Properties

Label 1445.2.b.f.579.9
Level $1445$
Weight $2$
Character 1445.579
Analytic conductor $11.538$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(579,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.579");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{10} - 9x^{8} + 228x^{6} - 225x^{4} - 1250x^{2} + 15625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 579.9
Root \(-0.178191 + 2.22896i\) of defining polynomial
Character \(\chi\) \(=\) 1445.579
Dual form 1445.2.b.f.579.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.80333i q^{2} -0.561698i q^{3} -1.25200 q^{4} +(0.178191 - 2.22896i) q^{5} +1.01293 q^{6} +3.11199i q^{7} +1.34889i q^{8} +2.68450 q^{9} +(4.01955 + 0.321338i) q^{10} +5.61195 q^{11} +0.703246i q^{12} -1.24880i q^{13} -5.61195 q^{14} +(-1.25200 - 0.100090i) q^{15} -4.93650 q^{16} +4.84103i q^{18} -4.00000 q^{19} +(-0.223095 + 2.79065i) q^{20} +1.74800 q^{21} +10.1202i q^{22} -2.32777i q^{23} +0.757669 q^{24} +(-4.93650 - 0.794361i) q^{25} +2.25200 q^{26} -3.19297i q^{27} -3.89622i q^{28} +6.62488 q^{29} +(0.180495 - 2.25777i) q^{30} +4.55412 q^{31} -6.20435i q^{32} -3.15222i q^{33} +(6.93650 + 0.554530i) q^{35} -3.36099 q^{36} +1.90762i q^{37} -7.21332i q^{38} -0.701449 q^{39} +(3.00662 + 0.240360i) q^{40} +5.92343 q^{41} +3.15222i q^{42} -2.04316i q^{43} -7.02616 q^{44} +(0.478353 - 5.98362i) q^{45} +4.19774 q^{46} +4.85546i q^{47} +2.77282i q^{48} -2.68450 q^{49} +(1.43250 - 8.90213i) q^{50} +1.56350i q^{52} +9.11674i q^{53} +5.75798 q^{54} +(1.00000 - 12.5088i) q^{55} -4.19774 q^{56} +2.24679i q^{57} +11.9468i q^{58} -6.00000 q^{59} +(1.56750 + 0.125312i) q^{60} +5.65685 q^{61} +8.21258i q^{62} +8.35413i q^{63} +1.31550 q^{64} +(-2.78352 - 0.222525i) q^{65} +5.68450 q^{66} +8.46212i q^{67} -1.30750 q^{69} +(-1.00000 + 12.5088i) q^{70} -8.79676 q^{71} +3.62109i q^{72} +1.56845i q^{73} -3.44007 q^{74} +(-0.446191 + 2.77282i) q^{75} +5.00800 q^{76} +17.4643i q^{77} -1.26494i q^{78} -4.91050 q^{79} +(-0.879640 + 11.0032i) q^{80} +6.26000 q^{81} +10.6819i q^{82} -3.94658i q^{83} -2.18850 q^{84} +3.68450 q^{86} -3.72118i q^{87} +7.56991i q^{88} +10.6130 q^{89} +(10.7905 + 0.862629i) q^{90} +3.88626 q^{91} +2.91437i q^{92} -2.55804i q^{93} -8.75600 q^{94} +(-0.712765 + 8.91583i) q^{95} -3.48497 q^{96} -12.3919i q^{97} -4.84103i q^{98} +15.0653 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{4} - 28 q^{9} - 12 q^{15} + 4 q^{16} - 48 q^{19} + 24 q^{21} + 4 q^{25} + 24 q^{26} - 52 q^{30} + 20 q^{35} + 68 q^{36} + 28 q^{49} - 40 q^{50} + 12 q^{55} - 72 q^{59} + 76 q^{60} + 76 q^{64}+ \cdots - 96 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1445\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.80333i 1.27515i 0.770389 + 0.637574i \(0.220062\pi\)
−0.770389 + 0.637574i \(0.779938\pi\)
\(3\) 0.561698i 0.324296i −0.986766 0.162148i \(-0.948158\pi\)
0.986766 0.162148i \(-0.0518423\pi\)
\(4\) −1.25200 −0.626000
\(5\) 0.178191 2.22896i 0.0796895 0.996820i
\(6\) 1.01293 0.413526
\(7\) 3.11199i 1.17622i 0.808780 + 0.588111i \(0.200128\pi\)
−0.808780 + 0.588111i \(0.799872\pi\)
\(8\) 1.34889i 0.476905i
\(9\) 2.68450 0.894832
\(10\) 4.01955 + 0.321338i 1.27109 + 0.101616i
\(11\) 5.61195 1.69207 0.846033 0.533130i \(-0.178984\pi\)
0.846033 + 0.533130i \(0.178984\pi\)
\(12\) 0.703246i 0.203010i
\(13\) 1.24880i 0.346355i −0.984891 0.173178i \(-0.944597\pi\)
0.984891 0.173178i \(-0.0554034\pi\)
\(14\) −5.61195 −1.49986
\(15\) −1.25200 0.100090i −0.323265 0.0258430i
\(16\) −4.93650 −1.23412
\(17\) 0 0
\(18\) 4.84103i 1.14104i
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) −0.223095 + 2.79065i −0.0498857 + 0.624009i
\(21\) 1.74800 0.381445
\(22\) 10.1202i 2.15763i
\(23\) 2.32777i 0.485373i −0.970105 0.242687i \(-0.921971\pi\)
0.970105 0.242687i \(-0.0780287\pi\)
\(24\) 0.757669 0.154659
\(25\) −4.93650 0.794361i −0.987299 0.158872i
\(26\) 2.25200 0.441654
\(27\) 3.19297i 0.614487i
\(28\) 3.89622i 0.736316i
\(29\) 6.62488 1.23021 0.615104 0.788446i \(-0.289114\pi\)
0.615104 + 0.788446i \(0.289114\pi\)
\(30\) 0.180495 2.25777i 0.0329537 0.412211i
\(31\) 4.55412 0.817944 0.408972 0.912547i \(-0.365887\pi\)
0.408972 + 0.912547i \(0.365887\pi\)
\(32\) 6.20435i 1.09678i
\(33\) 3.15222i 0.548731i
\(34\) 0 0
\(35\) 6.93650 + 0.554530i 1.17248 + 0.0937326i
\(36\) −3.36099 −0.560165
\(37\) 1.90762i 0.313611i 0.987630 + 0.156805i \(0.0501195\pi\)
−0.987630 + 0.156805i \(0.949880\pi\)
\(38\) 7.21332i 1.17016i
\(39\) −0.701449 −0.112322
\(40\) 3.00662 + 0.240360i 0.475388 + 0.0380043i
\(41\) 5.92343 0.925084 0.462542 0.886597i \(-0.346937\pi\)
0.462542 + 0.886597i \(0.346937\pi\)
\(42\) 3.15222i 0.486398i
\(43\) 2.04316i 0.311579i −0.987790 0.155790i \(-0.950208\pi\)
0.987790 0.155790i \(-0.0497922\pi\)
\(44\) −7.02616 −1.05923
\(45\) 0.478353 5.98362i 0.0713087 0.891986i
\(46\) 4.19774 0.618922
\(47\) 4.85546i 0.708242i 0.935200 + 0.354121i \(0.115220\pi\)
−0.935200 + 0.354121i \(0.884780\pi\)
\(48\) 2.77282i 0.400222i
\(49\) −2.68450 −0.383499
\(50\) 1.43250 8.90213i 0.202585 1.25895i
\(51\) 0 0
\(52\) 1.56350i 0.216818i
\(53\) 9.11674i 1.25228i 0.779710 + 0.626140i \(0.215366\pi\)
−0.779710 + 0.626140i \(0.784634\pi\)
\(54\) 5.75798 0.783562
\(55\) 1.00000 12.5088i 0.134840 1.68669i
\(56\) −4.19774 −0.560946
\(57\) 2.24679i 0.297595i
\(58\) 11.9468i 1.56870i
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 1.56750 + 0.125312i 0.202364 + 0.0161777i
\(61\) 5.65685 0.724286 0.362143 0.932123i \(-0.382045\pi\)
0.362143 + 0.932123i \(0.382045\pi\)
\(62\) 8.21258i 1.04300i
\(63\) 8.35413i 1.05252i
\(64\) 1.31550 0.164438
\(65\) −2.78352 0.222525i −0.345254 0.0276009i
\(66\) 5.68450 0.699713
\(67\) 8.46212i 1.03381i 0.856042 + 0.516906i \(0.172916\pi\)
−0.856042 + 0.516906i \(0.827084\pi\)
