Properties

Label 144.3.q.c.65.1
Level $144$
Weight $3$
Character 144.65
Analytic conductor $3.924$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [144,3,Mod(65,144)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(144, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("144.65");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 144.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.92371580679\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 65.1
Root \(1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 144.65
Dual form 144.3.q.c.113.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.44949 + 1.73205i) q^{3} +(-4.50000 + 2.59808i) q^{5} +(3.17423 - 5.49794i) q^{7} +(3.00000 - 8.48528i) q^{9} +O(q^{10})\) \(q+(-2.44949 + 1.73205i) q^{3} +(-4.50000 + 2.59808i) q^{5} +(3.17423 - 5.49794i) q^{7} +(3.00000 - 8.48528i) q^{9} +(-8.17423 - 4.71940i) q^{11} +(-9.84847 - 17.0580i) q^{13} +(6.52270 - 14.1582i) q^{15} -1.90702i q^{17} -4.69694 q^{19} +(1.74745 + 18.9651i) q^{21} +(-8.17423 + 4.71940i) q^{23} +(1.00000 - 1.73205i) q^{25} +(7.34847 + 25.9808i) q^{27} +(-2.84847 - 1.64456i) q^{29} +(-20.5227 - 35.5464i) q^{31} +(28.1969 - 2.59808i) q^{33} +32.9876i q^{35} +17.3031 q^{37} +(53.6691 + 24.7255i) q^{39} +(-53.5454 + 30.9145i) q^{41} +(0.477296 - 0.826701i) q^{43} +(8.54541 + 45.9780i) q^{45} +(12.2196 + 7.05501i) q^{47} +(4.34847 + 7.53177i) q^{49} +(3.30306 + 4.67123i) q^{51} -9.53512i q^{53} +49.0454 q^{55} +(11.5051 - 8.13534i) q^{57} +(-79.2650 + 45.7637i) q^{59} +(37.5454 - 65.0306i) q^{61} +(-37.1288 - 43.4281i) q^{63} +(88.6362 + 51.1741i) q^{65} +(15.4773 + 26.8075i) q^{67} +(11.8485 - 25.7183i) q^{69} -85.9026i q^{71} -96.0908 q^{73} +(0.550510 + 5.97469i) q^{75} +(-51.8939 + 29.9609i) q^{77} +(14.8712 - 25.7576i) q^{79} +(-63.0000 - 50.9117i) q^{81} +(76.1288 + 43.9530i) q^{83} +(4.95459 + 8.58161i) q^{85} +(9.82577 - 0.905350i) q^{87} -41.3766i q^{89} -125.045 q^{91} +(111.838 + 51.5241i) q^{93} +(21.1362 - 12.2030i) q^{95} +(-47.9393 + 83.0333i) q^{97} +(-64.5681 + 55.2025i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 18 q^{5} - 2 q^{7} + 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 18 q^{5} - 2 q^{7} + 12 q^{9} - 18 q^{11} - 10 q^{13} - 18 q^{15} + 40 q^{19} - 42 q^{21} - 18 q^{23} + 4 q^{25} + 18 q^{29} - 38 q^{31} + 54 q^{33} + 128 q^{37} + 102 q^{39} - 126 q^{41} + 46 q^{43} - 54 q^{45} - 54 q^{47} - 12 q^{49} + 72 q^{51} + 108 q^{55} + 144 q^{57} - 126 q^{59} + 62 q^{61} - 222 q^{63} + 90 q^{65} + 106 q^{67} + 18 q^{69} - 208 q^{73} + 12 q^{75} - 90 q^{77} - 14 q^{79} - 252 q^{81} + 378 q^{83} + 108 q^{85} + 54 q^{87} - 412 q^{91} + 222 q^{93} - 180 q^{95} + 14 q^{97} - 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.44949 + 1.73205i −0.816497 + 0.577350i
\(4\) 0 0
\(5\) −4.50000 + 2.59808i −0.900000 + 0.519615i −0.877200 0.480125i \(-0.840591\pi\)
−0.0227998 + 0.999740i \(0.507258\pi\)
\(6\) 0 0
\(7\) 3.17423 5.49794i 0.453462 0.785419i −0.545136 0.838347i \(-0.683522\pi\)
0.998598 + 0.0529281i \(0.0168554\pi\)
\(8\) 0 0
\(9\) 3.00000 8.48528i 0.333333 0.942809i
\(10\) 0 0
\(11\) −8.17423 4.71940i −0.743112 0.429036i 0.0800876 0.996788i \(-0.474480\pi\)
−0.823200 + 0.567752i \(0.807813\pi\)
\(12\) 0 0
\(13\) −9.84847 17.0580i −0.757575 1.31216i −0.944084 0.329704i \(-0.893051\pi\)
0.186510 0.982453i \(-0.440282\pi\)
\(14\) 0 0
\(15\) 6.52270 14.1582i 0.434847 0.943879i
\(16\) 0 0
\(17\) 1.90702i 0.112178i −0.998426 0.0560889i \(-0.982137\pi\)
0.998426 0.0560889i \(-0.0178630\pi\)
\(18\) 0 0
\(19\) −4.69694 −0.247207 −0.123604 0.992332i \(-0.539445\pi\)
−0.123604 + 0.992332i \(0.539445\pi\)
\(20\) 0 0
\(21\) 1.74745 + 18.9651i 0.0832118 + 0.903099i
\(22\) 0 0
\(23\) −8.17423 + 4.71940i −0.355402 + 0.205191i −0.667062 0.745002i \(-0.732448\pi\)
0.311660 + 0.950194i \(0.399115\pi\)
\(24\) 0 0
\(25\) 1.00000 1.73205i 0.0400000 0.0692820i
\(26\) 0 0
\(27\) 7.34847 + 25.9808i 0.272166 + 0.962250i
\(28\) 0 0
\(29\) −2.84847 1.64456i −0.0982231 0.0567091i 0.450084 0.892986i \(-0.351394\pi\)
−0.548307 + 0.836277i \(0.684727\pi\)
\(30\) 0 0
\(31\) −20.5227 35.5464i −0.662023 1.14666i −0.980083 0.198587i \(-0.936365\pi\)
0.318061 0.948070i \(-0.396968\pi\)
\(32\) 0 0
\(33\) 28.1969 2.59808i 0.854453 0.0787296i
\(34\) 0 0
\(35\) 32.9876i 0.942503i
\(36\) 0 0
\(37\) 17.3031 0.467650 0.233825 0.972279i \(-0.424876\pi\)
0.233825 + 0.972279i \(0.424876\pi\)
\(38\) 0 0
\(39\) 53.6691 + 24.7255i 1.37613 + 0.633986i
\(40\) 0 0
\(41\) −53.5454 + 30.9145i −1.30599 + 0.754011i −0.981424 0.191853i \(-0.938550\pi\)
−0.324562 + 0.945864i \(0.605217\pi\)
\(42\) 0 0
\(43\) 0.477296 0.826701i 0.0110999 0.0192256i −0.860422 0.509582i \(-0.829800\pi\)
0.871522 + 0.490356i \(0.163133\pi\)
\(44\) 0 0
\(45\) 8.54541 + 45.9780i 0.189898 + 1.02173i
\(46\) 0 0
\(47\) 12.2196 + 7.05501i 0.259992 + 0.150107i 0.624331 0.781160i \(-0.285372\pi\)
−0.364339 + 0.931267i \(0.618705\pi\)
\(48\) 0 0
\(49\) 4.34847 + 7.53177i 0.0887443 + 0.153710i
\(50\) 0 0
\(51\) 3.30306 + 4.67123i 0.0647659 + 0.0915928i
\(52\) 0 0
\(53\) 9.53512i 0.179908i −0.995946 0.0899539i \(-0.971328\pi\)
0.995946 0.0899539i \(-0.0286720\pi\)
\(54\) 0 0
\(55\) 49.0454 0.891735
\(56\) 0 0
\(57\) 11.5051 8.13534i 0.201844 0.142725i
\(58\) 0 0
\(59\) −79.2650 + 45.7637i −1.34348 + 0.775656i −0.987316 0.158769i \(-0.949247\pi\)
−0.356160 + 0.934425i \(0.615914\pi\)
\(60\) 0 0
\(61\) 37.5454 65.0306i 0.615498 1.06607i −0.374798 0.927106i \(-0.622288\pi\)
0.990297 0.138968i \(-0.0443786\pi\)
\(62\) 0 0
\(63\) −37.1288 43.4281i −0.589346 0.689335i
