044
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) 0 0
\(411\) 6.00000 0.295958
\(412\) 16.0000 0.788263
\(413\) −16.0000 −0.787309
\(414\) −4.00000 −0.196589
\(415\) 0 0
\(416\) 10.0000 0.490290
\(417\) −4.00000 −0.195881
\(418\) 4.00000 0.195646
\(419\) 28.0000 1.36789 0.683945 0.729534i \(-0.260263\pi\)
0.683945 + 0.729534i \(0.260263\pi\)
\(420\) 0 0
\(421\) 14.0000 0.682318 0.341159 0.940006i \(-0.389181\pi\)
0.341159 + 0.940006i \(0.389181\pi\)
\(422\) −12.0000 −0.584151
\(423\) 12.0000 0.583460
\(424\) 42.0000 2.03970
\(425\) 0 0
\(426\) 0 0
\(427\) −56.0000 −2.71003
\(428\) 12.0000 0.580042
\(429\) −8.00000 −0.386244
\(430\) 0 0
\(431\) 32.0000 1.54139 0.770693 0.637207i \(-0.219910\pi\)
0.770693 + 0.637207i \(0.219910\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −6.00000 −0.288342 −0.144171 0.989553i \(-0.546051\pi\)
−0.144171 + 0.989553i \(0.546051\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 2.00000 0.0957826
\(437\) −4.00000 −0.191346
\(438\) −14.0000 −0.668946
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) −4.00000 −0.190261
\(443\) −40.0000 −1.90046 −0.950229 0.311553i \(-0.899151\pi\)
−0.950229 + 0.311553i \(0.899151\pi\)
\(444\) −6.00000 −0.284747
\(445\) 0 0
\(446\) −24.0000 −1.13643
\(447\) 6.00000 0.283790
\(448\) −28.0000 −1.32288
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) −24.0000 −1.13012
\(452\) −10.0000 −0.470360
\(453\) 0 0
\(454\) −12.0000 −0.563188
\(455\) 0 0
\(456\) −3.00000 −0.140488
\(457\) −10.0000 −0.467780 −0.233890 0.972263i \(-0.575146\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(458\) 26.0000 1.21490
\(459\) −2.00000 −0.0933520
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 16.0000 0.744387
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) 2.00000 0.0928477
\(465\) 0 0
\(466\) 18.0000 0.833834
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) 2.00000 0.0924500
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) 18.0000 0.829396
\(472\) 12.0000 0.552345
\(473\) −32.0000 −1.47136
\(474\) −16.0000 −0.734904
\(475\) 0 0
\(476\) −8.00000 −0.366679
\(477\) 14.0000 0.641016
\(478\) 24.0000 1.09773
\(479\) −16.0000 −0.731059 −0.365529 0.930800i \(-0.619112\pi\)
−0.365529 + 0.930800i \(0.619112\pi\)
\(480\) 0 0
\(481\) −12.0000 −0.547153
\(482\) 22.0000 1.00207
\(483\) −16.0000 −0.728025
\(484\) −5.00000 −0.227273
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) 42.0000 1.90125
\(489\) 0 0
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 6.00000 0.270501
\(493\) 4.00000 0.180151
\(494\) −2.00000 −0.0899843
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 0 0
\(501\) 8.00000 0.357414
\(502\) −28.0000 −1.24970