\(68\) 0 0
\(69\) −1.30750 −0.157405
\(70\) −1.00000 + 12.5088i −0.119523 + 1.49509i
\(71\) −8.79676 −1.04398 −0.521992 0.852951i \(-0.674811\pi\)
−0.521992 + 0.852951i \(0.674811\pi\)
\(72\) 3.62109i 0.426750i
\(73\) 1.56845i 0.183573i 0.995779 + 0.0917864i \(0.0292577\pi\)
−0.995779 + 0.0917864i \(0.970742\pi\)
\(74\) −3.44007 −0.399900
\(75\) −0.446191 + 2.77282i −0.0515217 + 0.320178i
\(76\) 5.00800 0.574457
\(77\) 17.4643i 1.99025i
\(78\) 1.26494i 0.143227i
\(79\) −4.91050 −0.552475 −0.276237 0.961089i \(-0.589088\pi\)
−0.276237 + 0.961089i \(0.589088\pi\)
\(80\) −0.879640 + 11.0032i −0.0983467 + 1.23020i
\(81\) 6.26000 0.695556
\(82\) 10.6819i 1.17962i
\(83\) 3.94658i 0.433194i −0.976261 0.216597i \(-0.930504\pi\)
0.976261 0.216597i \(-0.0694957\pi\)
\(84\) −2.18850 −0.238785
\(85\) 0 0
\(86\) 3.68450 0.397309
\(87\) 3.72118i 0.398952i
\(88\) 7.56991i 0.806955i
\(89\) 10.6130 1.12497 0.562487 0.826806i \(-0.309845\pi\)
0.562487 + 0.826806i \(0.309845\pi\)
\(90\) 10.7905 + 0.862629i 1.13741 + 0.0909291i
\(91\) 3.88626 0.407391
\(92\) 2.91437i 0.303844i
\(93\) 2.55804i 0.265256i
\(94\) −8.75600 −0.903113
\(95\) −0.712765 + 8.91583i −0.0731281 + 0.914745i
\(96\) −3.48497 −0.355683
\(97\) 12.3919i 1.25821i −0.777322 0.629103i \(-0.783422\pi\)
0.777322 0.629103i \(-0.216578\pi\)
\(98\) 4.84103i 0.489018i
\(99\) 15.0653 1.51412
\(100\) 6.18049 + 0.994540i 0.618049 + 0.0994540i
\(101\) 9.62099 0.957324 0.478662 0.877999i \(-0.341122\pi\)
0.478662 + 0.877999i \(0.341122\pi\)
\(102\) 0 0
\(103\) 1.84298i 0.181594i 0.995869 + 0.0907972i \(0.0289415\pi\)
−0.995869 + 0.0907972i \(0.971058\pi\)
\(104\) 1.68450 0.165178
\(105\) 0.311478 3.89622i 0.0303972 0.380232i
\(106\) −16.4405 −1.59684
\(107\) 16.9869i 1.64218i 0.570798 + 0.821091i \(0.306634\pi\)
−0.570798 + 0.821091i \(0.693366\pi\)
\(108\) 3.99760i 0.384669i
\(109\) 0.446191 0.0427373 0.0213687 0.999772i \(-0.493198\pi\)
0.0213687 + 0.999772i \(0.493198\pi\)
\(110\) 22.5575 + 1.80333i 2.15077 + 0.171941i
\(111\) 1.07151 0.101703
\(112\) 15.3623i 1.45160i
\(113\) 11.3246i 1.06533i −0.846327 0.532663i \(-0.821191\pi\)
0.846327 0.532663i \(-0.178809\pi\)
\(114\) −4.05171 −0.379477
\(115\) −5.18850 0.414788i −0.483830 0.0386792i
\(116\) −8.29435 −0.770111
\(117\) 3.35240i 0.309929i
\(118\) 10.8200i 0.996060i
\(119\) 0 0
\(120\) 0.135010 1.68881i 0.0123247 0.154167i
\(121\) 20.4940 1.86309
\(122\) 10.2012i 0.923571i
\(123\) 3.32718i 0.300001i
\(124\) −5.70176 −0.512033
\(125\) −2.65024 + 10.8617i −0.237044 + 0.971499i
\(126\) −15.0653 −1.34212
\(127\) 5.85000i 0.519104i −0.965729 0.259552i \(-0.916425\pi\)
0.965729 0.259552i \(-0.0835748\pi\)
\(128\) 10.0364i 0.887102i
\(129\) −1.14764 −0.101044
\(130\) 0.401287 5.01961i 0.0351952 0.440249i
\(131\) −19.5632 −1.70924 −0.854620 0.519253i \(-0.826210\pi\)
−0.854620 + 0.519253i \(0.826210\pi\)
\(132\) 3.94658i 0.343506i
\(133\) 12.4480i 1.07938i
\(134\) −15.2600 −1.31826
\(135\) −7.11699 0.568959i −0.612533 0.0489682i
\(136\) 0 0
\(137\) 13.8577i 1.18394i 0.805959 + 0.591971i \(0.201650\pi\)
−0.805959 + 0.591971i \(0.798350\pi\)
\(138\) 2.35786i 0.200714i
\(139\) 10.1997 0.865124 0.432562 0.901604i \(-0.357610\pi\)
0.432562 + 0.901604i \(0.357610\pi\)
\(140\) −8.68450 0.694271i −0.733974 0.0586766i
\(141\) 2.72730 0.229680
\(142\) 15.8635i 1.33123i
\(143\) 7.00821i 0.586056i
\(144\) −13.2520 −1.10433
\(145\) 1.18049 14.7666i 0.0980347 1.22630i
\(146\) −2.82843 −0.234082
\(147\) 1.50788i 0.124367i
\(148\) 2.38834i 0.196320i
\(149\) −15.9365 −1.30557 −0.652784 0.757544i \(-0.726399\pi\)
−0.652784 + 0.757544i \(0.726399\pi\)
\(150\) −5.00031 0.804630i −0.408274 0.0656977i
\(151\) −3.36899 −0.274165 −0.137082 0.990560i \(-0.543772\pi\)
−0.137082 + 0.990560i \(0.543772\pi\)
\(152\) 5.39556i 0.437638i
\(153\) 0 0
\(154\) −31.4940 −2.53786
\(155\) 0.811504 10.1509i 0.0651816 0.815343i
\(156\) 0.878214 0.0703134
\(157\) 3.92136i 0.312959i 0.987681 + 0.156479i \(0.0500144\pi\)
−0.987681 + 0.156479i \(0.949986\pi\)
\(158\) 8.85526i 0.704486i
\(159\) 5.12085 0.406110
\(160\) −13.8292 1.10556i −1.09330 0.0874023i
\(161\) 7.24400 0.570907
\(162\) 11.2889i 0.886936i
\(163\) 14.7197i 1.15293i 0.817121 + 0.576466i \(0.195569\pi\)
−0.817121 + 0.576466i \(0.804431\pi\)
\(164\) −7.41613 −0.579103
\(165\) −7.02616 0.561698i −0.546986 0.0437281i
\(166\) 7.11699 0.552386
\(167\) 0.420150i 0.0325122i 0.999868 + 0.0162561i \(0.00517470\pi\)
−0.999868 + 0.0162561i \(0.994825\pi\)
\(168\) 2.35786i 0.181913i
\(169\) 11.4405 0.880038
\(170\) 0 0
\(171\) −10.7380 −0.821154
\(172\) 2.55804i 0.195049i
\(173\) 16.6024i 1.26226i −0.775679 0.631128i \(-0.782592\pi\)
0.775679 0.631128i \(-0.217408\pi\)
\(174\) 6.71052 0.508723
\(175\) 2.47204 15.3623i 0.186869 1.16128i
\(176\) −27.7034 −2.08822
\(177\) 3.37019i 0.253319i
\(178\) 19.1387i 1.43451i
\(179\) −19.7935 −1.47943 −0.739717 0.672918i \(-0.765041\pi\)
−0.739717 + 0.672918i \(0.765041\pi\)
\(180\) −0.598899 + 7.49150i −0.0446393 + 0.558383i
\(181\) −9.36350 −0.695983 −0.347992 0.937498i \(-0.613136\pi\)
−0.347992 + 0.937498i \(0.613136\pi\)
\(182\) 7.00821i 0.519483i
\(183\) 3.17744i 0.234883i
\(184\) 3.13991 0.231477
\(185\) 4.25200 + 0.339921i 0.312613 + 0.0249915i
\(186\) 4.61299 0.338241
\(187\) 0 0
\(188\) 6.07904i 0.443360i
\(189\) 9.93650 0.722774
\(190\) −16.0782 1.28535i −1.16643 0.0932491i
\(191\) 13.9365 1.00841 0.504205 0.863584i \(-0.331786\pi\)
0.504205 + 0.863584i \(0.331786\pi\)
\(192\) 0.738916i 0.0533267i
\(193\) 4.17482i 0.300510i −0.988647 0.150255i \(-0.951991\pi\)
0.988647 0.150255i \(-0.0480095\pi\)
\(194\) 22.3467 1.60440
\(195\) −0.124992 + 1.56350i −0.00895086 + 0.111964i
\(196\) 3.36099 0.240071
\(197\) 17.6901i 1.26037i −0.776446 0.630184i \(-0.782979\pi\)