\(64\) 0 0
\(65\) 88.6362 + 51.1741i 1.36363 + 0.787295i
\(66\) 0 0
\(67\) 15.4773 + 26.8075i 0.231004 + 0.400111i 0.958104 0.286421i \(-0.0924655\pi\)
−0.727100 + 0.686532i \(0.759132\pi\)
\(68\) 0 0
\(69\) 11.8485 25.7183i 0.171717 0.372729i
\(70\) 0 0
\(71\) 85.9026i 1.20990i −0.796265 0.604948i \(-0.793194\pi\)
0.796265 0.604948i \(-0.206806\pi\)
\(72\) 0 0
\(73\) −96.0908 −1.31631 −0.658156 0.752881i \(-0.728663\pi\)
−0.658156 + 0.752881i \(0.728663\pi\)
\(74\) 0 0
\(75\) 0.550510 + 5.97469i 0.00734014 + 0.0796626i
\(76\) 0 0
\(77\) −51.8939 + 29.9609i −0.673946 + 0.389103i
\(78\) 0 0
\(79\) 14.8712 25.7576i 0.188243 0.326046i −0.756422 0.654084i \(-0.773054\pi\)
0.944664 + 0.328038i \(0.106388\pi\)
\(80\) 0 0
\(81\) −63.0000 50.9117i −0.777778 0.628539i
\(82\) 0 0
\(83\) 76.1288 + 43.9530i 0.917215 + 0.529554i 0.882745 0.469852i \(-0.155693\pi\)
0.0344693 + 0.999406i \(0.489026\pi\)
\(84\) 0 0
\(85\) 4.95459 + 8.58161i 0.0582893 + 0.100960i
\(86\) 0 0
\(87\) 9.82577 0.905350i 0.112940 0.0104063i
\(88\) 0 0
\(89\) 41.3766i 0.464905i −0.972608 0.232453i \(-0.925325\pi\)
0.972608 0.232453i \(-0.0746751\pi\)
\(90\) 0 0
\(91\) −125.045 −1.37413
\(92\) 0 0
\(93\) 111.838 + 51.5241i 1.20256 + 0.554023i
\(94\) 0 0
\(95\) 21.1362 12.2030i 0.222487 0.128453i
\(96\) 0 0
\(97\) −47.9393 + 83.0333i −0.494219 + 0.856013i −0.999978 0.00666202i \(-0.997879\pi\)
0.505758 + 0.862675i \(0.331213\pi\)
\(98\) 0 0
\(99\) −64.5681 + 55.2025i −0.652203 + 0.557601i
\(100\) 0 0
\(101\) −136.772 78.9656i −1.35418 0.781838i −0.365350 0.930870i \(-0.619051\pi\)
−0.988832 + 0.149032i \(0.952384\pi\)
\(102\) 0 0
\(103\) 14.5681 + 25.2327i 0.141438 + 0.244978i 0.928038 0.372485i \(-0.121494\pi\)
−0.786600 + 0.617462i \(0.788161\pi\)
\(104\) 0 0
\(105\) −57.1362 80.8028i −0.544155 0.769551i
\(106\) 0 0
\(107\) 171.805i 1.60566i −0.596210 0.802829i \(-0.703327\pi\)
0.596210 0.802829i \(-0.296673\pi\)
\(108\) 0 0
\(109\) 116.272 1.06672 0.533360 0.845888i \(-0.320929\pi\)
0.533360 + 0.845888i \(0.320929\pi\)
\(110\) 0 0
\(111\) −42.3837 + 29.9698i −0.381835 + 0.269998i
\(112\) 0 0
\(113\) 175.166 101.132i 1.55014 0.894976i 0.552015 0.833834i \(-0.313859\pi\)
0.998129 0.0611424i \(-0.0194744\pi\)
\(114\) 0 0
\(115\) 24.5227 42.4746i 0.213241 0.369344i
\(116\) 0 0
\(117\) −174.288 + 32.3929i −1.48964 + 0.276862i
\(118\) 0 0
\(119\) −10.4847 6.05334i −0.0881067 0.0508684i
\(120\) 0 0
\(121\) −15.9546 27.6342i −0.131856 0.228382i
\(122\) 0 0
\(123\) 77.6135 168.468i 0.631004 1.36966i
\(124\) 0 0
\(125\) 119.512i 0.956092i
\(126\) 0 0
\(127\) −10.0908 −0.0794552 −0.0397276 0.999211i \(-0.512649\pi\)
−0.0397276 + 0.999211i \(0.512649\pi\)
\(128\) 0 0
\(129\) 0.262756 + 2.85170i 0.00203687 + 0.0221062i
\(130\) 0 0
\(131\) −4.29567 + 2.48010i −0.0327913 + 0.0189321i −0.516306 0.856404i \(-0.672693\pi\)
0.483515 + 0.875336i \(0.339360\pi\)
\(132\) 0 0
\(133\) −14.9092 + 25.8235i −0.112099 + 0.194161i
\(134\) 0 0
\(135\) −100.568 97.8215i −0.744949 0.724604i
\(136\) 0 0
\(137\) 203.242 + 117.342i 1.48352 + 0.856511i 0.999825 0.0187249i \(-0.00596067\pi\)
0.483696 + 0.875236i \(0.339294\pi\)
\(138\) 0 0
\(139\) 53.2650 + 92.2578i 0.383202 + 0.663725i 0.991518 0.129970i \(-0.0414881\pi\)
−0.608316 + 0.793695i \(0.708155\pi\)
\(140\) 0 0
\(141\) −42.1515 + 3.88386i −0.298947 + 0.0275451i
\(142\) 0 0
\(143\) 185.915i 1.30011i
\(144\) 0 0
\(145\) 17.0908 0.117868
\(146\) 0 0
\(147\) −23.6969 10.9172i −0.161204 0.0742668i
\(148\) 0 0
\(149\) −91.0301 + 52.5563i −0.610940 + 0.352727i −0.773333 0.634000i \(-0.781412\pi\)
0.162393 + 0.986726i \(0.448079\pi\)
\(150\) 0 0
\(151\) −142.614 + 247.014i −0.944460 + 1.63585i −0.187632 + 0.982239i \(0.560081\pi\)
−0.756828 + 0.653614i \(0.773252\pi\)
\(152\) 0 0
\(153\) −16.1816 5.72107i −0.105762 0.0373926i
\(154\) 0 0
\(155\) 184.704 + 106.639i 1.19164 + 0.687994i
\(156\) 0 0
\(157\) 98.5908 + 170.764i 0.627967 + 1.08767i 0.987959 + 0.154715i \(0.0494460\pi\)
−0.359992 + 0.932955i \(0.617221\pi\)
\(158\) 0 0
\(159\) 16.5153 + 23.3562i 0.103870 + 0.146894i
\(160\) 0 0
\(161\) 59.9219i 0.372186i
\(162\) 0 0
\(163\) 249.060 1.52798 0.763988 0.645230i \(-0.223238\pi\)
0.763988 + 0.645230i \(0.223238\pi\)
\(164\) 0 0
\(165\) −120.136 + 84.9491i −0.728098 + 0.514843i
\(166\) 0 0
\(167\) 41.9472 24.2182i 0.251181 0.145019i −0.369124 0.929380i \(-0.620342\pi\)
0.620305 + 0.784361i \(0.287009\pi\)
\(168\) 0 0
\(169\) −109.485 + 189.633i −0.647838 + 1.12209i
\(170\) 0 0
\(171\) −14.0908 + 39.8548i −0.0824024 + 0.233069i
\(172\) 0 0
\(173\) 86.9847 + 50.2206i 0.502802 + 0.290293i 0.729870 0.683586i \(-0.239581\pi\)
−0.227068 + 0.973879i \(0.572914\pi\)
\(174\) 0 0
\(175\) −6.34847 10.9959i −0.0362770 0.0628336i
\(176\) 0 0
\(177\) 114.894 249.389i 0.649118 1.40898i
\(178\) 0 0
\(179\) 285.071i 1.59257i −0.604919 0.796287i \(-0.706794\pi\)
0.604919 0.796287i \(-0.293206\pi\)
\(180\) 0 0
\(181\) 37.1214 0.205091 0.102545 0.994728i \(-0.467301\pi\)
0.102545 + 0.994728i \(0.467301\pi\)
\(182\) 0 0
\(183\) 20.6691 + 224.322i 0.112946 + 1.22580i
\(184\) 0 0
\(185\) −77.8638 + 44.9547i −0.420885 + 0.242998i
\(186\) 0 0
\(187\) −9.00000 + 15.5885i −0.0481283 + 0.0833607i
\(188\) 0 0
\(189\) 166.166 + 42.0676i 0.879187 + 0.222580i
\(190\) 0 0
\(191\) 15.5227 + 8.96204i 0.0812707 + 0.0469217i 0.540085 0.841611i \(-0.318392\pi\)
−0.458814 + 0.888532i \(0.651726\pi\)
\(192\) 0 0
\(193\) 47.7270 + 82.6657i 0.247290 + 0.428319i 0.962773 0.270311i \(-0.0871265\pi\)
−0.715483 + 0.698630i \(0.753793\pi\)
\(194\) 0 0
\(195\) −305.750 + 28.1719i −1.56795 + 0.144471i
