Properties

Label 150.8.c.c.49.1
Level $150$
Weight $8$
Character 150.49
Analytic conductor $46.858$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,8,Mod(49,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.49");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 150.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(46.8577538226\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 150.49
Dual form 150.8.c.c.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000i q^{2} -27.0000i q^{3} -64.0000 q^{4} -216.000 q^{6} +713.000i q^{7} +512.000i q^{8} -729.000 q^{9} +3810.00 q^{11} +1728.00i q^{12} +391.000i q^{13} +5704.00 q^{14} +4096.00 q^{16} -4182.00i q^{17} +5832.00i q^{18} +1561.00 q^{19} +19251.0 q^{21} -30480.0i q^{22} -114150. i q^{23} +13824.0 q^{24} +3128.00 q^{26} +19683.0i q^{27} -45632.0i q^{28} +83214.0 q^{29} -83167.0 q^{31} -32768.0i q^{32} -102870. i q^{33} -33456.0 q^{34} +46656.0 q^{36} -231334. i q^{37} -12488.0i q^{38} +10557.0 q^{39} -124656. q^{41} -154008. i q^{42} -193757. i q^{43} -243840. q^{44} -913200. q^{46} +319290. i q^{47} -110592. i q^{48} +315174. q^{49} -112914. q^{51} -25024.0i q^{52} -1.64543e6i q^{53} +157464. q^{54} -365056. q^{56} -42147.0i q^{57} -665712. i q^{58} +38610.0 q^{59} -1.97390e6 q^{61} +665336. i q^{62} -519777. i q^{63} -262144. q^{64} -822960. q^{66} +4.40975e6i q^{67} +267648. i q^{68} -3.08205e6 q^{69} +124080. q^{71} -373248. i q^{72} -3.96763e6i q^{73} -1.85067e6 q^{74} -99904.0 q^{76} +2.71653e6i q^{77} -84456.0i q^{78} -7.10799e6 q^{79} +531441. q^{81} +997248. i q^{82} -8.11769e6i q^{83} -1.23206e6 q^{84} -1.55006e6 q^{86} -2.24678e6i q^{87} +1.95072e6i q^{88} -6.72787e6 q^{89} -278783. q^{91} +7.30560e6i q^{92} +2.24551e6i q^{93} +2.55432e6 q^{94} -884736. q^{96} -1.42687e7i q^{97} -2.52139e6i q^{98} -2.77749e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 128 q^{4} - 432 q^{6} - 1458 q^{9} + 7620 q^{11} + 11408 q^{14} + 8192 q^{16} + 3122 q^{19} + 38502 q^{21} + 27648 q^{24} + 6256 q^{26} + 166428 q^{29} - 166334 q^{31} - 66912 q^{34} + 93312 q^{36}+ \cdots - 5554980 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 8.00000i − 0.707107i
\(3\) − 27.0000i − 0.577350i
\(4\) −64.0000 −0.500000
\(5\) 0 0
\(6\) −216.000 −0.408248
\(7\) 713.000i 0.785681i 0.919607 + 0.392841i \(0.128508\pi\)
−0.919607 + 0.392841i \(0.871492\pi\)
\(8\) 512.000i 0.353553i
\(9\) −729.000 −0.333333
\(10\) 0 0
\(11\) 3810.00 0.863079 0.431540 0.902094i \(-0.357971\pi\)
0.431540 + 0.902094i \(0.357971\pi\)
\(12\) 1728.00i 0.288675i
\(13\) 391.000i 0.0493600i 0.999695 + 0.0246800i \(0.00785668\pi\)
−0.999695 + 0.0246800i \(0.992143\pi\)