\(503\) 20.0000 0.891756 0.445878 0.895094i \(-0.352892\pi\)
0.445878 + 0.895094i \(0.352892\pi\)
\(504\) −12.0000 −0.534522
\(505\) 0 0
\(506\) −16.0000 −0.711287
\(507\) −9.00000 −0.399704
\(508\) −8.00000 −0.354943
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) 0 0
\(511\) −56.0000 −2.47729
\(512\) 11.0000 0.486136
\(513\) −1.00000 −0.0441511
\(514\) −2.00000 −0.0882162
\(515\) 0 0
\(516\) 8.00000 0.352180
\(517\) 48.0000 2.11104
\(518\) 24.0000 1.05450
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) 2.00000 0.0875376
\(523\) 4.00000 0.174908 0.0874539 0.996169i \(-0.472127\pi\)
0.0874539 + 0.996169i \(0.472127\pi\)
\(524\) −4.00000 −0.174741
\(525\) 0 0
\(526\) −4.00000 −0.174408
\(527\) 0 0
\(528\) −4.00000 −0.174078
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 4.00000 0.173585
\(532\) −4.00000 −0.173422
\(533\) 12.0000 0.519778
\(534\) 6.00000 0.259645
\(535\) 0 0
\(536\) 12.0000 0.518321
\(537\) 12.0000 0.517838
\(538\) 26.0000 1.12094
\(539\) 36.0000 1.55063
\(540\) 0 0
\(541\) 30.0000 1.28980 0.644900 0.764267i \(-0.276899\pi\)
0.644900 + 0.764267i \(0.276899\pi\)
\(542\) −24.0000 −1.03089
\(543\) 22.0000 0.944110
\(544\) 10.0000 0.428746
\(545\) 0 0
\(546\) −8.00000 −0.342368
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) −6.00000 −0.256307
\(549\) 14.0000 0.597505
\(550\) 0 0
\(551\) 2.00000 0.0852029
\(552\) 12.0000 0.510754
\(553\) −64.0000 −2.72156
\(554\) 22.0000 0.934690
\(555\) 0 0
\(556\) 4.00000 0.169638
\(557\) 26.0000 1.10166 0.550828 0.834619i \(-0.314312\pi\)
0.550828 + 0.834619i \(0.314312\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) −8.00000 −0.337760
\(562\) −10.0000 −0.421825
\(563\) −36.0000 −1.51722 −0.758610 0.651546i \(-0.774121\pi\)
−0.758610 + 0.651546i \(0.774121\pi\)
\(564\) −12.0000 −0.505291
\(565\) 0 0
\(566\) −16.0000 −0.672530
\(567\) −4.00000 −0.167984
\(568\) 0 0
\(569\) 18.0000 0.754599 0.377300 0.926091i \(-0.376853\pi\)
0.377300 + 0.926091i \(0.376853\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 8.00000 0.334497
\(573\) 0 0
\(574\) −24.0000 −1.00174
\(575\) 0 0
\(576\) 7.00000 0.291667
\(577\) −18.0000 −0.749350 −0.374675 0.927156i \(-0.622246\pi\)
−0.374675 + 0.927156i \(0.622246\pi\)
\(578\) 13.0000 0.540729
\(579\) −22.0000 −0.914289
\(580\) 0 0
\(581\) 0 0
\(582\) −10.0000 −0.414513
\(583\) 56.0000 2.31928
\(584\) 42.0000 1.73797
\(585\) 0 0
\(586\) 2.00000 0.0826192
\(587\) −16.0000 −0.660391 −0.330195 0.943913i \(-0.607115\pi\)
−0.330195 + 0.943913i \(0.607115\pi\)
\(588\) −9.00000 −0.371154
\(589\) 0 0
\(590\) 0 0
\(591\) −22.0000 −0.904959
\(592\) −6.00000 −0.246598
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) −4.00000 −0.164122