\(196\) 0 0
\(197\) 160.363i 0.814026i −0.913422 0.407013i \(-0.866570\pi\)
0.913422 0.407013i \(-0.133430\pi\)
\(198\) 0 0
\(199\) −6.51531 −0.0327402 −0.0163701 0.999866i \(-0.505211\pi\)
−0.0163701 + 0.999866i \(0.505211\pi\)
\(200\) 0 0
\(201\) −84.3434 38.8571i −0.419619 0.193319i
\(202\) 0 0
\(203\) −18.0834 + 10.4405i −0.0890809 + 0.0514309i
\(204\) 0 0
\(205\) 160.636 278.230i 0.783591 1.35722i
\(206\) 0 0
\(207\) 15.5227 + 83.5189i 0.0749889 + 0.403473i
\(208\) 0 0
\(209\) 38.3939 + 22.1667i 0.183703 + 0.106061i
\(210\) 0 0
\(211\) −77.2196 133.748i −0.365970 0.633878i 0.622961 0.782253i \(-0.285929\pi\)
−0.988931 + 0.148374i \(0.952596\pi\)
\(212\) 0 0
\(213\) 148.788 + 210.418i 0.698534 + 0.987876i
\(214\) 0 0
\(215\) 4.96021i 0.0230707i
\(216\) 0 0
\(217\) −260.576 −1.20081
\(218\) 0 0
\(219\) 235.373 166.434i 1.07476 0.759973i
\(220\) 0 0
\(221\) −32.5301 + 18.7813i −0.147195 + 0.0849831i
\(222\) 0 0
\(223\) 46.3865 80.3437i 0.208011 0.360286i −0.743077 0.669206i \(-0.766634\pi\)
0.951088 + 0.308920i \(0.0999676\pi\)
\(224\) 0 0
\(225\) −11.6969 13.6814i −0.0519864 0.0608064i
\(226\) 0 0
\(227\) −147.053 84.9010i −0.647810 0.374013i 0.139807 0.990179i \(-0.455352\pi\)
−0.787617 + 0.616166i \(0.788685\pi\)
\(228\) 0 0
\(229\) −203.772 352.944i −0.889836 1.54124i −0.840068 0.542480i \(-0.817485\pi\)
−0.0497675 0.998761i \(-0.515848\pi\)
\(230\) 0 0
\(231\) 75.2196 163.272i 0.325626 0.706805i
\(232\) 0 0
\(233\) 15.2562i 0.0654772i −0.999464 0.0327386i \(-0.989577\pi\)
0.999464 0.0327386i \(-0.0104229\pi\)
\(234\) 0 0
\(235\) −73.3179 −0.311991
\(236\) 0 0
\(237\) 8.18673 + 88.8507i 0.0345432 + 0.374897i
\(238\) 0 0
\(239\) −48.9620 + 28.2682i −0.204862 + 0.118277i −0.598921 0.800808i \(-0.704404\pi\)
0.394059 + 0.919085i \(0.371070\pi\)
\(240\) 0 0
\(241\) −42.1061 + 72.9299i −0.174714 + 0.302614i −0.940062 0.341003i \(-0.889233\pi\)
0.765348 + 0.643617i \(0.222567\pi\)
\(242\) 0 0
\(243\) 242.499 + 15.5885i 0.997940 + 0.0641500i
\(244\) 0 0
\(245\) −39.1362 22.5953i −0.159740 0.0922258i
\(246\) 0 0
\(247\) 46.2577 + 80.1206i 0.187278 + 0.324375i
\(248\) 0 0
\(249\) −262.606 + 24.1966i −1.05464 + 0.0971750i
\(250\) 0 0
\(251\) 218.903i 0.872123i 0.899917 + 0.436062i \(0.143627\pi\)
−0.899917 + 0.436062i \(0.856373\pi\)
\(252\) 0 0
\(253\) 89.0908 0.352138
\(254\) 0 0
\(255\) −27.0000 12.4389i −0.105882 0.0487802i
\(256\) 0 0
\(257\) −11.1061 + 6.41212i −0.0432145 + 0.0249499i −0.521452 0.853281i \(-0.674609\pi\)
0.478237 + 0.878231i \(0.341276\pi\)
\(258\) 0 0
\(259\) 54.9240 95.1311i 0.212062 0.367302i
\(260\) 0 0
\(261\) −22.5000 + 19.2364i −0.0862069 + 0.0737026i
\(262\) 0 0
\(263\) −291.386 168.232i −1.10793 0.639666i −0.169640 0.985506i \(-0.554261\pi\)
−0.938293 + 0.345840i \(0.887594\pi\)
\(264\) 0 0
\(265\) 24.7730 + 42.9080i 0.0934829 + 0.161917i
\(266\) 0 0
\(267\) 71.6663 + 101.351i 0.268413 + 0.379594i
\(268\) 0 0
\(269\) 60.4468i 0.224709i −0.993668 0.112355i \(-0.964161\pi\)
0.993668 0.112355i \(-0.0358393\pi\)
\(270\) 0 0
\(271\) −274.636 −1.01342 −0.506708 0.862118i \(-0.669138\pi\)
−0.506708 + 0.862118i \(0.669138\pi\)
\(272\) 0 0
\(273\) 306.297 216.585i 1.12197 0.793352i
\(274\) 0 0
\(275\) −16.3485 + 9.43879i −0.0594490 + 0.0343229i
\(276\) 0 0
\(277\) 24.5000 42.4352i 0.0884477 0.153196i −0.818407 0.574638i \(-0.805143\pi\)
0.906855 + 0.421442i \(0.138476\pi\)
\(278\) 0 0
\(279\) −363.189 + 67.5018i −1.30175 + 0.241942i
\(280\) 0 0
\(281\) −297.121 171.543i −1.05737 0.610473i −0.132666 0.991161i \(-0.542354\pi\)
−0.924704 + 0.380688i \(0.875687\pi\)
\(282\) 0 0
\(283\) −171.704 297.401i −0.606729 1.05089i −0.991776 0.127988i \(-0.959148\pi\)
0.385047 0.922897i \(-0.374185\pi\)
\(284\) 0 0
\(285\) −30.6367 + 66.5001i −0.107497 + 0.233334i
\(286\) 0 0
\(287\) 392.519i 1.36766i
\(288\) 0 0
\(289\) 285.363 0.987416
\(290\) 0 0
\(291\) −26.3911 286.422i −0.0906910 0.984270i
\(292\) 0 0
\(293\) −248.076 + 143.226i −0.846674 + 0.488828i −0.859527 0.511090i \(-0.829242\pi\)
0.0128532 + 0.999917i \(0.495909\pi\)
\(294\) 0 0
\(295\) 237.795 411.873i 0.806085 1.39618i
\(296\) 0 0
\(297\) 62.5454 247.053i 0.210591 0.831829i
\(298\) 0 0
\(299\) 161.007 + 92.9577i 0.538486 + 0.310895i
\(300\) 0 0
\(301\) −3.03010 5.24829i −0.0100668 0.0174362i
\(302\) 0 0
\(303\) 471.795 43.4714i 1.55708 0.143470i
\(304\) 0 0
\(305\) 390.183i 1.27929i
\(306\) 0 0
\(307\) −154.091 −0.501924 −0.250962 0.967997i \(-0.580747\pi\)
−0.250962 + 0.967997i \(0.580747\pi\)
\(308\) 0 0
\(309\) −79.3888 36.5746i −0.256922 0.118364i
\(310\) 0 0
\(311\) 62.3411 35.9926i 0.200454 0.115732i −0.396413 0.918072i \(-0.629745\pi\)
0.596867 + 0.802340i \(0.296412\pi\)
\(312\) 0 0
\(313\) 183.803 318.356i 0.587230 1.01711i −0.407363 0.913266i \(-0.633552\pi\)
0.994593 0.103846i \(-0.0331150\pi\)
\(314\) 0 0
\(315\) 279.909 + 98.9628i 0.888601 + 0.314168i
\(316\) 0 0
\(317\) −93.1821 53.7987i −0.293950 0.169712i 0.345772 0.938319i \(-0.387617\pi\)
−0.639722 + 0.768607i \(0.720950\pi\)
\(318\) 0 0
\(319\) 15.5227 + 26.8861i 0.0486605 + 0.0842825i
\(320\) 0 0
\(321\) 297.576 + 420.835i 0.927027 + 1.31101i
\(322\) 0 0
\(323\) 8.95717i 0.0277312i
\(324\) 0 0
\(325\) −39.3939 −0.121212
\(326\) 0 0
\(327\) −284.808 + 201.390i −0.870973 + 0.615871i
\(328\) 0 0
\(329\) 77.5760 44.7885i 0.235793 0.136135i
\(330\) 0 0
\(331\) 8.59873 14.8934i 0.0259780 0.0449953i −0.852744 0.522329i \(-0.825063\pi\)
0.878722 + 0.477334i \(0.158397\pi\)
\(332\) 0 0
\(333\) 51.9092 146.821i 0.155883 0.440905i
\(334\) 0 0
\(335\) −139.296 80.4224i −0.415808 0.240067i