\(14\) 5704.00 0.555561
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) − 4182.00i − 0.206449i −0.994658 0.103225i \(-0.967084\pi\)
0.994658 0.103225i \(-0.0329160\pi\)
\(18\) 5832.00i 0.235702i
\(19\) 1561.00 0.0522114 0.0261057 0.999659i \(-0.491689\pi\)
0.0261057 + 0.999659i \(0.491689\pi\)
\(20\) 0 0
\(21\) 19251.0 0.453613
\(22\) − 30480.0i − 0.610289i
\(23\) − 114150.i − 1.95627i −0.207974 0.978134i \(-0.566687\pi\)
0.207974 0.978134i \(-0.433313\pi\)
\(24\) 13824.0 0.204124
\(25\) 0 0
\(26\) 3128.00 0.0349028
\(27\) 19683.0i 0.192450i
\(28\) − 45632.0i − 0.392841i
\(29\) 83214.0 0.633583 0.316791 0.948495i \(-0.397394\pi\)
0.316791 + 0.948495i \(0.397394\pi\)
\(30\) 0 0
\(31\) −83167.0 −0.501401 −0.250700 0.968065i \(-0.580661\pi\)
−0.250700 + 0.968065i \(0.580661\pi\)
\(32\) − 32768.0i − 0.176777i
\(33\) − 102870.i − 0.498299i
\(34\) −33456.0 −0.145981
\(35\) 0 0
\(36\) 46656.0 0.166667
\(37\) − 231334.i − 0.750816i −0.926860 0.375408i \(-0.877503\pi\)
0.926860 0.375408i \(-0.122497\pi\)
\(38\) − 12488.0i − 0.0369190i
\(39\) 10557.0 0.0284980
\(40\) 0 0
\(41\) −124656. −0.282468 −0.141234 0.989976i \(-0.545107\pi\)
−0.141234 + 0.989976i \(0.545107\pi\)
\(42\) − 154008.i − 0.320753i
\(43\) − 193757.i − 0.371636i −0.982584 0.185818i \(-0.940507\pi\)
0.982584 0.185818i \(-0.0594935\pi\)
\(44\) −243840. −0.431540
\(45\) 0 0
\(46\) −913200. −1.38329
\(47\) 319290.i 0.448583i 0.974522 + 0.224292i \(0.0720068\pi\)
−0.974522 + 0.224292i \(0.927993\pi\)
\(48\) − 110592.i − 0.144338i
\(49\) 315174. 0.382705
\(50\) 0 0
\(51\) −112914. −0.119193
\(52\) − 25024.0i − 0.0246800i
\(53\) − 1.64543e6i − 1.51815i −0.651006 0.759073i \(-0.725653\pi\)
0.651006 0.759073i \(-0.274347\pi\)
\(54\) 157464. 0.136083
\(55\) 0 0
\(56\) −365056. −0.277780
\(57\) − 42147.0i − 0.0301443i
\(58\) − 665712.i − 0.448011i
\(59\) 38610.0 0.0244747 0.0122374 0.999925i \(-0.496105\pi\)
0.0122374 + 0.999925i \(0.496105\pi\)
\(60\) 0 0
\(61\) −1.97390e6 −1.11345 −0.556726 0.830696i \(-0.687943\pi\)
−0.556726 + 0.830696i \(0.687943\pi\)
\(62\) 665336.i 0.354544i
\(63\) − 519777.i − 0.261894i
\(64\) −262144. −0.125000
\(65\) 0 0
\(66\) −822960. −0.352351
\(67\) 4.40975e6i 1.79123i 0.444825 + 0.895617i \(0.353266\pi\)
−0.444825 + 0.895617i \(0.646734\pi\)
\(68\) 267648.i 0.103225i
\(69\) −3.08205e6 −1.12945
\(70\) 0 0
\(71\) 124080. 0.0411432 0.0205716 0.999788i \(-0.493451\pi\)
0.0205716 + 0.999788i \(0.493451\pi\)
\(72\) − 373248.i − 0.117851i
\(73\) − 3.96763e6i − 1.19372i −0.802346 0.596859i \(-0.796415\pi\)
0.802346 0.596859i \(-0.203585\pi\)
\(74\) −1.85067e6 −0.530907
\(75\) 0 0