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) 0 0
\(598\) 8.00000 0.327144
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 18.0000 0.734235 0.367118 0.930175i \(-0.380345\pi\)
0.367118 + 0.930175i \(0.380345\pi\)
\(602\) −32.0000 −1.30422
\(603\) 4.00000 0.162893
\(604\) 0 0
\(605\) 0 0
\(606\) 10.0000 0.406222
\(607\) 16.0000 0.649420 0.324710 0.945814i \(-0.394733\pi\)
0.324710 + 0.945814i \(0.394733\pi\)
\(608\) 5.00000 0.202777
\(609\) 8.00000 0.324176
\(610\) 0 0
\(611\) −24.0000 −0.970936
\(612\) 2.00000 0.0808452
\(613\) 42.0000 1.69636 0.848182 0.529705i \(-0.177697\pi\)
0.848182 + 0.529705i \(0.177697\pi\)
\(614\) −12.0000 −0.484281
\(615\) 0 0
\(616\) −48.0000 −1.93398
\(617\) −42.0000 −1.69086 −0.845428 0.534089i \(-0.820655\pi\)
−0.845428 + 0.534089i \(0.820655\pi\)
\(618\) 16.0000 0.643614
\(619\) −20.0000 −0.803868 −0.401934 0.915669i \(-0.631662\pi\)
−0.401934 + 0.915669i \(0.631662\pi\)
\(620\) 0 0
\(621\) 4.00000 0.160514
\(622\) 0 0
\(623\) 24.0000 0.961540
\(624\) 2.00000 0.0800641
\(625\) 0 0
\(626\) 10.0000 0.399680
\(627\) −4.00000 −0.159745
\(628\) −18.0000 −0.718278
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 48.0000 1.90934
\(633\) 12.0000 0.476957
\(634\) 2.00000 0.0794301
\(635\) 0 0
\(636\) −14.0000 −0.555136
\(637\) −18.0000 −0.713186
\(638\) 8.00000 0.316723
\(639\) 0 0
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) 12.0000 0.473602
\(643\) 40.0000 1.57745 0.788723 0.614749i \(-0.210743\pi\)
0.788723 + 0.614749i \(0.210743\pi\)
\(644\) 16.0000 0.630488
\(645\) 0 0
\(646\) −2.00000 −0.0786889
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) 3.00000 0.117851
\(649\) 16.0000 0.628055
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −6.00000 −0.234798 −0.117399 0.993085i \(-0.537456\pi\)
−0.117399 + 0.993085i \(0.537456\pi\)
\(654\) 2.00000 0.0782062
\(655\) 0 0
\(656\) 6.00000 0.234261
\(657\) 14.0000 0.546192
\(658\) 48.0000 1.87123
\(659\) 28.0000 1.09073 0.545363 0.838200i \(-0.316392\pi\)
0.545363 + 0.838200i \(0.316392\pi\)
\(660\) 0 0
\(661\) −18.0000 −0.700119 −0.350059 0.936727i \(-0.613839\pi\)
−0.350059 + 0.936727i \(0.613839\pi\)
\(662\) 28.0000 1.08825
\(663\) 4.00000 0.155347
\(664\) 0 0
\(665\) 0 0
\(666\) −6.00000 −0.232495
\(667\) −8.00000 −0.309761
\(668\) −8.00000 −0.309529
\(669\) 24.0000 0.927894
\(670\) 0 0
\(671\) 56.0000 2.16186
\(672\) 20.0000 0.771517
\(673\) −30.0000 −1.15642 −0.578208 0.815890i \(-0.696248\pi\)
−0.578208 + 0.815890i \(0.696248\pi\)
\(674\) 22.0000 0.847408
\(675\) 0 0
\(676\) 9.00000 0.346154
\(677\) 14.0000 0.538064 0.269032 0.963131i \(-0.413296\pi\)
0.269032 + 0.963131i \(0.413296\pi\)