\(336\) 0 0
\(337\) −182.197 315.574i −0.540644 0.936422i −0.998867 0.0475854i \(-0.984847\pi\)
0.458223 0.888837i \(-0.348486\pi\)
\(338\) 0 0
\(339\) −253.902 + 551.120i −0.748973 + 1.62572i
\(340\) 0 0
\(341\) 387.419i 1.13613i
\(342\) 0 0
\(343\) 366.287 1.06789
\(344\) 0 0
\(345\) 13.5000 + 146.516i 0.0391304 + 0.424683i
\(346\) 0 0
\(347\) −505.234 + 291.697i −1.45601 + 0.840626i −0.998811 0.0487402i \(-0.984479\pi\)
−0.457196 + 0.889366i \(0.651146\pi\)
\(348\) 0 0
\(349\) −156.379 + 270.856i −0.448076 + 0.776091i −0.998261 0.0589524i \(-0.981224\pi\)
0.550185 + 0.835043i \(0.314557\pi\)
\(350\) 0 0
\(351\) 370.810 381.221i 1.05644 1.08610i
\(352\) 0 0
\(353\) −32.5760 18.8078i −0.0922834 0.0532798i 0.453148 0.891435i \(-0.350301\pi\)
−0.545431 + 0.838155i \(0.683634\pi\)
\(354\) 0 0
\(355\) 223.182 + 386.562i 0.628681 + 1.08891i
\(356\) 0 0
\(357\) 36.1668 3.33243i 0.101308 0.00933453i
\(358\) 0 0
\(359\) 294.028i 0.819019i −0.912306 0.409510i \(-0.865700\pi\)
0.912306 0.409510i \(-0.134300\pi\)
\(360\) 0 0
\(361\) −338.939 −0.938889
\(362\) 0 0
\(363\) 86.9444 + 40.0554i 0.239516 + 0.110346i
\(364\) 0 0
\(365\) 432.409 249.651i 1.18468 0.683976i
\(366\) 0 0
\(367\) −16.6135 + 28.7755i −0.0452684 + 0.0784072i −0.887772 0.460284i \(-0.847748\pi\)
0.842503 + 0.538691i \(0.181081\pi\)
\(368\) 0 0
\(369\) 101.682 + 547.091i 0.275560 + 1.48263i
\(370\) 0 0
\(371\) −52.4235 30.2667i −0.141303 0.0815814i
\(372\) 0 0
\(373\) 112.515 + 194.881i 0.301648 + 0.522470i 0.976509 0.215475i \(-0.0691299\pi\)
−0.674861 + 0.737945i \(0.735797\pi\)
\(374\) 0 0
\(375\) 207.000 + 292.742i 0.552000 + 0.780646i
\(376\) 0 0
\(377\) 64.7858i 0.171846i
\(378\) 0 0
\(379\) 166.334 0.438875 0.219438 0.975627i \(-0.429578\pi\)
0.219438 + 0.975627i \(0.429578\pi\)
\(380\) 0 0
\(381\) 24.7173 17.4778i 0.0648749 0.0458735i
\(382\) 0 0
\(383\) 638.249 368.493i 1.66645 0.962124i 0.696917 0.717152i \(-0.254555\pi\)
0.969530 0.244972i \(-0.0787787\pi\)
\(384\) 0 0
\(385\) 155.682 269.648i 0.404368 0.700386i
\(386\) 0 0
\(387\) −5.58290 6.53010i −0.0144261 0.0168736i
\(388\) 0 0
\(389\) −146.682 84.6867i −0.377074 0.217704i 0.299471 0.954106i \(-0.403190\pi\)
−0.676544 + 0.736402i \(0.736523\pi\)
\(390\) 0 0
\(391\) 9.00000 + 15.5885i 0.0230179 + 0.0398682i
\(392\) 0 0
\(393\) 6.22652 13.5153i 0.0158436 0.0343901i
\(394\) 0 0
\(395\) 154.546i 0.391255i
\(396\) 0 0
\(397\) −256.272 −0.645523 −0.322761 0.946480i \(-0.604611\pi\)
−0.322761 + 0.946480i \(0.604611\pi\)
\(398\) 0 0
\(399\) −8.20766 89.0778i −0.0205706 0.223253i
\(400\) 0 0
\(401\) 226.364 130.691i 0.564498 0.325913i −0.190451 0.981697i \(-0.560995\pi\)
0.754949 + 0.655784i \(0.227662\pi\)
\(402\) 0 0
\(403\) −404.234 + 700.155i −1.00306 + 1.73736i
\(404\) 0 0
\(405\) 415.772 + 65.4238i 1.02660 + 0.161540i
\(406\) 0 0
\(407\) −141.439 81.6600i −0.347517 0.200639i
\(408\) 0 0
\(409\) 221.894 + 384.331i 0.542528 + 0.939686i 0.998758 + 0.0498240i \(0.0158660\pi\)
−0.456230 + 0.889862i \(0.650801\pi\)
\(410\) 0 0
\(411\) −701.082 + 64.5980i −1.70580 + 0.157173i
\(412\) 0 0
\(413\) 581.059i 1.40692i
\(414\) 0 0
\(415\) −456.773 −1.10066
\(416\) 0 0
\(417\) −290.267 133.727i −0.696085 0.320688i
\(418\) 0 0
\(419\) −9.32525 + 5.38394i −0.0222560 + 0.0128495i −0.511087 0.859529i \(-0.670757\pi\)
0.488831 + 0.872379i \(0.337424\pi\)
\(420\) 0 0
\(421\) −127.152 + 220.233i −0.302023 + 0.523119i −0.976594 0.215091i \(-0.930995\pi\)
0.674571 + 0.738210i \(0.264328\pi\)
\(422\) 0 0
\(423\) 96.5227 82.5221i 0.228186 0.195088i
\(424\) 0 0
\(425\) −3.30306 1.90702i −0.00777191 0.00448711i
\(426\) 0 0
\(427\) −238.356 412.844i −0.558210 0.966849i
\(428\) 0 0
\(429\) −322.015 455.398i −0.750617 1.06153i
\(430\) 0 0
\(431\) 698.663i 1.62103i 0.585719 + 0.810514i \(0.300812\pi\)
−0.585719 + 0.810514i \(0.699188\pi\)
\(432\) 0 0
\(433\) 211.728 0.488978 0.244489 0.969652i \(-0.421380\pi\)
0.244489 + 0.969652i \(0.421380\pi\)
\(434\) 0 0
\(435\) −41.8638 + 29.6022i −0.0962386 + 0.0680509i
\(436\) 0 0
\(437\) 38.3939 22.1667i 0.0878578 0.0507247i
\(438\) 0 0
\(439\) 139.931 242.368i 0.318750 0.552092i −0.661477 0.749965i \(-0.730070\pi\)
0.980228 + 0.197874i \(0.0634035\pi\)
\(440\) 0 0
\(441\) 76.9546 14.3027i 0.174500 0.0324324i
\(442\) 0 0
\(443\) 477.400 + 275.627i 1.07765 + 0.622183i 0.930262 0.366895i \(-0.119579\pi\)
0.147391 + 0.989078i \(0.452913\pi\)
\(444\) 0 0
\(445\) 107.499 + 186.195i 0.241572 + 0.418415i
\(446\) 0 0
\(447\) 131.947 286.405i 0.295184 0.640727i
\(448\) 0 0
\(449\) 542.865i 1.20905i −0.796585 0.604527i \(-0.793362\pi\)
0.796585 0.604527i \(-0.206638\pi\)
\(450\) 0 0
\(451\) 583.590 1.29399
\(452\) 0 0
\(453\) −78.5102 852.072i −0.173312 1.88095i
\(454\) 0 0
\(455\) 562.704 324.877i 1.23671 0.714016i
\(456\) 0 0
\(457\) −46.1821 + 79.9898i −0.101055 + 0.175032i −0.912120 0.409924i \(-0.865555\pi\)
0.811065 + 0.584957i \(0.198888\pi\)
\(458\) 0 0
\(459\) 49.5459 14.0137i 0.107943 0.0305309i
\(460\) 0 0
\(461\) −199.030 114.910i −0.431736 0.249263i 0.268350 0.963321i \(-0.413522\pi\)
−0.700086 + 0.714059i \(0.746855\pi\)
\(462\) 0 0
\(463\) −255.401 442.368i −0.551623 0.955438i −0.998158 0.0606723i \(-0.980676\pi\)
0.446535 0.894766i \(-0.352658\pi\)
\(464\) 0 0
\(465\) −637.136 + 58.7059i −1.37018 + 0.126249i
\(466\) 0 0
\(467\) 833.657i 1.78513i −0.450915 0.892567i \(-0.648902\pi\)
0.450915 0.892567i \(-0.351098\pi\)
\(468\) 0 0
\(469\) 196.514 0.419007
\(470\) 0 0
\(471\) −537.270 247.521i −1.14070 0.525523i
\(472\) 0 0
\(473\) −7.80306 + 4.50510i −0.0164970 + 0.00952452i
\(474\) 0 0