0.776446 0.630184i \(-0.217021\pi\)
\(198\) 27.1676i 1.93072i
\(199\) 5.60063 0.397018 0.198509 0.980099i \(-0.436390\pi\)
0.198509 + 0.980099i \(0.436390\pi\)
\(200\) 1.07151 6.65879i 0.0757669 0.470848i
\(201\) 4.75316 0.335262
\(202\) 17.3498i 1.22073i
\(203\) 20.6166i 1.44700i
\(204\) 0 0
\(205\) 1.05550 13.2031i 0.0737195 0.922142i
\(206\) −3.32351 −0.231560
\(207\) 6.24889i 0.434328i
\(208\) 6.16470i 0.427445i
\(209\) −22.4478 −1.55275
\(210\) 7.02616 + 0.561698i 0.484851 + 0.0387608i
\(211\) −0.923118 −0.0635501 −0.0317750 0.999495i \(-0.510116\pi\)
−0.0317750 + 0.999495i \(0.510116\pi\)
\(212\) 11.4142i 0.783928i
\(213\) 4.94112i 0.338560i
\(214\) −30.6329 −2.09402
\(215\) −4.55412 0.364073i −0.310588 0.0248296i
\(216\) 4.30697 0.293052
\(217\) 14.1724i 0.962084i
\(218\) 0.804630i 0.0544964i
\(219\) 0.880993 0.0595320
\(220\) −1.25200 + 15.6610i −0.0844098 + 1.05587i
\(221\) 0 0
\(222\) 1.93228i 0.129686i
\(223\) 1.24880i 0.0836259i −0.999125 0.0418129i \(-0.986687\pi\)
0.999125 0.0418129i \(-0.0133134\pi\)
\(224\) 19.3079 1.29006
\(225\) −13.2520 2.13246i −0.883467 0.142164i
\(226\) 20.4219 1.35845
\(227\) 11.5828i 0.768775i −0.923172 0.384388i \(-0.874413\pi\)
0.923172 0.384388i \(-0.125587\pi\)
\(228\) 2.81298i 0.186294i
\(229\) −11.7480 −0.776330 −0.388165 0.921590i \(-0.626891\pi\)
−0.388165 + 0.921590i \(0.626891\pi\)
\(230\) 0.748000 9.35657i 0.0493216 0.616954i
\(231\) 9.80969 0.645430
\(232\) 8.93623i 0.586692i
\(233\) 11.3042i 0.740561i −0.928920 0.370280i \(-0.879262\pi\)
0.928920 0.370280i \(-0.120738\pi\)
\(234\) 6.04548 0.395206
\(235\) 10.8226 + 0.865200i 0.705989 + 0.0564395i
\(236\) 7.51200 0.488990
\(237\) 2.75822i 0.179166i
\(238\) 0 0
\(239\) −5.13501 −0.332156 −0.166078 0.986113i \(-0.553110\pi\)
−0.166078 + 0.986113i \(0.553110\pi\)
\(240\) 6.18049 + 0.494092i 0.398949 + 0.0318935i
\(241\) 8.48528 0.546585 0.273293 0.961931i \(-0.411887\pi\)
0.273293 + 0.961931i \(0.411887\pi\)
\(242\) 36.9574i 2.37571i
\(243\) 13.0951i 0.840054i
\(244\) −7.08238 −0.453403
\(245\) −0.478353 + 5.98362i −0.0305609 + 0.382280i
\(246\) 6.00000 0.382546
\(247\) 4.99520i 0.317837i
\(248\) 6.14301i 0.390081i
\(249\) −2.21679 −0.140483
\(250\) −19.5872 4.77925i −1.23880 0.302266i
\(251\) −19.8095 −1.25036 −0.625182 0.780479i \(-0.714975\pi\)
−0.625182 + 0.780479i \(0.714975\pi\)
\(252\) 10.4594i 0.658879i
\(253\) 13.0633i 0.821284i
\(254\) 10.5495 0.661934
\(255\) 0 0
\(256\) 20.7300 1.29562
\(257\) 24.3982i 1.52192i −0.648801 0.760958i \(-0.724729\pi\)
0.648801 0.760958i \(-0.275271\pi\)
\(258\) 2.06957i 0.128846i
\(259\) −5.93650 −0.368876
\(260\) 3.48497 + 0.278602i 0.216129 + 0.0172781i
\(261\) 17.7845 1.10083
\(262\) 35.2788i 2.17953i
\(263\) 18.0585i 1.11354i −0.830668 0.556768i \(-0.812041\pi\)
0.830668 0.556768i \(-0.187959\pi\)
\(264\) 4.25200 0.261693
\(265\) 20.3208 + 1.62452i 1.24830 + 0.0997936i
\(266\) 22.4478 1.37636
\(267\) 5.96129i 0.364825i
\(268\) 10.5946i 0.647167i
\(269\) −17.8601 −1.08895 −0.544475 0.838777i \(-0.683271\pi\)
−0.544475 + 0.838777i \(0.683271\pi\)
\(270\) 1.02602 12.8343i 0.0624417 0.781070i
\(271\) −15.8570 −0.963243 −0.481622 0.876379i \(-0.659952\pi\)
−0.481622 + 0.876379i \(0.659952\pi\)
\(272\) 0 0
\(273\) 2.18290i 0.132115i
\(274\) −24.9900 −1.50970
\(275\) −27.7034 4.45791i −1.67058 0.268822i
\(276\) 1.63699 0.0985355
\(277\) 14.1784i 0.851896i −0.904748 0.425948i \(-0.859941\pi\)
0.904748 0.425948i \(-0.140059\pi\)
\(278\) 18.3934i 1.10316i
\(279\) 12.2255 0.731922
\(280\) −0.748000 + 9.35657i −0.0447015 + 0.559162i
\(281\) −7.80949 −0.465875 −0.232937 0.972492i \(-0.574834\pi\)
−0.232937 + 0.972492i \(0.574834\pi\)
\(282\) 4.91823i 0.292876i
\(283\) 20.9080i 1.24285i −0.783474 0.621425i \(-0.786554\pi\)
0.783474 0.621425i \(-0.213446\pi\)
\(284\) 11.0135 0.653534
\(285\) 5.00800 + 0.400358i 0.296648 + 0.0237152i
\(286\) 12.6381 0.747307
\(287\) 18.4337i 1.08810i
\(288\) 16.6556i 0.981438i
\(289\) 0 0
\(290\) 26.6290 + 2.12882i 1.56371 + 0.125009i
\(291\) −6.96050 −0.408032
\(292\) 1.96370i 0.114917i
\(293\) 4.79502i 0.280128i −0.990142 0.140064i \(-0.955269\pi\)
0.990142 0.140064i \(-0.0447309\pi\)
\(294\) −2.71920 −0.158587
\(295\) −1.06915 + 13.3737i −0.0622482 + 0.778649i
\(296\) −2.57317 −0.149562
\(297\) 17.9188i 1.03975i
\(298\) 28.7388i 1.66479i
\(299\) −2.90692 −0.168112
\(300\) 0.558631 3.47157i 0.0322526 0.200431i
\(301\) 6.35830 0.366486
\(302\) 6.07540i 0.349600i
\(303\) 5.40409i 0.310457i
\(304\) 19.7460 1.13251
\(305\) 1.00800 12.6089i 0.0577180 0.721983i
\(306\) 0 0
\(307\) 24.9924i 1.42639i −0.700966 0.713195i \(-0.747247\pi\)
0.700966 0.713195i \(-0.252753\pi\)
\(308\) 21.8654i 1.24589i
\(309\) 1.03520 0.0588904
\(310\) 18.3055 + 1.46341i 1.03968 + 0.0831161i
\(311\) 4.03229 0.228650 0.114325 0.993443i \(-0.463529\pi\)
0.114325 + 0.993443i \(0.463529\pi\)
\(312\) 0.946178i 0.0535668i
\(313\) 22.6491i 1.28021i −0.768289 0.640103i \(-0.778892\pi\)
0.768289 0.640103i \(-0.221108\pi\)
\(314\) −7.07151 −0.399068
\(315\) 18.6210 + 1.48863i 1.04917 + 0.0838749i
\(316\) 6.14795 0.345849
\(317\) 8.27315i 0.464666i 0.972636 + 0.232333i \(0.0746360\pi\)
−0.972636 + 0.232333i \(0.925364\pi\)
\(318\) 9.23459i 0.517850i
\(319\) 37.1785 2.08160
\(320\) 0.234411 2.93220i 0.0131040 0.163915i
\(321\) 9.54148 0.532554
\(322\) 13.0633i 0.727991i
\(323\) 0 0
\(324\) −7.83752 −0.435418
\(325\) −0.991998 + 6.16470i −0.0550262 + 0.341956i
\(326\) −26.5444 −1.47016
\(327\) 0.250624i 0.0138596i
\(328\) 7.99006i 0.441177i
\(329\) −15.1102 −0.833050
\(330\) 1.01293 12.6705i 0.0557598 0.697488i
\(331\) −5.51200 −0.302967 −0.151484 0.988460i \(-0.548405\pi\)
−0.151484 + 0.988460i \(0.548405\pi\)
\(332\) 4.94112i 0.271179i
\(333\) 5.12099i 0.280629i
\(334\) −0.757669 −0.0414578