\(678\) −10.0000 −0.384048
\(679\) −40.0000 −1.53506
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 1.00000 0.0382360
\(685\) 0 0
\(686\) 8.00000 0.305441
\(687\) −26.0000 −0.991962
\(688\) 8.00000 0.304997
\(689\) −28.0000 −1.06672
\(690\) 0 0
\(691\) −4.00000 −0.152167 −0.0760836 0.997101i \(-0.524242\pi\)
−0.0760836 + 0.997101i \(0.524242\pi\)
\(692\) −6.00000 −0.228086
\(693\) −16.0000 −0.607790
\(694\) 32.0000 1.21470
\(695\) 0 0
\(696\) −6.00000 −0.227429
\(697\) 12.0000 0.454532
\(698\) −30.0000 −1.13552
\(699\) −18.0000 −0.680823
\(700\) 0 0
\(701\) −34.0000 −1.28416 −0.642081 0.766637i \(-0.721929\pi\)
−0.642081 + 0.766637i \(0.721929\pi\)
\(702\) 2.00000 0.0754851
\(703\) −6.00000 −0.226294
\(704\) 28.0000 1.05529
\(705\) 0 0
\(706\) −14.0000 −0.526897
\(707\) 40.0000 1.50435
\(708\) −4.00000 −0.150329
\(709\) 6.00000 0.225335 0.112667 0.993633i \(-0.464061\pi\)
0.112667 + 0.993633i \(0.464061\pi\)
\(710\) 0 0
\(711\) 16.0000 0.600047
\(712\) −18.0000 −0.674579
\(713\) 0 0
\(714\) −8.00000 −0.299392
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) −24.0000 −0.896296
\(718\) 8.00000 0.298557
\(719\) 48.0000 1.79010 0.895049 0.445968i \(-0.147140\pi\)
0.895049 + 0.445968i \(0.147140\pi\)
\(720\) 0 0
\(721\) 64.0000 2.38348
\(722\) −1.00000 −0.0372161
\(723\) −22.0000 −0.818189
\(724\) −22.0000 −0.817624
\(725\) 0 0
\(726\) −5.00000 −0.185567
\(727\) −4.00000 −0.148352 −0.0741759 0.997245i \(-0.523633\pi\)
−0.0741759 + 0.997245i \(0.523633\pi\)
\(728\) 24.0000 0.889499
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 16.0000 0.591781
\(732\) −14.0000 −0.517455
\(733\) 26.0000 0.960332 0.480166 0.877178i \(-0.340576\pi\)
0.480166 + 0.877178i \(0.340576\pi\)
\(734\) −20.0000 −0.738213
\(735\) 0 0
\(736\) −20.0000 −0.737210
\(737\) 16.0000 0.589368
\(738\) 6.00000 0.220863
\(739\) 28.0000 1.03000 0.514998 0.857191i \(-0.327793\pi\)
0.514998 + 0.857191i \(0.327793\pi\)
\(740\) 0 0
\(741\) 2.00000 0.0734718
\(742\) 56.0000 2.05582
\(743\) −40.0000 −1.46746 −0.733729 0.679442i \(-0.762222\pi\)
−0.733729 + 0.679442i \(0.762222\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 34.0000 1.24483
\(747\) 0 0
\(748\) 8.00000 0.292509
\(749\) 48.0000 1.75388
\(750\) 0 0
\(751\) −24.0000 −0.875772 −0.437886 0.899030i \(-0.644273\pi\)
−0.437886 + 0.899030i \(0.644273\pi\)
\(752\) −12.0000 −0.437595
\(753\) 28.0000 1.02038
\(754\) −4.00000 −0.145671
\(755\) 0 0
\(756\) 4.00000 0.145479
\(757\) 50.0000 1.81728 0.908640 0.417579i \(-0.137121\pi\)
0.908640 + 0.417579i \(0.137121\pi\)
\(758\) −4.00000 −0.145287
\(759\) 16.0000 0.580763
\(760\) 0 0
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) −8.00000 −0.289809