\(475\) −4.69694 + 8.13534i −0.00988829 + 0.0171270i
\(476\) 0 0
\(477\) −80.9082 28.6054i −0.169619 0.0599693i
\(478\) 0 0
\(479\) −569.144 328.595i −1.18819 0.686003i −0.230296 0.973121i \(-0.573969\pi\)
−0.957895 + 0.287118i \(0.907303\pi\)
\(480\) 0 0
\(481\) −170.409 295.156i −0.354280 0.613631i
\(482\) 0 0
\(483\) −103.788 146.778i −0.214881 0.303888i
\(484\) 0 0
\(485\) 498.200i 1.02722i
\(486\) 0 0
\(487\) 351.666 0.722107 0.361054 0.932545i \(-0.382417\pi\)
0.361054 + 0.932545i \(0.382417\pi\)
\(488\) 0 0
\(489\) −610.070 + 431.385i −1.24759 + 0.882178i
\(490\) 0 0
\(491\) −212.539 + 122.709i −0.432869 + 0.249917i −0.700568 0.713586i \(-0.747070\pi\)
0.267699 + 0.963503i \(0.413737\pi\)
\(492\) 0 0
\(493\) −3.13622 + 5.43210i −0.00636151 + 0.0110185i
\(494\) 0 0
\(495\) 147.136 416.164i 0.297245 0.840736i
\(496\) 0 0
\(497\) −472.287 272.675i −0.950276 0.548642i
\(498\) 0 0
\(499\) 315.113 + 545.792i 0.631489 + 1.09377i 0.987247 + 0.159193i \(0.0508892\pi\)
−0.355758 + 0.934578i \(0.615777\pi\)
\(500\) 0 0
\(501\) −60.8020 + 131.977i −0.121361 + 0.263427i
\(502\) 0 0
\(503\) 286.891i 0.570360i 0.958474 + 0.285180i \(0.0920534\pi\)
−0.958474 + 0.285180i \(0.907947\pi\)
\(504\) 0 0
\(505\) 820.635 1.62502
\(506\) 0 0
\(507\) −60.2724 654.137i −0.118881 1.29021i
\(508\) 0 0
\(509\) 755.454 436.161i 1.48419 0.856898i 0.484353 0.874873i \(-0.339055\pi\)
0.999838 + 0.0179741i \(0.00572163\pi\)
\(510\) 0 0
\(511\) −305.015 + 528.301i −0.596898 + 1.03386i
\(512\) 0 0
\(513\) −34.5153 122.030i −0.0672813 0.237875i
\(514\) 0 0
\(515\) −131.113 75.6981i −0.254588 0.146987i
\(516\) 0 0
\(517\) −66.5908 115.339i −0.128802 0.223092i
\(518\) 0 0
\(519\) −300.053 + 27.6470i −0.578136 + 0.0532697i
\(520\) 0 0
\(521\) 206.132i 0.395646i −0.980238 0.197823i \(-0.936613\pi\)
0.980238 0.197823i \(-0.0633872\pi\)
\(522\) 0 0
\(523\) −884.817 −1.69181 −0.845906 0.533333i \(-0.820939\pi\)
−0.845906 + 0.533333i \(0.820939\pi\)
\(524\) 0 0
\(525\) 34.5959 + 15.9384i 0.0658970 + 0.0303589i
\(526\) 0 0
\(527\) −67.7878 + 39.1373i −0.128630 + 0.0742643i
\(528\) 0 0
\(529\) −219.955 + 380.973i −0.415793 + 0.720175i
\(530\) 0 0
\(531\) 150.523 + 809.877i 0.283470 + 1.52519i
\(532\) 0 0
\(533\) 1054.68 + 608.920i 1.97876 + 1.14244i
\(534\) 0 0
\(535\) 446.363 + 773.124i 0.834324 + 1.44509i
\(536\) 0 0
\(537\) 493.757 + 698.278i 0.919473 + 1.30033i
\(538\) 0 0
\(539\) 82.0886i 0.152298i
\(540\) 0 0
\(541\) −509.151 −0.941129 −0.470565 0.882365i \(-0.655950\pi\)
−0.470565 + 0.882365i \(0.655950\pi\)
\(542\) 0 0
\(543\) −90.9286 + 64.2962i −0.167456 + 0.118409i
\(544\) 0 0
\(545\) −523.226 + 302.085i −0.960048 + 0.554284i
\(546\) 0 0
\(547\) 274.022 474.620i 0.500955 0.867679i −0.499045 0.866576i \(-0.666316\pi\)
0.999999 0.00110267i \(-0.000350992\pi\)
\(548\) 0 0
\(549\) −439.166 513.675i −0.799939 0.935656i
\(550\) 0 0
\(551\) 13.3791 + 7.72442i 0.0242815 + 0.0140189i
\(552\) 0 0
\(553\) −94.4092 163.522i −0.170722 0.295699i
\(554\) 0 0
\(555\) 112.863 244.980i 0.203356 0.441405i
\(556\) 0 0
\(557\) 406.542i 0.729879i 0.931031 + 0.364939i \(0.118910\pi\)
−0.931031 + 0.364939i \(0.881090\pi\)
\(558\) 0 0
\(559\) −18.8025 −0.0336360
\(560\) 0 0
\(561\) −4.95459 53.7722i −0.00883172 0.0958507i
\(562\) 0 0
\(563\) 525.220 303.236i 0.932895 0.538607i 0.0451687 0.998979i \(-0.485617\pi\)
0.887726 + 0.460372i \(0.152284\pi\)
\(564\) 0 0
\(565\) −525.499 + 910.191i −0.930087 + 1.61096i
\(566\) 0 0
\(567\) −479.886 + 184.764i −0.846360 + 0.325863i
\(568\) 0 0
\(569\) −224.954 129.877i −0.395350 0.228255i 0.289126 0.957291i \(-0.406635\pi\)
−0.684476 + 0.729036i \(0.739969\pi\)
\(570\) 0 0
\(571\) −43.9166 76.0657i −0.0769117 0.133215i 0.825004 0.565126i \(-0.191173\pi\)
−0.901916 + 0.431911i \(0.857839\pi\)
\(572\) 0 0
\(573\) −53.5454 + 4.93369i −0.0934475 + 0.00861029i
\(574\) 0 0
\(575\) 18.8776i 0.0328306i
\(576\) 0 0
\(577\) −132.091 −0.228927 −0.114463 0.993427i \(-0.536515\pi\)
−0.114463 + 0.993427i \(0.536515\pi\)
\(578\) 0 0
\(579\) −260.088 119.823i −0.449202 0.206948i
\(580\) 0 0
\(581\) 483.302 279.034i 0.831844 0.480266i
\(582\) 0 0
\(583\) −45.0000 + 77.9423i −0.0771870 + 0.133692i
\(584\) 0 0
\(585\) 700.136 598.581i 1.19681 1.02322i
\(586\) 0 0
\(587\) 491.614 + 283.833i 0.837502 + 0.483532i 0.856414 0.516289i \(-0.172687\pi\)
−0.0189125 + 0.999821i \(0.506020\pi\)
\(588\) 0 0
\(589\) 96.3939 + 166.959i 0.163657 + 0.283462i
\(590\) 0 0
\(591\) 277.757 + 392.808i 0.469978 + 0.664650i
\(592\) 0 0
\(593\) 77.0321i 0.129902i 0.997888 + 0.0649512i \(0.0206892\pi\)
−0.997888 + 0.0649512i \(0.979311\pi\)
\(594\) 0 0
\(595\) 62.9082 0.105728
\(596\) 0 0
\(597\) 15.9592 11.2848i 0.0267323 0.0189026i
\(598\) 0 0
\(599\) 764.917 441.625i 1.27699 0.737270i 0.300696 0.953720i \(-0.402781\pi\)
0.976294 + 0.216450i \(0.0694479\pi\)
\(600\) 0 0
\(601\) 397.545 688.569i 0.661473 1.14571i −0.318755 0.947837i \(-0.603265\pi\)
0.980229 0.197868i \(-0.0634018\pi\)
\(602\) 0 0
\(603\) 273.901 50.9068i 0.454230 0.0844226i
\(604\) 0 0
\(605\) 143.591 + 82.9025i 0.237341 + 0.137029i
\(606\) 0 0
\(607\) −148.372 256.987i −0.244434 0.423373i 0.717538 0.696519i \(-0.245269\pi\)
−0.961972 + 0.273147i \(0.911936\pi\)
\(608\) 0 0
\(609\) 26.2117 56.8952i 0.0430406 0.0934240i
\(610\) 0 0
\(611\) 277.924i 0.454868i
\(612\) 0 0
\(613\) −517.181 −0.843688 −0.421844 0.906668i \(-0.638617\pi\)
−0.421844 + 0.906668i \(0.638617\pi\)
\(614\) 0 0
\(615\) 88.4319 + 959.752i 0.143792 + 1.56057i
\(616\) 0 0
\(617\) −229.909 + 132.738i −0.372623 + 0.215134i −0.674604 0.738180i \(-0.735686\pi\)