\(76\) −99904.0 −0.0261057
\(77\) 2.71653e6i 0.678105i
\(78\) − 84456.0i − 0.0201511i
\(79\) −7.10799e6 −1.62200 −0.811002 0.585043i \(-0.801078\pi\)
−0.811002 + 0.585043i \(0.801078\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) 997248.i 0.199735i
\(83\) − 8.11769e6i − 1.55833i −0.626819 0.779165i \(-0.715643\pi\)
0.626819 0.779165i \(-0.284357\pi\)
\(84\) −1.23206e6 −0.226807
\(85\) 0 0
\(86\) −1.55006e6 −0.262786
\(87\) − 2.24678e6i − 0.365799i
\(88\) 1.95072e6i 0.305145i
\(89\) −6.72787e6 −1.01161 −0.505805 0.862648i \(-0.668804\pi\)
−0.505805 + 0.862648i \(0.668804\pi\)
\(90\) 0 0
\(91\) −278783. −0.0387812
\(92\) 7.30560e6i 0.978134i
\(93\) 2.24551e6i 0.289484i
\(94\) 2.55432e6 0.317196
\(95\) 0 0
\(96\) −884736. −0.102062
\(97\) − 1.42687e7i − 1.58739i −0.608318 0.793693i \(-0.708156\pi\)
0.608318 0.793693i \(-0.291844\pi\)
\(98\) − 2.52139e6i − 0.270613i
\(99\) −2.77749e6 −0.287693
\(100\) 0 0
\(101\) 6.93119e6 0.669396 0.334698 0.942326i \(-0.391366\pi\)
0.334698 + 0.942326i \(0.391366\pi\)
\(102\) 903312.i 0.0842825i
\(103\) − 1.34707e7i − 1.21467i −0.794444 0.607337i \(-0.792238\pi\)
0.794444 0.607337i \(-0.207762\pi\)
\(104\) −200192. −0.0174514
\(105\) 0 0
\(106\) −1.31634e7 −1.07349
\(107\) 1.05625e7i 0.833533i 0.909014 + 0.416767i \(0.136837\pi\)
−0.909014 + 0.416767i \(0.863163\pi\)
\(108\) − 1.25971e6i − 0.0962250i
\(109\) −6.74796e6 −0.499091 −0.249546 0.968363i \(-0.580281\pi\)
−0.249546 + 0.968363i \(0.580281\pi\)
\(110\) 0 0
\(111\) −6.24602e6 −0.433484
\(112\) 2.92045e6i 0.196420i
\(113\) − 730764.i − 0.0476434i −0.999716 0.0238217i \(-0.992417\pi\)
0.999716 0.0238217i \(-0.00758340\pi\)
\(114\) −337176. −0.0213152
\(115\) 0 0
\(116\) −5.32570e6 −0.316791
\(117\) − 285039.i − 0.0164533i
\(118\) − 308880.i − 0.0173062i
\(119\) 2.98177e6 0.162203
\(120\) 0 0
\(121\) −4.97107e6 −0.255095
\(122\) 1.57912e7i 0.787330i
\(123\) 3.36571e6i 0.163083i
\(124\) 5.32269e6 0.250700
\(125\) 0 0
\(126\) −4.15822e6 −0.185187
\(127\) − 3.53961e7i − 1.53335i −0.642034 0.766676i \(-0.721909\pi\)
0.642034 0.766676i \(-0.278091\pi\)
\(128\) 2.09715e6i 0.0883883i
\(129\) −5.23144e6 −0.214564
\(130\) 0 0
\(131\) 2.58059e7 1.00293 0.501464 0.865178i \(-0.332795\pi\)
0.501464 + 0.865178i \(0.332795\pi\)
\(132\) 6.58368e6i 0.249149i
\(133\) 1.11299e6i 0.0410215i
\(134\) 3.52780e7 1.26659
\(135\) 0 0
\(136\) 2.14118e6 0.0729907
\(137\) 1.09054e7i 0.362344i 0.983451 + 0.181172i \(0.0579891\pi\)
−0.983451 + 0.181172i \(0.942011\pi\)
\(138\) 2.46564e7i 0.798643i
\(139\) 5.32412e7 1.68150 0.840748 0.541426i \(-0.182115\pi\)
0.840748 + 0.541426i \(0.182115\pi\)
\(140\) 0 0
\(141\) 8.62083e6 0.258990