\(335\) 18.8617 + 1.50788i 1.03052 + 0.0823840i
\(336\) −8.62899 −0.470750
\(337\) 9.53810i 0.519573i 0.965666 + 0.259787i \(0.0836522\pi\)
−0.965666 + 0.259787i \(0.916348\pi\)
\(338\) 20.6310i 1.12218i
\(339\) −6.36099 −0.345482
\(340\) 0 0
\(341\) 25.5575 1.38402
\(342\) 19.3641i 1.04709i
\(343\) 13.4298i 0.725142i
\(344\) 2.75600 0.148594
\(345\) −0.232986 + 2.91437i −0.0125435 + 0.156904i
\(346\) 29.9396 1.60956
\(347\) 11.5471i 0.619881i −0.950756 0.309940i \(-0.899691\pi\)
0.950756 0.309940i \(-0.100309\pi\)
\(348\) 4.65892i 0.249744i
\(349\) 11.4325 0.611967 0.305984 0.952037i \(-0.401015\pi\)
0.305984 + 0.952037i \(0.401015\pi\)
\(350\) 27.7034 + 4.45791i 1.48081 + 0.238285i
\(351\) −3.98738 −0.212831
\(352\) 34.8185i 1.85583i
\(353\) 31.8017i 1.69263i 0.532680 + 0.846317i \(0.321185\pi\)
−0.532680 + 0.846317i \(0.678815\pi\)
\(354\) −6.07756 −0.323019
\(355\) −1.56750 + 19.6076i −0.0831945 + 1.04066i
\(356\) −13.2875 −0.704234
\(357\) 0 0
\(358\) 35.6942i 1.88650i
\(359\) −25.1785 −1.32887 −0.664435 0.747346i \(-0.731328\pi\)
−0.664435 + 0.747346i \(0.731328\pi\)
\(360\) 8.07125 + 0.645246i 0.425392 + 0.0340075i
\(361\) −3.00000 −0.157895
\(362\) 16.8855i 0.887481i
\(363\) 11.5114i 0.604193i
\(364\) −4.86560 −0.255027
\(365\) 3.49600 + 0.279483i 0.182989 + 0.0146288i
\(366\) 5.72998 0.299511
\(367\) 6.08693i 0.317735i 0.987300 + 0.158868i \(0.0507843\pi\)
−0.987300 + 0.158868i \(0.949216\pi\)
\(368\) 11.4910i 0.599011i
\(369\) 15.9014 0.827795
\(370\) −0.612990 + 7.66776i −0.0318678 + 0.398628i
\(371\) −28.3712 −1.47296
\(372\) 3.20267i 0.166050i
\(373\) 30.0732i 1.55713i 0.627562 + 0.778566i \(0.284053\pi\)
−0.627562 + 0.778566i \(0.715947\pi\)
\(374\) 0 0
\(375\) 6.10099 + 1.48863i 0.315054 + 0.0768726i
\(376\) −6.54949 −0.337764
\(377\) 8.27315i 0.426089i
\(378\) 17.9188i 0.921643i
\(379\) −1.01293 −0.0520306 −0.0260153 0.999662i \(-0.508282\pi\)
−0.0260153 + 0.999662i \(0.508282\pi\)
\(380\) 0.892382 11.1626i 0.0457782 0.572630i
\(381\) −3.28593 −0.168343
\(382\) 25.1321i 1.28587i
\(383\) 25.8660i 1.32169i 0.750521 + 0.660846i \(0.229802\pi\)
−0.750521 + 0.660846i \(0.770198\pi\)
\(384\) −5.63743 −0.287684
\(385\) 38.9273 + 3.11199i 1.98392 + 0.158602i
\(386\) 7.52857 0.383194
\(387\) 5.48486i 0.278811i
\(388\) 15.5147i 0.787637i
\(389\) −33.0695 −1.67669 −0.838345 0.545140i \(-0.816476\pi\)
−0.838345 + 0.545140i \(0.816476\pi\)
\(390\) −2.81951 0.225402i −0.142771 0.0114137i
\(391\) 0 0
\(392\) 3.62109i 0.182893i
\(393\) 10.9886i 0.554301i
\(394\) 31.9011 1.60715
\(395\) −0.875008 + 10.9453i −0.0440264 + 0.550718i
\(396\) −18.8617 −0.947836
\(397\) 8.15201i 0.409138i 0.978852 + 0.204569i \(0.0655792\pi\)
−0.978852 + 0.204569i \(0.934421\pi\)
\(398\) 10.0998i 0.506257i
\(399\) −6.99200 −0.350038
\(400\) 24.3690 + 3.92136i 1.21845 + 0.196068i
\(401\) −0.165449 −0.00826215 −0.00413108 0.999991i \(-0.501315\pi\)
−0.00413108 + 0.999991i \(0.501315\pi\)
\(402\) 8.57151i 0.427508i
\(403\) 5.68719i 0.283299i
\(404\) −12.0455 −0.599285
\(405\) 1.11548 13.9533i 0.0554285 0.693344i
\(406\) −37.1785 −1.84514
\(407\) 10.7055i 0.530650i
\(408\) 0 0
\(409\) −13.3690 −0.661054 −0.330527 0.943797i \(-0.607226\pi\)
−0.330527 + 0.943797i \(0.607226\pi\)
\(410\) 23.8095 + 1.90342i 1.17587 + 0.0940032i
\(411\) 7.78383 0.383948
\(412\) 2.30741i 0.113678i
\(413\) 18.6720i 0.918787i
\(414\) 11.2688 0.553832
\(415\) −8.79676 0.703246i −0.431816 0.0345210i
\(416\) −7.74800 −0.379877
\(417\) 5.72913i 0.280557i
\(418\) 40.4808i 1.97998i
\(419\) 23.5732 1.15162 0.575812 0.817582i \(-0.304686\pi\)
0.575812 + 0.817582i \(0.304686\pi\)
\(420\) −0.389971 + 4.87806i −0.0190286 + 0.238025i
\(421\) −5.82751 −0.284015 −0.142008 0.989866i \(-0.545356\pi\)
−0.142008 + 0.989866i \(0.545356\pi\)
\(422\) 1.66469i 0.0810357i
\(423\) 13.0345i 0.633757i
\(424\) −12.2975 −0.597219
\(425\) 0 0
\(426\) −8.91047 −0.431714
\(427\) 17.6041i 0.851921i
\(428\) 21.2676i 1.02801i
\(429\) −3.93650 −0.190056
\(430\) 0.656545 8.21258i 0.0316614 0.396046i
\(431\) 6.93636 0.334112 0.167056 0.985947i \(-0.446574\pi\)
0.167056 + 0.985947i \(0.446574\pi\)
\(432\) 15.7621i 0.758353i
\(433\) 15.4464i 0.742307i −0.928572 0.371153i \(-0.878962\pi\)
0.928572 0.371153i \(-0.121038\pi\)
\(434\) −25.5575 −1.22680
\(435\) −8.29435 0.663081i −0.397684 0.0317923i
\(436\) −0.558631 −0.0267536
\(437\) 9.31108i 0.445409i
\(438\) 1.58872i 0.0759121i
\(439\) 1.47043 0.0701800 0.0350900 0.999384i \(-0.488828\pi\)
0.0350900 + 0.999384i \(0.488828\pi\)
\(440\) 16.8730 + 1.34889i 0.804388 + 0.0643058i
\(441\) −7.20652 −0.343167
\(442\) 0 0
\(443\) 12.7838i 0.607379i 0.952771 + 0.303689i \(0.0982185\pi\)
−0.952771 + 0.303689i \(0.901782\pi\)
\(444\) −1.34153 −0.0636660
\(445\) 1.89114 23.6559i 0.0896487 1.12140i
\(446\) 2.25200 0.106635
\(447\) 8.95150i 0.423391i
\(448\) 4.09384i 0.193416i
\(449\) −9.73119 −0.459243 −0.229622 0.973280i \(-0.573749\pi\)
−0.229622 + 0.973280i \(0.573749\pi\)
\(450\) 3.84553 23.8977i 0.181280 1.12655i
\(451\) 33.2420 1.56530
\(452\) 14.1784i 0.666894i
\(453\) 1.89236i 0.0889106i
\(454\) 20.8876 0.980302
\(455\) 0.692497 8.66230i 0.0324648 0.406095i
\(456\) −3.03068 −0.141924
\(457\) 36.2279i 1.69467i −0.531058 0.847336i \(-0.678205\pi\)
0.531058 0.847336i \(-0.321795\pi\)
\(458\) 21.1855i 0.989935i
\(459\) 0 0
\(460\) 6.49600 + 0.519315i 0.302878 + 0.0242132i
\(461\) −40.0595 −1.86576 −0.932878 0.360193i \(-0.882711\pi\)
−0.932878 + 0.360193i \(0.882711\pi\)
\(462\) 17.6901i 0.823018i
\(463\) 15.3607i 0.713874i 0.934128 + 0.356937i \(0.116179\pi\)
−0.934128 + 0.356937i \(0.883821\pi\)
\(464\) −32.7037 −1.51823
\(465\) −5.70176 0.455820i −0.264413 0.0211381i
\(466\) 20.3851 0.944324
\(467\) 19.4471i 0.899903i 0.893053 + 0.449952i \(0.148559\pi\)