0.301981 + 0.953314i \(0.402352\pi\)
\(618\) 0 0
\(619\) −98.5227 + 170.646i −0.159164 + 0.275681i −0.934568 0.355786i \(-0.884213\pi\)
0.775403 + 0.631466i \(0.217547\pi\)
\(620\) 0 0
\(621\) −182.682 177.693i −0.294173 0.286139i
\(622\) 0 0
\(623\) −227.486 131.339i −0.365146 0.210817i
\(624\) 0 0
\(625\) 335.500 + 581.103i 0.536800 + 0.929765i
\(626\) 0 0
\(627\) −132.439 + 12.2030i −0.211227 + 0.0194625i
\(628\) 0 0
\(629\) 32.9973i 0.0524600i
\(630\) 0 0
\(631\) 160.879 0.254958 0.127479 0.991841i \(-0.459311\pi\)
0.127479 + 0.991841i \(0.459311\pi\)
\(632\) 0 0
\(633\) 420.808 + 193.867i 0.664783 + 0.306267i
\(634\) 0 0
\(635\) 45.4087 26.2167i 0.0715097 0.0412862i
\(636\) 0 0
\(637\) 85.6515 148.353i 0.134461 0.232893i
\(638\) 0 0
\(639\) −728.908 257.708i −1.14070 0.403299i
\(640\) 0 0
\(641\) −267.894 154.669i −0.417931 0.241293i 0.276261 0.961083i \(-0.410905\pi\)
−0.694192 + 0.719790i \(0.744238\pi\)
\(642\) 0 0
\(643\) 197.296 + 341.726i 0.306836 + 0.531456i 0.977668 0.210153i \(-0.0673963\pi\)
−0.670832 + 0.741609i \(0.734063\pi\)
\(644\) 0 0
\(645\) −8.59133 12.1500i −0.0133199 0.0188372i
\(646\) 0 0
\(647\) 418.736i 0.647196i 0.946195 + 0.323598i \(0.104892\pi\)
−0.946195 + 0.323598i \(0.895108\pi\)
\(648\) 0 0
\(649\) 863.908 1.33114
\(650\) 0 0
\(651\) 638.277 451.330i 0.980456 0.693287i
\(652\) 0 0
\(653\) −459.621 + 265.363i −0.703861 + 0.406375i −0.808784 0.588106i \(-0.799874\pi\)
0.104923 + 0.994480i \(0.466540\pi\)
\(654\) 0 0
\(655\) 12.8870 22.3209i 0.0196748 0.0340778i
\(656\) 0 0
\(657\) −288.272 + 815.358i −0.438771 + 1.24103i
\(658\) 0 0
\(659\) −310.204 179.096i −0.470719 0.271770i 0.245822 0.969315i \(-0.420942\pi\)
−0.716541 + 0.697545i \(0.754276\pi\)
\(660\) 0 0
\(661\) 111.136 + 192.493i 0.168133 + 0.291214i 0.937763 0.347275i \(-0.112893\pi\)
−0.769631 + 0.638489i \(0.779560\pi\)
\(662\) 0 0
\(663\) 47.1520 102.348i 0.0711192 0.154371i
\(664\) 0 0
\(665\) 154.941i 0.232994i
\(666\) 0 0
\(667\) 31.0454 0.0465448
\(668\) 0 0
\(669\) 25.5362 + 277.145i 0.0381708 + 0.414267i
\(670\) 0 0
\(671\) −613.810 + 354.383i −0.914769 + 0.528142i
\(672\) 0 0
\(673\) 144.606 250.464i 0.214867 0.372161i −0.738364 0.674402i \(-0.764401\pi\)
0.953231 + 0.302241i \(0.0977348\pi\)
\(674\) 0 0
\(675\) 52.3485 + 13.2528i 0.0775533 + 0.0196338i
\(676\) 0 0
\(677\) 402.227 + 232.226i 0.594131 + 0.343022i 0.766729 0.641971i \(-0.221883\pi\)
−0.172598 + 0.984992i \(0.555216\pi\)
\(678\) 0 0
\(679\) 304.341 + 527.134i 0.448220 + 0.776339i
\(680\) 0 0
\(681\) 507.257 46.7389i 0.744871 0.0686327i
\(682\) 0 0
\(683\) 1126.36i 1.64913i 0.565767 + 0.824565i \(0.308580\pi\)
−0.565767 + 0.824565i \(0.691420\pi\)
\(684\) 0 0
\(685\) −1219.45 −1.78022
\(686\) 0 0
\(687\) 1110.46 + 511.589i 1.61638 + 0.744671i
\(688\) 0 0
\(689\) −162.650 + 93.9063i −0.236067 + 0.136294i
\(690\) 0 0
\(691\) 518.841 898.658i 0.750855 1.30052i −0.196554 0.980493i \(-0.562975\pi\)
0.947409 0.320025i \(-0.103691\pi\)
\(692\) 0 0
\(693\) 98.5454 + 530.217i 0.142201 + 0.765104i
\(694\) 0 0
\(695\) −479.385 276.773i −0.689763 0.398235i
\(696\) 0 0
\(697\) 58.9546 + 102.112i 0.0845833 + 0.146503i
\(698\) 0 0
\(699\) 26.4245 + 37.3699i 0.0378033 + 0.0534619i
\(700\) 0 0
\(701\) 778.180i 1.11010i 0.831817 + 0.555050i \(0.187301\pi\)
−0.831817 + 0.555050i \(0.812699\pi\)
\(702\) 0 0
\(703\) −81.2714 −0.115607
\(704\) 0 0
\(705\) 179.591 126.990i 0.254739 0.180128i
\(706\) 0 0
\(707\) −868.296 + 501.311i −1.22814 + 0.709068i
\(708\) 0 0
\(709\) 586.014 1015.01i 0.826536 1.43160i −0.0742031 0.997243i \(-0.523641\pi\)
0.900739 0.434360i \(-0.143025\pi\)
\(710\) 0 0
\(711\) −173.947 203.459i −0.244651 0.286159i
\(712\) 0 0
\(713\) 335.515 + 193.710i 0.470568 + 0.271682i
\(714\) 0 0
\(715\) −483.022 836.619i −0.675556 1.17010i
\(716\) 0 0
\(717\) 70.9699 154.047i 0.0989817 0.214850i
\(718\) 0 0
\(719\) 515.416i 0.716851i 0.933558 + 0.358426i \(0.116686\pi\)
−0.933558 + 0.358426i \(0.883314\pi\)
\(720\) 0 0
\(721\) 184.970 0.256547
\(722\) 0 0
\(723\) −23.1799 251.571i −0.0320607 0.347954i
\(724\) 0 0
\(725\) −5.69694 + 3.28913i −0.00785785 + 0.00453673i
\(726\) 0 0
\(727\) −420.704 + 728.681i −0.578685 + 1.00231i 0.416945 + 0.908932i \(0.363101\pi\)
−0.995630 + 0.0933809i \(0.970233\pi\)
\(728\) 0 0
\(729\) −621.000 + 381.838i −0.851852 + 0.523783i
\(730\) 0 0
\(731\) −1.57654 0.910215i −0.00215669 0.00124516i
\(732\) 0 0
\(733\) −303.181 525.125i −0.413617 0.716405i 0.581665 0.813428i \(-0.302401\pi\)
−0.995282 + 0.0970229i \(0.969068\pi\)
\(734\) 0 0
\(735\) 135.000 12.4389i 0.183673 0.0169237i
\(736\) 0 0
\(737\) 292.174i 0.396437i
\(738\) 0 0
\(739\) 389.362 0.526877 0.263439 0.964676i \(-0.415143\pi\)
0.263439 + 0.964676i \(0.415143\pi\)
\(740\) 0 0
\(741\) −252.081 116.134i −0.340190 0.156726i
\(742\) 0 0
\(743\) −904.779 + 522.375i −1.21774 + 0.703061i −0.964434 0.264325i \(-0.914851\pi\)
−0.253304 + 0.967387i \(0.581517\pi\)
\(744\) 0 0
\(745\) 273.090 473.006i 0.366564 0.634908i
\(746\) 0 0
\(747\) 601.340 514.116i 0.805007 0.688240i
\(748\) 0 0
\(749\) −944.574 545.350i −1.26111 0.728105i
\(750\) 0 0
\(751\) −645.916 1118.76i −0.860074 1.48969i −0.871857 0.489761i \(-0.837084\pi\)
0.0117826 0.999931i \(-0.496249\pi\)
\(752\) 0 0
\(753\) −379.151 536.201i −0.503521 0.712086i
\(754\) 0 0
\(755\) 1482.08i 1.96302i
\(756\) 0 0
\(757\) 1042.36 1.37697 0.688483 0.725252i \(-0.258277\pi\)
0.688483 + 0.725252i \(0.258277\pi\)
\(758\) 0 0
\(759\) −218.227 + 154.310i −0.287519 + 0.203307i
\(760\) 0 0
\(761\) −281.607 + 162.586i −0.370048 + 0.213647i −0.673479 0.739206i \(-0.735201\pi\)