\(142\) − 992640.i − 0.0290926i
\(143\) 1.48971e6i 0.0426016i
\(144\) −2.98598e6 −0.0833333
\(145\) 0 0
\(146\) −3.17411e7 −0.844086
\(147\) − 8.50970e6i − 0.220955i
\(148\) 1.48054e7i 0.375408i
\(149\) 3.39941e7 0.841884 0.420942 0.907088i \(-0.361700\pi\)
0.420942 + 0.907088i \(0.361700\pi\)
\(150\) 0 0
\(151\) 3.13410e7 0.740786 0.370393 0.928875i \(-0.379223\pi\)
0.370393 + 0.928875i \(0.379223\pi\)
\(152\) 799232.i 0.0184595i
\(153\) 3.04868e6i 0.0688163i
\(154\) 2.17322e7 0.479493
\(155\) 0 0
\(156\) −675648. −0.0142490
\(157\) − 6.83485e7i − 1.40955i −0.709431 0.704775i \(-0.751048\pi\)
0.709431 0.704775i \(-0.248952\pi\)
\(158\) 5.68639e7i 1.14693i
\(159\) −4.44266e7 −0.876502
\(160\) 0 0
\(161\) 8.13890e7 1.53700
\(162\) − 4.25153e6i − 0.0785674i
\(163\) − 4.62777e7i − 0.836980i −0.908221 0.418490i \(-0.862560\pi\)
0.908221 0.418490i \(-0.137440\pi\)
\(164\) 7.97798e6 0.141234
\(165\) 0 0
\(166\) −6.49416e7 −1.10191
\(167\) − 3.99639e7i − 0.663988i −0.943282 0.331994i \(-0.892279\pi\)
0.943282 0.331994i \(-0.107721\pi\)
\(168\) 9.85651e6i 0.160377i
\(169\) 6.25956e7 0.997564
\(170\) 0 0
\(171\) −1.13797e6 −0.0174038
\(172\) 1.24004e7i 0.185818i
\(173\) 9.07312e7i 1.33228i 0.745827 + 0.666139i \(0.232054\pi\)
−0.745827 + 0.666139i \(0.767946\pi\)
\(174\) −1.79742e7 −0.258659
\(175\) 0 0
\(176\) 1.56058e7 0.215770
\(177\) − 1.04247e6i − 0.0141305i
\(178\) 5.38230e7i 0.715316i
\(179\) −1.30570e8 −1.70160 −0.850802 0.525486i \(-0.823883\pi\)
−0.850802 + 0.525486i \(0.823883\pi\)
\(180\) 0 0
\(181\) 1.11281e8 1.39490 0.697452 0.716632i \(-0.254317\pi\)
0.697452 + 0.716632i \(0.254317\pi\)
\(182\) 2.23026e6i 0.0274225i
\(183\) 5.32954e7i 0.642852i
\(184\) 5.84448e7 0.691645
\(185\) 0 0
\(186\) 1.79641e7 0.204696
\(187\) − 1.59334e7i − 0.178182i
\(188\) − 2.04346e7i − 0.224292i
\(189\) −1.40340e7 −0.151204
\(190\) 0 0
\(191\) 1.39416e8 1.44776 0.723880 0.689926i \(-0.242357\pi\)
0.723880 + 0.689926i \(0.242357\pi\)
\(192\) 7.07789e6i 0.0721688i
\(193\) 2.37893e7i 0.238194i 0.992883 + 0.119097i \(0.0379999\pi\)
−0.992883 + 0.119097i \(0.962000\pi\)
\(194\) −1.14149e8 −1.12245
\(195\) 0 0
\(196\) −2.01711e7 −0.191352
\(197\) 4.67913e7i 0.436047i 0.975943 + 0.218024i \(0.0699610\pi\)
−0.975943 + 0.218024i \(0.930039\pi\)
\(198\) 2.22199e7i 0.203430i
\(199\) 1.16854e8 1.05113 0.525566 0.850753i \(-0.323854\pi\)
0.525566 + 0.850753i \(0.323854\pi\)
\(200\) 0 0
\(201\) 1.19063e8 1.03417
\(202\) − 5.54495e7i − 0.473334i
\(203\) 5.93316e7i 0.497794i
\(204\) 7.22650e6 0.0595967
\(205\) 0 0
\(206\) −1.07766e8 −0.858904
\(207\) 8.32154e7i 0.652090i
\(208\) 1.60154e6i 0.0123400i