−0.893053 + 0.449952i \(0.851441\pi\)
\(468\) 4.19721i 0.194016i
\(469\) −26.3341 −1.21599
\(470\) −1.56024 + 19.5167i −0.0719686 + 0.900240i
\(471\) 2.20262 0.101491
\(472\) 8.09334i 0.372526i
\(473\) 11.4661i 0.527213i
\(474\) −4.97398 −0.228462
\(475\) 19.7460 + 3.17744i 0.906008 + 0.145791i
\(476\) 0 0
\(477\) 24.4739i 1.12058i
\(478\) 9.26012i 0.423548i
\(479\) 14.5547 0.665023 0.332511 0.943099i \(-0.392104\pi\)
0.332511 + 0.943099i \(0.392104\pi\)
\(480\) −0.620991 + 7.76785i −0.0283442 + 0.354552i
\(481\) 2.38224 0.108621
\(482\) 15.3018i 0.696976i
\(483\) 4.06894i 0.185143i
\(484\) −25.6585 −1.16629
\(485\) −27.6210 2.20813i −1.25420 0.100266i
\(486\) 23.6149 1.07119
\(487\) 29.6975i 1.34572i −0.739768 0.672861i \(-0.765065\pi\)
0.739768 0.672861i \(-0.234935\pi\)
\(488\) 7.63048i 0.345415i
\(489\) 8.26800 0.373892
\(490\) −10.7905 0.862629i −0.487463 0.0389696i
\(491\) 21.0715 0.950944 0.475472 0.879731i \(-0.342277\pi\)
0.475472 + 0.879731i \(0.342277\pi\)
\(492\) 4.16563i 0.187801i
\(493\) 0 0
\(494\) −9.00800 −0.405289
\(495\) 2.68450 33.5798i 0.120659 1.50930i
\(496\) −22.4814 −1.00944
\(497\) 27.3754i 1.22796i
\(498\) 3.99760i 0.179137i
\(499\) −9.40840 −0.421178 −0.210589 0.977575i \(-0.567538\pi\)
−0.210589 + 0.977575i \(0.567538\pi\)
\(500\) 3.31810 13.5988i 0.148390 0.608158i
\(501\) 0.235997 0.0105436
\(502\) 35.7231i 1.59440i
\(503\) 29.3788i 1.30993i 0.755658 + 0.654967i \(0.227317\pi\)
−0.755658 + 0.654967i \(0.772683\pi\)
\(504\) −11.2688 −0.501952
\(505\) 1.71438 21.4448i 0.0762887 0.954280i
\(506\) 23.5575 1.04726
\(507\) 6.42610i 0.285393i
\(508\) 7.32420i 0.324959i
\(509\) −14.3930 −0.637958 −0.318979 0.947762i \(-0.603340\pi\)
−0.318979 + 0.947762i \(0.603340\pi\)
\(510\) 0 0
\(511\) −4.88099 −0.215922
\(512\) 17.3102i 0.765009i
\(513\) 12.7719i 0.563892i
\(514\) 43.9980 1.94067
\(515\) 4.10793 + 0.328403i 0.181017 + 0.0144712i
\(516\) 1.43685 0.0632536
\(517\) 27.2486i 1.19839i
\(518\) 10.7055i 0.470371i
\(519\) −9.32552 −0.409345
\(520\) 0.300162 3.75467i 0.0131630 0.164653i
\(521\) −27.6698 −1.21224 −0.606118 0.795375i \(-0.707274\pi\)
−0.606118 + 0.795375i \(0.707274\pi\)
\(522\) 32.0712i 1.40372i
\(523\) 37.4867i 1.63918i −0.572950 0.819590i \(-0.694201\pi\)
0.572950 0.819590i \(-0.305799\pi\)
\(524\) 24.4931 1.06998
\(525\) −8.62899 1.38854i −0.376600 0.0606010i
\(526\) 32.5655 1.41992
\(527\) 0 0
\(528\) 15.5609i 0.677202i
\(529\) 17.5815 0.764413
\(530\) −2.92955 + 36.6452i −0.127252 + 1.59176i
\(531\) −16.1070 −0.698983
\(532\) 15.5849i 0.675689i
\(533\) 7.39718i 0.320408i
\(534\) 10.7502 0.465206
\(535\) 37.8630 + 3.02691i 1.63696 + 0.130865i
\(536\) −11.4145 −0.493030
\(537\) 11.1180i 0.479775i
\(538\) 32.2076i 1.38857i
\(539\) −15.0653 −0.648906
\(540\) 8.91047 + 0.712337i 0.383446 + 0.0306541i
\(541\) −12.7279 −0.547216 −0.273608 0.961841i \(-0.588217\pi\)
−0.273608 + 0.961841i \(0.588217\pi\)
\(542\) 28.5954i 1.22828i
\(543\) 5.25946i 0.225705i
\(544\) 0 0
\(545\) 0.0795073 0.994540i 0.00340572 0.0426014i
\(546\) 3.93650 0.168466
\(547\) 28.7922i 1.23106i −0.788112 0.615532i \(-0.788941\pi\)
0.788112 0.615532i \(-0.211059\pi\)
\(548\) 17.3498i 0.741148i
\(549\) 15.1858 0.648114
\(550\) 8.03909 49.9583i 0.342788 2.13023i
\(551\) −26.4995 −1.12892
\(552\) 1.76368i 0.0750671i
\(553\) 15.2814i 0.649833i
\(554\) 25.5683 1.08629
\(555\) 0.190933 2.38834i 0.00810465 0.101379i
\(556\) −12.7700 −0.541568
\(557\) 4.93477i 0.209093i −0.994520 0.104546i \(-0.966661\pi\)
0.994520 0.104546i \(-0.0333391\pi\)
\(558\) 22.0466i 0.933308i
\(559\) −2.55150 −0.107917
\(560\) −34.2420 2.73743i −1.44699 0.115678i
\(561\) 0 0
\(562\) 14.0831i 0.594059i
\(563\) 3.97544i 0.167545i 0.996485 + 0.0837724i \(0.0266969\pi\)
−0.996485 + 0.0837724i \(0.973303\pi\)
\(564\) −3.41458 −0.143780
\(565\) −25.2420 2.01794i −1.06194 0.0848953i
\(566\) 37.7040 1.58482
\(567\) 19.4811i 0.818128i
\(568\) 11.8659i 0.497881i
\(569\) 5.49600 0.230404 0.115202 0.993342i \(-0.463248\pi\)
0.115202 + 0.993342i \(0.463248\pi\)
\(570\) −0.721979 + 9.03108i −0.0302404 + 0.378270i
\(571\) −17.4475 −0.730155 −0.365077 0.930977i \(-0.618957\pi\)
−0.365077 + 0.930977i \(0.618957\pi\)
\(572\) 8.77428i 0.366871i
\(573\) 7.82810i 0.327024i
\(574\) −33.2420 −1.38749
\(575\) −1.84909 + 11.4910i −0.0771123 + 0.479209i
\(576\) 3.53147 0.147144
\(577\) 32.3418i 1.34641i −0.739458 0.673203i \(-0.764918\pi\)
0.739458 0.673203i \(-0.235082\pi\)
\(578\) 0 0
\(579\) −2.34499 −0.0974543
\(580\) −1.47798 + 18.4877i −0.0613698 + 0.767662i
\(581\) 12.2817 0.509532
\(582\) 12.5521i 0.520301i
\(583\) 51.1627i 2.11894i
\(584\) −2.11566 −0.0875467
\(585\) −7.47235 0.597368i −0.308944 0.0246981i
\(586\) 8.64701 0.357205
\(587\) 28.6847i 1.18394i −0.805959 0.591972i \(-0.798350\pi\)
0.805959 0.591972i \(-0.201650\pi\)
\(588\) 1.88786i 0.0778541i
\(589\) −18.2165 −0.750597
\(590\) −24.1173 1.92803i −0.992892 0.0793755i
\(591\) −9.93650 −0.408733
\(592\) 9.41695i 0.387034i
\(593\) 9.74614i 0.400226i −0.979773 0.200113i \(-0.935869\pi\)
0.979773 0.200113i \(-0.0641309\pi\)
\(594\) 32.3135 1.32584
\(595\) 0 0
\(596\) 19.9525 0.817286
\(597\) 3.14586i 0.128752i
\(598\) 5.24214i 0.214367i
\(599\) −8.07951 −0.330120 −0.165060 0.986284i \(-0.552782\pi\)
−0.165060 + 0.986284i \(0.552782\pi\)
\(600\) −3.74023 0.601863i −0.152694 0.0245709i
\(601\) −18.2165 −0.743066 −0.371533 0.928420i \(-0.621168\pi\)
−0.371533 + 0.928420i \(0.621168\pi\)
\(602\) 11.4661i 0.467324i
\(603\) 22.7165i 0.925089i
\(604\) 4.21798 0.171627
\(605\) 3.65185 45.6802i 0.148469 1.85716i
\(606\) 9.74536 0.395878
\(607\) 11.8506i 0.481001i 0.970649 + 0.240501i \(0.0773116\pi\)
−0.970649 + 0.240501i \(0.922688\pi\)
\(608\) 24.8174i 1.00648i
\(609\) 11.5803 0.469257