0.303431 + 0.952853i \(0.401868\pi\)
\(762\) 0 0
\(763\) 369.076 639.258i 0.483717 0.837822i
\(764\) 0 0
\(765\) 87.6811 16.2963i 0.114616 0.0213023i
\(766\) 0 0
\(767\) 1561.28 + 901.405i 2.03557 + 1.17523i
\(768\) 0 0
\(769\) −171.348 296.783i −0.222819 0.385934i 0.732844 0.680397i \(-0.238193\pi\)
−0.955663 + 0.294463i \(0.904859\pi\)
\(770\) 0 0
\(771\) 16.0982 34.9428i 0.0208797 0.0453214i
\(772\) 0 0
\(773\) 532.579i 0.688977i −0.938791 0.344488i \(-0.888052\pi\)
0.938791 0.344488i \(-0.111948\pi\)
\(774\) 0 0
\(775\) −82.0908 −0.105924
\(776\) 0 0
\(777\) 30.2362 + 328.154i 0.0389140 + 0.422334i
\(778\) 0 0
\(779\) 251.499 145.203i 0.322849 0.186397i
\(780\) 0 0
\(781\) −405.409 + 702.188i −0.519089 + 0.899089i
\(782\) 0 0
\(783\) 21.7951 86.0904i 0.0278354 0.109949i
\(784\) 0 0
\(785\) −887.317 512.293i −1.13034 0.652602i
\(786\) 0 0
\(787\) −51.9768 90.0264i −0.0660442 0.114392i 0.831113 0.556104i \(-0.187704\pi\)
−0.897157 + 0.441712i \(0.854371\pi\)
\(788\) 0 0
\(789\) 1005.13 92.6135i 1.27393 0.117381i
\(790\) 0 0
\(791\) 1284.07i 1.62335i
\(792\) 0 0
\(793\) −1479.06 −1.86514
\(794\) 0 0
\(795\) −135.000 62.1947i −0.169811 0.0782324i
\(796\) 0 0
\(797\) −956.331 + 552.138i −1.19991 + 0.692770i −0.960536 0.278156i \(-0.910277\pi\)
−0.239378 + 0.970927i \(0.576943\pi\)
\(798\) 0 0
\(799\) 13.4541 23.3031i 0.0168386 0.0291654i
\(800\) 0 0
\(801\) −351.092 124.130i −0.438317 0.154968i
\(802\) 0 0
\(803\) 785.469 + 453.491i 0.978168 + 0.564746i
\(804\) 0 0
\(805\) −155.682 269.648i −0.193393 0.334967i
\(806\) 0 0
\(807\) 104.697 + 148.064i 0.129736 + 0.183474i
\(808\) 0 0
\(809\) 256.465i 0.317015i −0.987358 0.158508i \(-0.949332\pi\)
0.987358 0.158508i \(-0.0506683\pi\)
\(810\) 0 0
\(811\) −735.362 −0.906735 −0.453368 0.891324i \(-0.649778\pi\)
−0.453368 + 0.891324i \(0.649778\pi\)
\(812\) 0 0
\(813\) 672.717 475.683i 0.827451 0.585096i
\(814\) 0 0
\(815\) −1120.77 + 647.077i −1.37518 + 0.793960i
\(816\) 0 0
\(817\) −2.24183 + 3.88296i −0.00274398 + 0.00475271i
\(818\) 0 0
\(819\) −375.136 + 1061.05i −0.458042 + 1.29554i
\(820\) 0 0
\(821\) 1078.45 + 622.645i 1.31358 + 0.758398i 0.982688 0.185269i \(-0.0593157\pi\)
0.330896 + 0.943667i \(0.392649\pi\)
\(822\) 0 0
\(823\) −771.129 1335.63i −0.936973 1.62288i −0.771077 0.636742i \(-0.780282\pi\)
−0.165896 0.986143i \(-0.553052\pi\)
\(824\) 0 0
\(825\) 23.6969 51.4366i 0.0287236 0.0623474i
\(826\) 0 0
\(827\) 955.707i 1.15563i −0.816167 0.577815i \(-0.803905\pi\)
0.816167 0.577815i \(-0.196095\pi\)
\(828\) 0 0
\(829\) 1082.88 1.30625 0.653123 0.757252i \(-0.273458\pi\)
0.653123 + 0.757252i \(0.273458\pi\)
\(830\) 0 0
\(831\) 13.4875 + 146.380i 0.0162304 + 0.176149i
\(832\) 0 0
\(833\) 14.3633 8.29263i 0.0172428 0.00995514i
\(834\) 0 0
\(835\) −125.842 + 217.964i −0.150708 + 0.261035i
\(836\) 0 0
\(837\) 772.711 794.407i 0.923191 0.949112i
\(838\) 0 0
\(839\) −903.778 521.797i −1.07721 0.621927i −0.147067 0.989127i \(-0.546983\pi\)
−0.930142 + 0.367200i \(0.880317\pi\)
\(840\) 0 0
\(841\) −415.091 718.958i −0.493568 0.854885i
\(842\) 0 0
\(843\) 1024.92 94.4361i 1.21580 0.112024i
\(844\) 0 0
\(845\) 1137.80i 1.34651i
\(846\) 0 0
\(847\) −202.574 −0.239167
\(848\) 0 0
\(849\) 935.701 + 431.079i 1.10212 + 0.507749i
\(850\) 0 0
\(851\) −141.439 + 81.6600i −0.166204 + 0.0959577i
\(852\) 0 0
\(853\) −236.909 + 410.338i −0.277736 + 0.481053i −0.970822 0.239802i \(-0.922917\pi\)
0.693086 + 0.720855i \(0.256251\pi\)
\(854\) 0 0
\(855\) −40.1373 215.956i −0.0469442 0.252580i
\(856\) 0 0
\(857\) 793.939 + 458.381i 0.926417 + 0.534867i 0.885677 0.464303i \(-0.153695\pi\)
0.0407403 + 0.999170i \(0.487028\pi\)
\(858\) 0 0
\(859\) 478.901 + 829.480i 0.557510 + 0.965635i 0.997704 + 0.0677322i \(0.0215764\pi\)
−0.440194 + 0.897903i \(0.645090\pi\)
\(860\) 0 0
\(861\) −679.863 961.471i −0.789620 1.11669i
\(862\) 0 0
\(863\) 524.200i 0.607416i 0.952765 + 0.303708i \(0.0982247\pi\)
−0.952765 + 0.303708i \(0.901775\pi\)
\(864\) 0 0
\(865\) −521.908 −0.603362
\(866\) 0 0
\(867\) −698.994 + 494.264i −0.806222 + 0.570085i
\(868\) 0 0
\(869\) −243.121 + 140.366i −0.279771 + 0.161526i
\(870\) 0 0
\(871\) 304.855 528.025i 0.350006 0.606228i
\(872\) 0 0
\(873\) 560.743 + 655.878i 0.642317 + 0.751292i
\(874\) 0 0
\(875\) −657.067 379.358i −0.750933 0.433551i
\(876\) 0 0
\(877\) −503.878 872.742i −0.574547 0.995145i −0.996091 0.0883370i \(-0.971845\pi\)
0.421543 0.906808i \(-0.361489\pi\)
\(878\) 0 0
\(879\) 359.583 780.511i 0.409082 0.887954i
\(880\) 0 0
\(881\) 1536.71i 1.74428i 0.489254 + 0.872141i \(0.337269\pi\)
−0.489254 + 0.872141i \(0.662731\pi\)
\(882\) 0 0
\(883\) 294.213 0.333197 0.166599 0.986025i \(-0.446722\pi\)
0.166599 + 0.986025i \(0.446722\pi\)
\(884\) 0 0
\(885\) 130.909 + 1420.75i 0.147919 + 1.60537i
\(886\) 0 0
\(887\) 497.794 287.402i 0.561211 0.324015i −0.192420 0.981313i \(-0.561634\pi\)
0.753631 + 0.657297i \(0.228300\pi\)
\(888\) 0 0
\(889\) −32.0306 + 55.4787i −0.0360299 + 0.0624057i
\(890\) 0 0
\(891\) 274.704 + 713.486i 0.308310 + 0.800770i
\(892\) 0 0
\(893\) −57.3949 33.1370i −0.0642720 0.0371075i
\(894\) 0 0
\(895\) 740.636 + 1282.82i 0.827526 + 1.43332i
\(896\) 0 0
\(897\) −555.393 + 51.1741i −0.619168 + 0.0570503i
\(898\) 0 0
\(899\) 135.004i 0.150171i
\(900\) 0 0
\(901\) −18.1837 −0.0201817
\(902\) 0 0
\(903\) 16.5125 + 7.60734i 0.0182863 + 0.00842452i
\(904\) 0 0
\(905\) −167.046 + 96.4443i −0.184582 + 0.106568i
\(906\) 0 0
\(907\) −255.037 + 441.737i −0.281187 + 0.487031i −0.971677 0.236311i \(-0.924062\pi\)
0.690490 + 0.723342i \(0.257395\pi\)