\(209\) 5.94741e6 0.0450626
\(210\) 0 0
\(211\) −1.83300e8 −1.34330 −0.671651 0.740867i \(-0.734415\pi\)
−0.671651 + 0.740867i \(0.734415\pi\)
\(212\) 1.05307e8i 0.759073i
\(213\) − 3.35016e6i − 0.0237540i
\(214\) 8.44999e7 0.589397
\(215\) 0 0
\(216\) −1.00777e7 −0.0680414
\(217\) − 5.92981e7i − 0.393941i
\(218\) 5.39837e7i 0.352911i
\(219\) −1.07126e8 −0.689193
\(220\) 0 0
\(221\) 1.63516e6 0.0101903
\(222\) 4.99681e7i 0.306519i
\(223\) − 1.91650e8i − 1.15729i −0.815580 0.578644i \(-0.803582\pi\)
0.815580 0.578644i \(-0.196418\pi\)
\(224\) 2.33636e7 0.138890
\(225\) 0 0
\(226\) −5.84611e6 −0.0336890
\(227\) − 1.11119e8i − 0.630521i −0.949005 0.315260i \(-0.897908\pi\)
0.949005 0.315260i \(-0.102092\pi\)
\(228\) 2.69741e6i 0.0150721i
\(229\) 8.92220e7 0.490962 0.245481 0.969401i \(-0.421054\pi\)
0.245481 + 0.969401i \(0.421054\pi\)
\(230\) 0 0
\(231\) 7.33463e7 0.391504
\(232\) 4.26056e7i 0.224005i
\(233\) 5.04671e7i 0.261374i 0.991424 + 0.130687i \(0.0417183\pi\)
−0.991424 + 0.130687i \(0.958282\pi\)
\(234\) −2.28031e6 −0.0116343
\(235\) 0 0
\(236\) −2.47104e6 −0.0122374
\(237\) 1.91916e8i 0.936465i
\(238\) − 2.38541e7i − 0.114695i
\(239\) −8.16563e7 −0.386899 −0.193449 0.981110i \(-0.561967\pi\)
−0.193449 + 0.981110i \(0.561967\pi\)
\(240\) 0 0
\(241\) −2.40323e8 −1.10595 −0.552976 0.833197i \(-0.686508\pi\)
−0.552976 + 0.833197i \(0.686508\pi\)
\(242\) 3.97686e7i 0.180379i
\(243\) − 1.43489e7i − 0.0641500i
\(244\) 1.26330e8 0.556726
\(245\) 0 0
\(246\) 2.69257e7 0.115317
\(247\) 610351.i 0.00257715i
\(248\) − 4.25815e7i − 0.177272i
\(249\) −2.19178e8 −0.899702
\(250\) 0 0
\(251\) −3.23741e8 −1.29223 −0.646115 0.763240i \(-0.723607\pi\)
−0.646115 + 0.763240i \(0.723607\pi\)
\(252\) 3.32657e7i 0.130947i
\(253\) − 4.34912e8i − 1.68841i
\(254\) −2.83169e8 −1.08424
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) − 8.10385e7i − 0.297800i −0.988852 0.148900i \(-0.952427\pi\)
0.988852 0.148900i \(-0.0475733\pi\)
\(258\) 4.18515e7i 0.151720i
\(259\) 1.64941e8 0.589902
\(260\) 0 0
\(261\) −6.06630e7 −0.211194
\(262\) − 2.06448e8i − 0.709178i
\(263\) − 2.11263e8i − 0.716106i −0.933701 0.358053i \(-0.883441\pi\)
0.933701 0.358053i \(-0.116559\pi\)
\(264\) 5.26694e7 0.176175
\(265\) 0 0
\(266\) 8.90394e6 0.0290066
\(267\) 1.81653e8i 0.584053i
\(268\) − 2.82224e8i − 0.895617i
\(269\) −4.20832e8 −1.31818 −0.659092 0.752062i \(-0.729059\pi\)
−0.659092 + 0.752062i \(0.729059\pi\)
\(270\) 0 0
\(271\) −2.13859e8 −0.652731 −0.326366 0.945244i \(-0.605824\pi\)
−0.326366 + 0.945244i \(0.605824\pi\)
\(272\) − 1.71295e7i − 0.0516123i
\(273\) 7.52714e6i 0.0223903i
\(274\) 8.72435e7 0.256216
\(275\) 0 0