\(763\) 8.00000 0.289619
\(764\) 0 0
\(765\) 0 0
\(766\) 32.0000 1.15621
\(767\) −8.00000 −0.288863
\(768\) −17.0000 −0.613435
\(769\) 50.0000 1.80305 0.901523 0.432731i \(-0.142450\pi\)
0.901523 + 0.432731i \(0.142450\pi\)
\(770\) 0 0
\(771\) 2.00000 0.0720282
\(772\) 22.0000 0.791797
\(773\) −26.0000 −0.935155 −0.467578 0.883952i \(-0.654873\pi\)
−0.467578 + 0.883952i \(0.654873\pi\)
\(774\) 8.00000 0.287554
\(775\) 0 0
\(776\) 30.0000 1.07694
\(777\) −24.0000 −0.860995
\(778\) −6.00000 −0.215110
\(779\) 6.00000 0.214972
\(780\) 0 0
\(781\) 0 0
\(782\) 8.00000 0.286079
\(783\) −2.00000 −0.0714742
\(784\) −9.00000 −0.321429
\(785\) 0 0
\(786\) −4.00000 −0.142675
\(787\) 44.0000 1.56843 0.784215 0.620489i \(-0.213066\pi\)
0.784215 + 0.620489i \(0.213066\pi\)
\(788\) 22.0000 0.783718
\(789\) 4.00000 0.142404
\(790\) 0 0
\(791\) −40.0000 −1.42224
\(792\) 12.0000 0.426401
\(793\) −28.0000 −0.994309
\(794\) −2.00000 −0.0709773
\(795\) 0 0
\(796\) 0 0
\(797\) 38.0000 1.34603 0.673015 0.739629i \(-0.264999\pi\)
0.673015 + 0.739629i \(0.264999\pi\)
\(798\) −4.00000 −0.141598
\(799\) −24.0000 −0.849059
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 6.00000 0.211867
\(803\) 56.0000 1.97620
\(804\) −4.00000 −0.141069
\(805\) 0 0
\(806\) 0 0
\(807\) −26.0000 −0.915243
\(808\) −30.0000 −1.05540
\(809\) 26.0000 0.914111 0.457056 0.889438i \(-0.348904\pi\)
0.457056 + 0.889438i \(0.348904\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) −8.00000 −0.280745
\(813\) 24.0000 0.841717
\(814\) −24.0000 −0.841200
\(815\) 0 0
\(816\) 2.00000 0.0700140
\(817\) 8.00000 0.279885
\(818\) −10.0000 −0.349642
\(819\) 8.00000 0.279543
\(820\) 0 0
\(821\) 54.0000 1.88461 0.942306 0.334751i \(-0.108652\pi\)
0.942306 + 0.334751i \(0.108652\pi\)
\(822\) −6.00000 −0.209274
\(823\) 20.0000 0.697156 0.348578 0.937280i \(-0.386665\pi\)
0.348578 + 0.937280i \(0.386665\pi\)
\(824\) −48.0000 −1.67216
\(825\) 0 0
\(826\) 16.0000 0.556711
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) −4.00000 −0.139010
\(829\) −2.00000 −0.0694629 −0.0347314 0.999397i \(-0.511058\pi\)
−0.0347314 + 0.999397i \(0.511058\pi\)
\(830\) 0 0
\(831\) −22.0000 −0.763172
\(832\) −14.0000 −0.485363
\(833\) −18.0000 −0.623663
\(834\) 4.00000 0.138509
\(835\) 0 0
\(836\) 4.00000 0.138343
\(837\) 0 0
\(838\) −28.0000 −0.967244
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) −14.0000 −0.482472
\(843\) 10.0000 0.344418
\(844\) −12.0000 −0.413057
\(845\) 0 0
\(846\) −12.0000 −0.412568
\(847\) −20.0000 −0.687208
\(848\) −14.0000 −0.480762
\(849\) 16.0000 0.549119
\(850\) 0 0
\(851\) 24.0000 0.822709
\(852\) 0 0
\(853\) 2.00000 0.0684787 0.0342393 0.999414i \(-0.489099\pi\)