\(908\) 0 0
\(909\) −1080.36 + 923.656i −1.18852 + 1.01612i
\(910\) 0 0
\(911\) 803.127 + 463.685i 0.881588 + 0.508985i 0.871182 0.490961i \(-0.163354\pi\)
0.0104064 + 0.999946i \(0.496687\pi\)
\(912\) 0 0
\(913\) −414.863 718.564i −0.454396 0.787036i
\(914\) 0 0
\(915\) −675.817 955.750i −0.738598 1.04454i
\(916\) 0 0
\(917\) 31.4897i 0.0343399i
\(918\) 0 0
\(919\) 1240.63 1.34998 0.674991 0.737826i \(-0.264147\pi\)
0.674991 + 0.737826i \(0.264147\pi\)
\(920\) 0 0
\(921\) 377.444 266.893i 0.409820 0.289786i
\(922\) 0 0
\(923\) −1465.33 + 846.010i −1.58757 + 0.916587i
\(924\) 0 0
\(925\) 17.3031 29.9698i 0.0187060 0.0323998i
\(926\) 0 0
\(927\) 257.811 47.9164i 0.278113 0.0516897i
\(928\) 0 0
\(929\) 293.576 + 169.496i 0.316013 + 0.182450i 0.649614 0.760264i \(-0.274931\pi\)
−0.333601 + 0.942714i \(0.608264\pi\)
\(930\) 0 0
\(931\) −20.4245 35.3763i −0.0219382 0.0379981i
\(932\) 0 0
\(933\) −90.3627 + 196.141i −0.0968518 + 0.210227i
\(934\) 0 0
\(935\) 93.5307i 0.100033i
\(936\) 0 0
\(937\) 1322.21 1.41111 0.705556 0.708655i \(-0.250698\pi\)
0.705556 + 0.708655i \(0.250698\pi\)
\(938\) 0 0
\(939\) 101.185 + 1098.17i 0.107759 + 1.16951i
\(940\) 0 0
\(941\) −310.984 + 179.547i −0.330482 + 0.190804i −0.656055 0.754713i \(-0.727776\pi\)
0.325573 + 0.945517i \(0.394443\pi\)
\(942\) 0 0
\(943\) 291.795 505.404i 0.309433 0.535953i
\(944\) 0 0
\(945\) −857.043 + 242.408i −0.906924 + 0.256517i
\(946\) 0 0
\(947\) 671.855 + 387.896i 0.709457 + 0.409605i 0.810860 0.585240i \(-0.199000\pi\)
−0.101403 + 0.994845i \(0.532333\pi\)
\(948\) 0 0
\(949\) 946.347 + 1639.12i 0.997205 + 1.72721i
\(950\) 0 0
\(951\) 321.431 29.6168i 0.337992 0.0311428i
\(952\) 0 0
\(953\) 465.082i 0.488019i −0.969773 0.244010i \(-0.921537\pi\)
0.969773 0.244010i \(-0.0784628\pi\)
\(954\) 0 0
\(955\) −93.1362 −0.0975248
\(956\) 0 0
\(957\) −84.5908 38.9711i −0.0883917 0.0407222i
\(958\) 0 0
\(959\) 1290.28 744.942i 1.34544 0.776791i
\(960\) 0 0
\(961\) −361.863 + 626.765i −0.376548 + 0.652200i
\(962\) 0 0
\(963\) −1457.82 515.416i −1.51383 0.535219i
\(964\) 0 0
\(965\) −429.543 247.997i −0.445123 0.256992i
\(966\) 0 0
\(967\) 612.113 + 1060.21i 0.633002 + 1.09639i 0.986935 + 0.161121i \(0.0515109\pi\)
−0.353933 + 0.935271i \(0.615156\pi\)
\(968\) 0 0
\(969\) −15.5143 21.9405i −0.0160106 0.0226424i
\(970\) 0 0
\(971\) 658.702i 0.678375i 0.940719 + 0.339188i \(0.110152\pi\)
−0.940719 + 0.339188i \(0.889848\pi\)
\(972\) 0 0
\(973\) 676.303 0.695070
\(974\) 0 0
\(975\) 96.4949 68.2322i 0.0989691 0.0699817i
\(976\) 0 0
\(977\) 1314.92 759.170i 1.34588 0.777042i 0.358214 0.933639i \(-0.383386\pi\)
0.987663 + 0.156597i \(0.0500525\pi\)
\(978\) 0 0
\(979\) −195.272 + 338.222i −0.199461 + 0.345477i
\(980\) 0 0
\(981\) 348.817 986.604i 0.355573 1.00571i
\(982\) 0 0
\(983\) −716.930 413.920i −0.729329 0.421078i 0.0888477 0.996045i \(-0.471682\pi\)
−0.818177 + 0.574967i \(0.805015\pi\)
\(984\) 0 0
\(985\) 416.636 + 721.634i 0.422980 + 0.732624i
\(986\) 0 0
\(987\) −112.446 + 244.075i −0.113927 + 0.247289i
\(988\) 0 0
\(989\) 9.01020i 0.00911041i
\(990\) 0 0
\(991\) −429.546 −0.433447 −0.216723 0.976233i \(-0.569537\pi\)
−0.216723 + 0.976233i \(0.569537\pi\)
\(992\) 0 0
\(993\) 4.73369 + 51.3747i 0.00476706 + 0.0517369i
\(994\) 0 0
\(995\) 29.3189 16.9273i 0.0294662 0.0170123i
\(996\) 0 0
\(997\) 347.499 601.886i 0.348545 0.603697i −0.637447 0.770495i \(-0.720009\pi\)
0.985991 + 0.166798i \(0.0533427\pi\)
\(998\) 0 0
\(999\) 127.151 + 449.547i 0.127278 + 0.449997i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.3.q.c.65.1 4
3.2 odd 2 432.3.q.d.305.2 4
4.3 odd 2 18.3.d.a.11.1 yes 4
8.3 odd 2 576.3.q.f.65.1 4
8.5 even 2 576.3.q.e.65.2 4
9.2 odd 6 1296.3.e.g.161.3 4
9.4 even 3 432.3.q.d.17.2 4
9.5 odd 6 inner 144.3.q.c.113.1 4
9.7 even 3 1296.3.e.g.161.1 4
12.11 even 2 54.3.d.a.35.2 4
20.3 even 4 450.3.k.a.299.2 8
20.7 even 4 450.3.k.a.299.3 8
20.19 odd 2 450.3.i.b.101.2 4
24.5 odd 2 1728.3.q.c.1601.2 4
24.11 even 2 1728.3.q.d.1601.1 4
36.7 odd 6 162.3.b.a.161.3 4
36.11 even 6 162.3.b.a.161.2 4
36.23 even 6 18.3.d.a.5.1 4
36.31 odd 6 54.3.d.a.17.2 4
60.23 odd 4 1350.3.k.a.899.3 8
60.47 odd 4 1350.3.k.a.899.2 8
60.59 even 2 1350.3.i.b.251.1 4
72.5 odd 6 576.3.q.e.257.2 4
72.13 even 6 1728.3.q.c.449.2 4
72.59 even 6 576.3.q.f.257.1 4
72.67 odd 6 1728.3.q.d.449.1 4
180.23 odd 12 450.3.k.a.149.3 8
180.59 even 6 450.3.i.b.401.2 4
180.67 even 12 1350.3.k.a.449.3 8
180.103 even 12 1350.3.k.a.449.2 8
180.139 odd 6 1350.3.i.b.1151.1 4
180.167 odd 12 450.3.k.a.149.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.3.d.a.5.1 4 36.23 even 6
18.3.d.a.11.1 yes 4 4.3 odd 2
54.3.d.a.17.2 4 36.31 odd 6
54.3.d.a.35.2 4 12.11 even 2
144.3.q.c.65.1 4 1.1 even 1 trivial
144.3.q.c.113.1 4 9.5 odd 6 inner
162.3.b.a.161.2 4 36.11 even 6
162.3.b.a.161.3 4 36.7 odd 6
432.3.q.d.17.2 4 9.4 even 3
432.3.q.d.305.2 4 3.2 odd 2
450.3.i.b.101.2 4 20.19 odd 2
450.3.i.b.401.2 4 180.59 even 6
450.3.k.a.149.2 8 180.167 odd 12
450.3.k.a.149.3 8 180.23 odd 12
450.3.k.a.299.2 8 20.3 even 4
450.3.k.a.299.3 8 20.7 even 4
576.3.q.e.65.2 4 8.5 even 2
576.3.q.e.257.2 4 72.5 odd 6
576.3.q.f.65.1 4 8.3 odd 2
576.3.q.f.257.1 4 72.59 even 6
1296.3.e.g.161.1 4 9.7 even 3
1296.3.e.g.161.3 4 9.2 odd 6
1350.3.i.b.251.1 4 60.59 even 2
1350.3.i.b.1151.1 4 180.139 odd 6
1350.3.k.a.449.2 8 180.103 even 12
1350.3.k.a.449.3 8 180.67 even 12
1350.3.k.a.899.2 8 60.47 odd 4
1350.3.k.a.899.3 8 60.23 odd 4
1728.3.q.c.449.2 4 72.13 even 6
1728.3.q.c.1601.2 4 24.5 odd 2
1728.3.q.d.449.1 4 72.67 odd 6
1728.3.q.d.1601.1 4 24.11 even 2