\(610\) 22.7380 + 1.81776i 0.920634 + 0.0735989i
\(611\) 6.06350 0.245303
\(612\) 0 0
\(613\) 23.1494i 0.934995i 0.883994 + 0.467497i \(0.154844\pi\)
−0.883994 + 0.467497i \(0.845156\pi\)
\(614\) 45.0695 1.81886
\(615\) −7.41613 0.592874i −0.299047 0.0239070i
\(616\) −23.5575 −0.949158
\(617\) 10.4843i 0.422081i −0.977477 0.211040i \(-0.932315\pi\)
0.977477 0.211040i \(-0.0676852\pi\)
\(618\) 1.86681i 0.0750940i
\(619\) 23.2924 0.936202 0.468101 0.883675i \(-0.344938\pi\)
0.468101 + 0.883675i \(0.344938\pi\)
\(620\) −1.01600 + 12.7090i −0.0408037 + 0.510405i
\(621\) −7.43250 −0.298256
\(622\) 7.27155i 0.291562i
\(623\) 33.0275i 1.32322i
\(624\) 3.46270 0.138619
\(625\) 23.7380 + 7.84272i 0.949519 + 0.313709i
\(626\) 40.8439 1.63245
\(627\) 12.6089i 0.503550i
\(628\) 4.90954i 0.195912i
\(629\) 0 0
\(630\) −2.68450 + 33.5798i −0.106953 + 1.33785i
\(631\) 41.1310 1.63740 0.818699 0.574223i \(-0.194696\pi\)
0.818699 + 0.574223i \(0.194696\pi\)
\(632\) 6.62373i 0.263478i
\(633\) 0.518514i 0.0206091i
\(634\) −14.9192 −0.592518
\(635\) −13.0394 1.04242i −0.517453 0.0413671i
\(636\) −6.41131 −0.254225
\(637\) 3.35240i 0.132827i
\(638\) 67.0451i 2.65434i
\(639\) −23.6149 −0.934189
\(640\) −22.3707 1.78840i −0.884281 0.0706927i
\(641\) −47.2807 −1.86747 −0.933737 0.357959i \(-0.883473\pi\)
−0.933737 + 0.357959i \(0.883473\pi\)
\(642\) 17.2064i 0.679084i
\(643\) 7.06878i 0.278765i 0.990239 + 0.139383i \(0.0445118\pi\)
−0.990239 + 0.139383i \(0.955488\pi\)
\(644\) −9.06949 −0.357388
\(645\) −0.204499 + 2.55804i −0.00805215 + 0.100723i
\(646\) 0 0
\(647\) 26.9462i 1.05937i −0.848196 0.529683i \(-0.822311\pi\)
0.848196 0.529683i \(-0.177689\pi\)
\(648\) 8.44406i 0.331714i
\(649\) −33.6717 −1.32173
\(650\) −11.1170 1.78890i −0.436044 0.0701665i
\(651\) 7.96060 0.312000
\(652\) 18.4290i 0.721736i
\(653\) 28.2509i 1.10554i 0.833333 + 0.552771i \(0.186430\pi\)
−0.833333 + 0.552771i \(0.813570\pi\)
\(654\) 0.451959 0.0176730
\(655\) −3.48598 + 43.6054i −0.136209 + 1.70380i
\(656\) −29.2410 −1.14167
\(657\) 4.21049i 0.164267i
\(658\) 27.2486i 1.06226i
\(659\) −14.1230 −0.550153 −0.275077 0.961422i \(-0.588703\pi\)
−0.275077 + 0.961422i \(0.588703\pi\)
\(660\) 8.79676 + 0.703246i 0.342413 + 0.0273738i
\(661\) 49.0355 1.90726 0.953629 0.300984i \(-0.0973150\pi\)
0.953629 + 0.300984i \(0.0973150\pi\)
\(662\) 9.93996i 0.386328i
\(663\) 0 0
\(664\) 5.32351 0.206592
\(665\) −27.7460 2.21812i −1.07594 0.0860149i
\(666\) −9.23485 −0.357843
\(667\) 15.4212i 0.597111i
\(668\) 0.526028i 0.0203526i
\(669\) −0.701449 −0.0271196
\(670\) −2.71920 + 34.0139i −0.105052 + 1.31407i
\(671\) 31.7460 1.22554
\(672\) 10.8452i 0.418363i
\(673\) 31.4528i 1.21242i −0.795306 0.606209i \(-0.792690\pi\)
0.795306 0.606209i \(-0.207310\pi\)
\(674\) −17.2003 −0.662532
\(675\) −2.53637 + 15.7621i −0.0976249 + 0.606683i
\(676\) −14.3235 −0.550904
\(677\) 30.2796i 1.16374i −0.813282 0.581870i \(-0.802321\pi\)
0.813282 0.581870i \(-0.197679\pi\)
\(678\) 11.4710i 0.440540i
\(679\) 38.5635 1.47993
\(680\) 0 0
\(681\) −6.50602 −0.249311
\(682\) 46.0886i 1.76482i
\(683\) 46.1788i 1.76698i 0.468449 + 0.883490i \(0.344813\pi\)
−0.468449 + 0.883490i \(0.655187\pi\)
\(684\) 13.4440 0.514043
\(685\) 30.8882 + 2.46932i 1.18018 + 0.0943478i
\(686\) −24.2184 −0.924663
\(687\) 6.59883i 0.251761i
\(688\) 10.0861i 0.384527i
\(689\) 11.3850 0.433734
\(690\) −5.25557 0.420150i −0.200076 0.0159948i
\(691\) −10.6458 −0.404987 −0.202494 0.979284i \(-0.564905\pi\)
−0.202494 + 0.979284i \(0.564905\pi\)
\(692\) 20.7862i 0.790172i
\(693\) 46.8830i 1.78094i
\(694\) 20.8232 0.790439
\(695\) 1.81749 22.7346i 0.0689413 0.862372i
\(696\) 5.01946 0.190262
\(697\) 0 0
\(698\) 20.6166i 0.780349i
\(699\) −6.34953 −0.240161
\(700\) −3.09500 + 19.2337i −0.116980 + 0.726964i
\(701\) 39.4145 1.48866 0.744332 0.667810i \(-0.232768\pi\)
0.744332 + 0.667810i \(0.232768\pi\)
\(702\) 7.19057i 0.271391i
\(703\) 7.63048i 0.287789i
\(704\) 7.38255 0.278240
\(705\) 0.485981 6.07904i 0.0183031 0.228950i
\(706\) −57.3490 −2.15836
\(707\) 29.9404i 1.12603i
\(708\) 4.21948i 0.158578i
\(709\) −15.1971 −0.570740 −0.285370 0.958417i \(-0.592116\pi\)
−0.285370 + 0.958417i \(0.592116\pi\)
\(710\) −35.3590 2.82673i −1.32700 0.106085i
\(711\) −13.1822 −0.494372
\(712\) 14.3158i 0.536506i
\(713\) 10.6009i 0.397008i
\(714\) 0 0
\(715\) −15.6210 1.24880i −0.584192 0.0467025i
\(716\) 24.7815 0.926126
\(717\) 2.88432i 0.107717i
\(718\) 45.4051i 1.69450i
\(719\) 6.85786 0.255755 0.127878 0.991790i \(-0.459184\pi\)
0.127878 + 0.991790i \(0.459184\pi\)
\(720\) −2.36139 + 29.5381i −0.0880038 + 1.10082i
\(721\) −5.73535 −0.213595
\(722\) 5.40999i 0.201339i
\(723\) 4.76617i 0.177256i
\(724\) 11.7231 0.435686
\(725\) −32.7037 5.26254i −1.21458 0.195446i
\(726\) 20.7589 0.770435
\(727\) 38.5606i 1.43013i −0.699057 0.715066i \(-0.746397\pi\)
0.699057 0.715066i \(-0.253603\pi\)
\(728\) 5.24214i 0.194287i
\(729\) 11.4245 0.423129
\(730\) −0.504001 + 6.30444i −0.0186539 + 0.233338i
\(731\) 0 0
\(732\) 3.97816i 0.147037i
\(733\) 42.7425i 1.57873i 0.613923 + 0.789366i \(0.289591\pi\)
−0.613923 + 0.789366i \(0.710409\pi\)
\(734\) −10.9767 −0.405159
\(735\) 3.36099 + 0.268690i 0.123972 + 0.00991078i
\(736\) −14.4423 −0.532350
\(737\) 47.4890i 1.74928i
\(738\) 28.6755i 1.05556i
\(739\) −6.00000 −0.220714 −0.110357 0.993892i \(-0.535199\pi\)
−0.110357 + 0.993892i \(0.535199\pi\)
\(740\) −5.32351 0.425581i −0.195696 0.0156447i
\(741\) 2.80580 0.103073
\(742\) 51.1627i 1.87824i
\(743\) 52.2906i 1.91836i 0.282804 + 0.959178i \(0.408735\pi\)
−0.282804 + 0.959178i \(0.591265\pi\)
\(744\) 3.45051 0.126502
\(745\) −2.83974 + 35.5218i −0.104040 + 1.30142i
\(746\) −54.2320 −1.98557
\(747\) 10.5946i 0.387635i
\(748\) 0 0
\(749\) −52.8630 −1.93157
\(750\) −2.68450 + 11.0021i −0.0980239 + 0.401740i