0.0342393 + 0.999414i \(0.489099\pi\)
\(854\) 56.0000 1.91628
\(855\) 0 0
\(856\) −36.0000 −1.23045
\(857\) 26.0000 0.888143 0.444072 0.895991i \(-0.353534\pi\)
0.444072 + 0.895991i \(0.353534\pi\)
\(858\) 8.00000 0.273115
\(859\) 36.0000 1.22830 0.614152 0.789188i \(-0.289498\pi\)
0.614152 + 0.789188i \(0.289498\pi\)
\(860\) 0 0
\(861\) 24.0000 0.817918
\(862\) −32.0000 −1.08992
\(863\) 32.0000 1.08929 0.544646 0.838666i \(-0.316664\pi\)
0.544646 + 0.838666i \(0.316664\pi\)
\(864\) −5.00000 −0.170103
\(865\) 0 0
\(866\) 6.00000 0.203888
\(867\) −13.0000 −0.441503
\(868\) 0 0
\(869\) 64.0000 2.17105
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) −6.00000 −0.203186
\(873\) 10.0000 0.338449
\(874\) 4.00000 0.135302
\(875\) 0 0
\(876\) −14.0000 −0.473016
\(877\) −42.0000 −1.41824 −0.709120 0.705088i \(-0.750907\pi\)
−0.709120 + 0.705088i \(0.750907\pi\)
\(878\) −8.00000 −0.269987
\(879\) −2.00000 −0.0674583
\(880\) 0 0
\(881\) 2.00000 0.0673817 0.0336909 0.999432i \(-0.489274\pi\)
0.0336909 + 0.999432i \(0.489274\pi\)
\(882\) −9.00000 −0.303046
\(883\) 16.0000 0.538443 0.269221 0.963078i \(-0.413234\pi\)
0.269221 + 0.963078i \(0.413234\pi\)
\(884\) −4.00000 −0.134535
\(885\) 0 0
\(886\) 40.0000 1.34383
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 18.0000 0.604040
\(889\) −32.0000 −1.07325
\(890\) 0 0
\(891\) 4.00000 0.134005
\(892\) −24.0000 −0.803579
\(893\) −12.0000 −0.401565
\(894\) −6.00000 −0.200670
\(895\) 0 0
\(896\) −12.0000 −0.400892
\(897\) −8.00000 −0.267112
\(898\) 6.00000 0.200223
\(899\) 0 0
\(900\) 0 0
\(901\) −28.0000 −0.932815
\(902\) 24.0000 0.799113
\(903\) 32.0000 1.06489
\(904\) 30.0000 0.997785
\(905\) 0 0
\(906\) 0 0
\(907\) −28.0000 −0.929725 −0.464862 0.885383i \(-0.653896\pi\)
−0.464862 + 0.885383i \(0.653896\pi\)
\(908\) −12.0000 −0.398234
\(909\) −10.0000 −0.331679
\(910\) 0 0
\(911\) −48.0000 −1.59031 −0.795155 0.606406i \(-0.792611\pi\)
−0.795155 + 0.606406i \(0.792611\pi\)
\(912\) 1.00000 0.0331133
\(913\) 0 0
\(914\) 10.0000 0.330771
\(915\) 0 0
\(916\) 26.0000 0.859064
\(917\) −16.0000 −0.528367
\(918\) 2.00000 0.0660098
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) 12.0000 0.395413
\(922\) −30.0000 −0.987997
\(923\) 0 0
\(924\) 16.0000 0.526361
\(925\) 0 0
\(926\) −4.00000 −0.131448
\(927\) −16.0000 −0.525509
\(928\) 10.0000 0.328266
\(929\) −14.0000 −0.459325 −0.229663 0.973270i \(-0.573762\pi\)
−0.229663 + 0.973270i \(0.573762\pi\)
\(930\) 0 0
\(931\) −9.00000 −0.294963
\(932\) 18.0000 0.589610
\(933\) 0 0
\(934\) −8.00000 −0.261768
\(935\) 0 0
\(936\) −6.00000 −0.196116
\(937\) −18.0000 −0.588034 −0.294017 0.955800i \(-0.594992\pi\)
−0.294017 + 0.955800i \(0.594992\pi\)
\(938\) 16.0000 0.522419
\(939\) −10.0000 −0.326338
\(940\) 0 0
\(941\) −42.0000 −1.36916 −0.684580 0.728937i \(-0.740015\pi\)
−0.684580 + 0.728937i \(0.740015\pi\)
\(942\) −18.0000 −0.586472
\(943\) −24.0000 −0.781548
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) 32.0000 1.04041
\(947\) 40.0000 1.29983 0.649913 0.760009i \(-0.274805\pi\)
0.649913 + 0.760009i \(0.274805\pi\)
\(948\) −16.0000 −0.519656
\(949\) −28.0000 −0.908918
\(950\) 0 0
\(951\) −2.00000 −0.0648544
\(952\) 24.0000 0.777844
\(953\) 26.0000 0.842223 0.421111 0.907009i \(-0.361640\pi\)
0.421111 + 0.907009i \(0.361640\pi\)
\(954\) −14.0000 −0.453267
\(955\) 0 0
\(956\) 24.0000 0.776215
\(957\) −8.00000 −0.258603
\(958\) 16.0000 0.516937
\(959\) −24.0000 −0.775000
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 12.0000 0.386896
\(963\) −12.0000 −0.386695
\(964\) 22.0000 0.708572
\(965\) 0 0
\(966\) 16.0000 0.514792
\(967\) 20.0000 0.643157 0.321578 0.946883i \(-0.395787\pi\)
0.321578 + 0.946883i \(0.395787\pi\)
\(968\) 15.0000 0.482118
\(969\) 2.00000 0.0642493
\(970\) 0 0
\(971\) −12.0000 −0.385098 −0.192549 0.981287i \(-0.561675\pi\)
−0.192549 + 0.981287i \(0.561675\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 16.0000 0.512936
\(974\) 8.00000 0.256337
\(975\) 0 0
\(976\) −14.0000 −0.448129
\(977\) −30.0000 −0.959785 −0.479893 0.877327i \(-0.659324\pi\)
−0.479893 + 0.877327i \(0.659324\pi\)
\(978\) 0 0
\(979\) −24.0000 −0.767043
\(980\) 0 0
\(981\) −2.00000 −0.0638551
\(982\) −12.0000 −0.382935
\(983\) 56.0000 1.78612 0.893061 0.449935i \(-0.148553\pi\)
0.893061 + 0.449935i \(0.148553\pi\)
\(984\) −18.0000 −0.573819
\(985\) 0 0
\(986\) −4.00000 −0.127386
\(987\) −48.0000 −1.52786
\(988\) −2.00000 −0.0636285
\(989\) −32.0000 −1.01754
\(990\) 0 0
\(991\) −40.0000 −1.27064 −0.635321 0.772248i \(-0.719132\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(992\) 0 0
\(993\) −28.0000 −0.888553
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 26.0000 0.823428 0.411714 0.911313i \(-0.364930\pi\)
0.411714 + 0.911313i \(0.364930\pi\)
\(998\) −20.0000 −0.633089
\(999\) 6.00000 0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1425.2.a.c.1.1 1
3.2 odd 2 4275.2.a.j.1.1 1
5.2 odd 4 1425.2.c.f.799.1 2
5.3 odd 4 1425.2.c.f.799.2 2
5.4 even 2 285.2.a.c.1.1 1
15.14 odd 2 855.2.a.a.1.1 1
20.19 odd 2 4560.2.a.w.1.1 1
95.94 odd 2 5415.2.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.a.c.1.1 1 5.4 even 2
855.2.a.a.1.1 1 15.14 odd 2
1425.2.a.c.1.1 1 1.1 even 1 trivial
1425.2.c.f.799.1 2 5.2 odd 4
1425.2.c.f.799.2 2 5.3 odd 4
4275.2.a.j.1.1 1 3.2 odd 2
4560.2.a.w.1.1 1 20.19 odd 2
5415.2.a.e.1.1 1 95.94 odd 2