\(751\) 39.4604 1.43993 0.719966 0.694010i \(-0.244158\pi\)
0.719966 + 0.694010i \(0.244158\pi\)
\(752\) 23.9690i 0.874058i
\(753\) 11.1269i 0.405489i
\(754\) 14.9192 0.543326
\(755\) −0.600324 + 7.50933i −0.0218480 + 0.273293i
\(756\) −12.4405 −0.452456
\(757\) 8.61186i 0.313003i −0.987678 0.156502i \(-0.949978\pi\)
0.987678 0.156502i \(-0.0500216\pi\)
\(758\) 1.82664i 0.0663466i
\(759\) −7.33764 −0.266340
\(760\) −12.0265 0.961442i −0.436246 0.0348751i
\(761\) 41.2400 1.49495 0.747474 0.664291i \(-0.231267\pi\)
0.747474 + 0.664291i \(0.231267\pi\)
\(762\) 5.92562i 0.214663i
\(763\) 1.38854i 0.0502686i
\(764\) −17.4485 −0.631265
\(765\) 0 0
\(766\) −46.6450 −1.68535
\(767\) 7.49280i 0.270549i
\(768\) 11.6440i 0.420166i
\(769\) −17.3510 −0.625692 −0.312846 0.949804i \(-0.601282\pi\)
−0.312846 + 0.949804i \(0.601282\pi\)
\(770\) −5.61195 + 70.1987i −0.202241 + 2.52979i
\(771\) −13.7044 −0.493552
\(772\) 5.22687i 0.188119i
\(773\) 20.0124i 0.719796i −0.932992 0.359898i \(-0.882812\pi\)
0.932992 0.359898i \(-0.117188\pi\)
\(774\) 9.89101 0.355525
\(775\) −22.4814 3.61761i −0.807555 0.129949i
\(776\) 16.7153 0.600044
\(777\) 3.33452i 0.119625i
\(778\) 59.6352i 2.13803i
\(779\) −23.6937 −0.848915
\(780\) 0.156490 1.95750i 0.00560324 0.0700898i
\(781\) −49.3670 −1.76649
\(782\) 0 0
\(783\) 21.1530i 0.755948i
\(784\) 13.2520 0.473286
\(785\) 8.74054 + 0.698752i 0.311963 + 0.0249395i
\(786\) −19.8160 −0.706815
\(787\) 33.9131i 1.20887i −0.796653 0.604437i \(-0.793398\pi\)
0.796653 0.604437i \(-0.206602\pi\)
\(788\) 22.1480i 0.788990i
\(789\) −10.1434 −0.361116
\(790\) −19.7380 1.57793i −0.702246 0.0561402i
\(791\) 35.2420 1.25306
\(792\) 20.3214i 0.722089i
\(793\) 7.06428i 0.250860i
\(794\) −14.7008 −0.521711
\(795\) 0.912491 11.4142i 0.0323627 0.404819i
\(796\) −7.01200 −0.248534
\(797\) 0.730287i 0.0258681i 0.999916 + 0.0129340i \(0.00411715\pi\)
−0.999916 + 0.0129340i \(0.995883\pi\)
\(798\) 12.6089i 0.446350i
\(799\) 0 0
\(800\) −4.92849 + 30.6278i −0.174249 + 1.08285i
\(801\) 28.4905 1.00666
\(802\) 0.298360i 0.0105355i
\(803\) 8.80204i 0.310617i
\(804\) −5.95095 −0.209874
\(805\) 1.29082 16.1466i 0.0454953 0.569091i
\(806\) 10.2559 0.361248
\(807\) 10.0320i 0.353142i
\(808\) 12.9777i 0.456553i
\(809\) −20.4333 −0.718395 −0.359198 0.933262i \(-0.616950\pi\)
−0.359198 + 0.933262i \(0.616950\pi\)
\(810\) 25.1624 + 2.01157i 0.884115 + 0.0706795i
\(811\) 2.51695 0.0883820 0.0441910 0.999023i \(-0.485929\pi\)
0.0441910 + 0.999023i \(0.485929\pi\)
\(812\) 25.8119i 0.905822i
\(813\) 8.90684i 0.312376i
\(814\) −19.3055 −0.676657
\(815\) 32.8095 + 2.62291i 1.14927 + 0.0918767i
\(816\) 0 0
\(817\) 8.17265i 0.285925i
\(818\) 24.1087i 0.842941i
\(819\) 10.4326 0.364546
\(820\) −1.32149 + 16.5302i −0.0461484 + 0.577261i
\(821\) −15.2982 −0.533912 −0.266956 0.963709i \(-0.586018\pi\)
−0.266956 + 0.963709i \(0.586018\pi\)
\(822\) 14.0368i 0.489590i
\(823\) 14.3448i 0.500029i −0.968242 0.250014i \(-0.919565\pi\)
0.968242 0.250014i \(-0.0804354\pi\)
\(824\) −2.48598 −0.0866033
\(825\) −2.50400 + 15.5609i −0.0871781 + 0.541762i
\(826\) 33.6717 1.17159
\(827\) 40.3144i 1.40187i −0.713226 0.700934i \(-0.752767\pi\)
0.713226 0.700934i \(-0.247233\pi\)
\(828\) 7.82361i 0.271889i
\(829\) −37.1150 −1.28906 −0.644528 0.764581i \(-0.722946\pi\)
−0.644528 + 0.764581i \(0.722946\pi\)
\(830\) 1.26818 15.8635i 0.0440193 0.550629i
\(831\) −7.96396 −0.276267
\(832\) 1.64280i 0.0569540i
\(833\) 0 0
\(834\) 10.3315 0.357751
\(835\) 0.936496 + 0.0748670i 0.0324088 + 0.00259088i
\(836\) 28.1047 0.972020
\(837\) 14.5412i 0.502616i
\(838\) 42.5102i 1.46849i
\(839\) −7.10180 −0.245182 −0.122591 0.992457i \(-0.539120\pi\)
−0.122591 + 0.992457i \(0.539120\pi\)
\(840\) 5.25557 + 0.420150i 0.181334 + 0.0144965i
\(841\) 14.8890 0.513414
\(842\) 10.5089i 0.362161i
\(843\) 4.38657i 0.151082i
\(844\) 1.15574 0.0397824
\(845\) 2.03860 25.5004i 0.0701298 0.877239i
\(846\) −23.5054 −0.808134
\(847\) 63.7771i 2.19141i
\(848\) 45.0048i 1.54547i
\(849\) −11.7440 −0.403052
\(850\) 0 0
\(851\) 4.44050 0.152218
\(852\) 6.18629i 0.211939i
\(853\) 38.3399i 1.31273i 0.754442 + 0.656366i \(0.227907\pi\)
−0.754442 + 0.656366i \(0.772093\pi\)
\(854\) −31.7460 −1.08633
\(855\) −1.91341 + 23.9345i −0.0654374 + 0.818542i
\(856\) −22.9134 −0.783164
\(857\) 1.73040i 0.0591094i 0.999563 + 0.0295547i \(0.00940892\pi\)
−0.999563 + 0.0295547i \(0.990591\pi\)
\(858\) 7.09880i 0.242349i
\(859\) −30.9245 −1.05513 −0.527565 0.849515i \(-0.676895\pi\)
−0.527565 + 0.849515i \(0.676895\pi\)
\(860\) 5.70176 + 0.455820i 0.194428 + 0.0155433i
\(861\) 10.3542 0.352868
\(862\) 12.5085i 0.426043i
\(863\) 40.2134i 1.36888i 0.729070 + 0.684439i \(0.239953\pi\)
−0.729070 + 0.684439i \(0.760047\pi\)
\(864\) −19.8103 −0.673960
\(865\) −37.0060 2.95840i −1.25824 0.100589i
\(866\) 27.8550 0.946550
\(867\) 0 0
\(868\) 17.7438i 0.602265i
\(869\) −27.5575 −0.934824
\(870\) 1.19575 14.9575i 0.0405399 0.507105i
\(871\) 10.5675 0.358066
\(872\) 0.601863i 0.0203816i
\(873\) 33.2660i 1.12588i
\(874\) −16.7909 −0.567962
\(875\) −33.8015 8.24751i −1.14270 0.278817i
\(876\) −1.10300 −0.0372670
\(877\) 1.01124i 0.0341472i 0.999854 + 0.0170736i \(0.00543497\pi\)
−0.999854 + 0.0170736i \(0.994565\pi\)
\(878\) 2.65168i 0.0894898i
\(879\) −2.69336 −0.0908446
\(880\) −4.93650 + 61.7496i −0.166409 + 2.08158i
\(881\) 19.5296 0.657968 0.328984 0.944336i \(-0.393294\pi\)
0.328984 + 0.944336i \(0.393294\pi\)
\(882\) 12.9957i 0.437589i
\(883\) 12.6125i 0.424445i 0.977221 + 0.212223i \(0.0680702\pi\)
−0.977221 + 0.212223i \(0.931930\pi\)
\(884\) 0 0
\(885\) 7.51200 + 0.600538i 0.252513 + 0.0201869i
\(886\) −23.0535 −0.774497
\(887\) 37.1151i 1.24620i 0.782141 + 0.623102i \(0.214128\pi\)
−0.782141 + 0.623102i \(0.785872\pi\)
\(888\) 1.44534i 0.0485026i
\(889\) 18.2052 0.610581
\(890\) 42.6594 + 3.41035i 1.42995 + 0.114315i
\(891\) 35.1308 1.17693
\(892\) 1.56350i 0.0523498i
\(893\) 19.4218i 0.649927i
\(894\) −16.1425 −0.539886
\(895\) −3.52702 + 44.1188i −0.117895 + 1.47473i
\(896\) 31.2332 1.04343
\(897\) 1.63281i 0.0545180i
\(898\) 17.5486i 0.585603i
\(899\) 30.1705 1.00624
\(900\) 16.5915 + 2.66984i 0.553050 + 0.0889946i
\(901\) 0 0
\(902\) 59.9463i 1.99599i
\(903\) 3.57145i 0.118850i
\(904\) 15.2756 0.508059
\(905\) −1.66849 + 20.8708i −0.0554626 + 0.693770i
\(906\) −3.41254 −0.113374
\(907\) 34.4437i 1.14368i −0.820364 0.571842i \(-0.806229\pi\)
0.820364 0.571842i \(-0.193771\pi\)
\(908\) 14.5016i 0.481254i
\(909\) 25.8275 0.856644
\(910\) 15.6210 + 1.24880i 0.517831 + 0.0413973i
\(911\) 10.1968 0.337835 0.168918 0.985630i \(-0.445973\pi\)
0.168918 + 0.985630i \(0.445973\pi\)
\(912\) 11.0913i 0.367269i
\(913\) 22.1480i 0.732992i
\(914\) 65.3309 2.16096
\(915\) −7.08238 0.566192i −0.234136 0.0187177i
\(916\) 14.7085 0.485983
\(917\) 60.8804i 2.01045i
\(918\) 0 0
\(919\) 50.5315 1.66688 0.833440 0.552611i \(-0.186368\pi\)
0.833440 + 0.552611i \(0.186368\pi\)
\(920\) 0.559503 6.99871i 0.0184463 0.230741i
\(921\) −14.0382 −0.462573
\(922\) 72.2405i 2.37911i
\(923\) 10.9854i 0.361589i
\(924\) −12.2817 −0.404039
\(925\) 1.51534 9.41695i 0.0498240 0.309628i
\(926\) −27.7005 −0.910295
\(927\) 4.94748i 0.162496i
\(928\) 41.1031i 1.34927i
\(929\) 28.3712 0.930830 0.465415 0.885093i \(-0.345905\pi\)
0.465415 + 0.885093i \(0.345905\pi\)
\(930\) 0.821994 10.2822i 0.0269542 0.337165i
\(931\) 10.7380 0.351923
\(932\) 14.1528i 0.463591i
\(933\) 2.26493i 0.0741504i
\(934\) −35.0695 −1.14751
\(935\) 0 0
\(936\) 4.52202 0.147807
\(937\) 47.5024i 1.55183i 0.630835 + 0.775917i \(0.282713\pi\)
−0.630835 + 0.775917i \(0.717287\pi\)
\(938\) 47.4890i 1.55057i
\(939\) −12.7220 −0.415166
\(940\) −13.5499 1.08323i −0.441950 0.0353311i
\(941\) 46.0404 1.50087 0.750437 0.660942i \(-0.229843\pi\)
0.750437 + 0.660942i \(0.229843\pi\)
\(942\) 3.97205i 0.129416i
\(943\) 13.7884i 0.449011i
\(944\) 29.6190 0.964016
\(945\) 1.77060 22.1480i 0.0575975 0.720475i
\(946\) 20.6772 0.672274
\(947\) 29.7383i 0.966366i 0.875519 + 0.483183i \(0.160519\pi\)
−0.875519 + 0.483183i \(0.839481\pi\)
\(948\) 3.45329i 0.112158i
\(949\) 1.95868 0.0635814
\(950\) −5.72998 + 35.6085i −0.185905 + 1.15529i
\(951\) 4.64701 0.150690
\(952\) 0 0
\(953\) 9.02109i 0.292222i 0.989268 + 0.146111i \(0.0466756\pi\)
−0.989268 + 0.146111i \(0.953324\pi\)
\(954\) −44.1344 −1.42891
\(955\) 2.48336 31.0638i 0.0803597 1.00520i
\(956\) 6.42903 0.207930
\(957\) 20.8831i 0.675054i
\(958\) 26.2470i 0.848002i
\(959\) −43.1250 −1.39258
\(960\) −1.64701 0.131668i −0.0531571 0.00424958i
\(961\) −10.2600 −0.330968
\(962\) 4.29596i 0.138507i
\(963\) 45.6011i 1.46948i
\(964\) −10.6236 −0.342162
\(965\) −9.30549 0.743916i −0.299554 0.0239475i
\(966\) 7.33764 0.236085
\(967\) 11.7541i 0.377986i 0.981978 + 0.188993i \(0.0605223\pi\)
−0.981978 + 0.188993i \(0.939478\pi\)
\(968\) 27.6441i 0.888516i
\(969\) 0 0
\(970\) 3.98198 49.8098i 0.127854 1.59930i
\(971\) 19.9525 0.640306 0.320153 0.947366i \(-0.396266\pi\)
0.320153 + 0.947366i \(0.396266\pi\)
\(972\) 16.3951i 0.525874i
\(973\) 31.7413i 1.01758i
\(974\) 53.5544 1.71599
\(975\) 3.46270 + 0.557203i 0.110895 + 0.0178448i
\(976\) −27.9250 −0.893859
\(977\) 27.2005i 0.870221i 0.900377 + 0.435110i \(0.143291\pi\)
−0.900377 + 0.435110i \(0.856709\pi\)
\(978\) 14.9099i 0.476767i
\(979\) 59.5596 1.90353
\(980\) 0.598899 7.49150i 0.0191311 0.239307i
\(981\) 1.19780 0.0382427
\(982\) 37.9989i 1.21259i
\(983\) 7.12485i 0.227248i −0.993524 0.113624i \(-0.963754\pi\)
0.993524 0.113624i \(-0.0362459\pi\)
\(984\) 4.48800 0.143072
\(985\) −39.4305 3.15222i −1.25636 0.100438i
\(986\) 0 0
\(987\) 8.48734i 0.270155i
\(988\) 6.25400i 0.198966i
\(989\) −4.75601 −0.151232
\(990\) 60.5555 + 4.84103i 1.92458 + 0.153858i
\(991\) −56.9670 −1.80962 −0.904808 0.425820i \(-0.859986\pi\)
−0.904808 + 0.425820i \(0.859986\pi\)
\(992\) 28.2554i 0.897108i
\(993\) 3.09608i 0.0982511i
\(994\) 49.3670 1.56583
\(995\) 0.997984 12.4836i 0.0316382 0.395756i
\(996\) 2.77542 0.0879425
\(997\) 5.04451i 0.159761i 0.996804 + 0.0798806i \(0.0254539\pi\)
−0.996804 + 0.0798806i \(0.974546\pi\)
\(998\) 16.9665i 0.537064i
\(999\) 6.09097 0.192710
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.b.f.579.9 12
5.2 odd 4 7225.2.a.bp.1.3 12
5.3 odd 4 7225.2.a.bp.1.10 12
5.4 even 2 inner 1445.2.b.f.579.4 12
17.2 even 8 85.2.j.c.4.2 12
17.9 even 8 85.2.j.c.64.5 yes 12
17.16 even 2 inner 1445.2.b.f.579.10 12
51.2 odd 8 765.2.t.e.514.5 12
51.26 odd 8 765.2.t.e.64.2 12
85.2 odd 8 425.2.e.d.276.2 12
85.9 even 8 85.2.j.c.64.2 yes 12
85.19 even 8 85.2.j.c.4.5 yes 12
85.33 odd 4 7225.2.a.bp.1.9 12
85.43 odd 8 425.2.e.d.251.2 12
85.53 odd 8 425.2.e.d.276.5 12
85.67 odd 4 7225.2.a.bp.1.4 12
85.77 odd 8 425.2.e.d.251.5 12
85.84 even 2 inner 1445.2.b.f.579.3 12
255.104 odd 8 765.2.t.e.514.2 12
255.179 odd 8 765.2.t.e.64.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.j.c.4.2 12 17.2 even 8
85.2.j.c.4.5 yes 12 85.19 even 8
85.2.j.c.64.2 yes 12 85.9 even 8
85.2.j.c.64.5 yes 12 17.9 even 8
425.2.e.d.251.2 12 85.43 odd 8
425.2.e.d.251.5 12 85.77 odd 8
425.2.e.d.276.2 12 85.2 odd 8
425.2.e.d.276.5 12 85.53 odd 8
765.2.t.e.64.2 12 51.26 odd 8
765.2.t.e.64.5 12 255.179 odd 8
765.2.t.e.514.2 12 255.104 odd 8
765.2.t.e.514.5 12 51.2 odd 8
1445.2.b.f.579.3 12 85.84 even 2 inner
1445.2.b.f.579.4 12 5.4 even 2 inner
1445.2.b.f.579.9 12 1.1 even 1 trivial
1445.2.b.f.579.10 12 17.16 even 2 inner
7225.2.a.bp.1.3 12 5.2 odd 4
7225.2.a.bp.1.4 12 85.67 odd 4
7225.2.a.bp.1.9 12 85.33 odd 4
7225.2.a.bp.1.10 12 5.3 odd 4