\(276\) 1.97251e8 0.564726
\(277\) − 2.94664e8i − 0.833007i −0.909134 0.416503i \(-0.863255\pi\)
0.909134 0.416503i \(-0.136745\pi\)
\(278\) − 4.25930e8i − 1.18900i
\(279\) 6.06287e7 0.167134
\(280\) 0 0
\(281\) −2.81001e8 −0.755503 −0.377752 0.925907i \(-0.623303\pi\)
−0.377752 + 0.925907i \(0.623303\pi\)
\(282\) − 6.89666e7i − 0.183133i
\(283\) − 5.81465e8i − 1.52500i −0.646986 0.762502i \(-0.723971\pi\)
0.646986 0.762502i \(-0.276029\pi\)
\(284\) −7.94112e6 −0.0205716
\(285\) 0 0
\(286\) 1.19177e7 0.0301239
\(287\) − 8.88797e7i − 0.221930i
\(288\) 2.38879e7i 0.0589256i
\(289\) 3.92850e8 0.957379
\(290\) 0 0
\(291\) −3.85254e8 −0.916478
\(292\) 2.53929e8i 0.596859i
\(293\) 7.92049e8i 1.83957i 0.392427 + 0.919783i \(0.371635\pi\)
−0.392427 + 0.919783i \(0.628365\pi\)
\(294\) −6.80776e7 −0.156239
\(295\) 0 0
\(296\) 1.18443e8 0.265453
\(297\) 7.49922e7i 0.166100i
\(298\) − 2.71953e8i − 0.595302i
\(299\) 4.46326e7 0.0965614
\(300\) 0 0
\(301\) 1.38149e8 0.291987
\(302\) − 2.50728e8i − 0.523815i
\(303\) − 1.87142e8i − 0.386476i
\(304\) 6.39386e6 0.0130528
\(305\) 0 0
\(306\) 2.43894e7 0.0486605
\(307\) 2.03330e8i 0.401067i 0.979687 + 0.200533i \(0.0642675\pi\)
−0.979687 + 0.200533i \(0.935732\pi\)
\(308\) − 1.73858e8i − 0.339053i
\(309\) −3.63709e8 −0.701292
\(310\) 0 0
\(311\) 3.29428e8 0.621011 0.310505 0.950572i \(-0.399502\pi\)
0.310505 + 0.950572i \(0.399502\pi\)
\(312\) 5.40518e6i 0.0100756i
\(313\) − 1.61495e8i − 0.297684i −0.988861 0.148842i \(-0.952445\pi\)
0.988861 0.148842i \(-0.0475545\pi\)
\(314\) −5.46788e8 −0.996702
\(315\) 0 0
\(316\) 4.54911e8 0.811002
\(317\) 6.39147e8i 1.12692i 0.826143 + 0.563460i \(0.190530\pi\)
−0.826143 + 0.563460i \(0.809470\pi\)
\(318\) 3.55412e8i 0.619780i
\(319\) 3.17045e8 0.546832
\(320\) 0 0
\(321\) 2.85187e8 0.481241
\(322\) − 6.51112e8i − 1.08683i
\(323\) − 6.52810e6i − 0.0107790i
\(324\) −3.40122e7 −0.0555556
\(325\) 0 0
\(326\) −3.70221e8 −0.591834
\(327\) 1.82195e8i 0.288151i
\(328\) − 6.38239e7i − 0.0998676i
\(329\) −2.27654e8 −0.352443
\(330\) 0 0
\(331\) −5.39401e8 −0.817548 −0.408774 0.912636i \(-0.634044\pi\)
−0.408774 + 0.912636i \(0.634044\pi\)
\(332\) 5.19532e8i 0.779165i
\(333\) 1.68642e8i 0.250272i
\(334\) −3.19711e8 −0.469510
\(335\) 0 0
\(336\) 7.88521e7 0.113403
\(337\) 7.72336e8i 1.09926i 0.835407 + 0.549632i \(0.185232\pi\)
−0.835407 + 0.549632i \(0.814768\pi\)
\(338\) − 5.00765e8i − 0.705384i
\(339\) −1.97306e7 −0.0275069
\(340\) 0 0
\(341\) −3.16866e8 −0.432749
\(342\) 9.10375e6i 0.0123063i
\(343\) 8.11905e8i 1.08637i
\(344\) 9.92036e7 0.131393
\(345\) 0 0
\(346\) 7.25849e8 0.942063
\(347\) 5.21028e8i 0.669435i 0.942319 + 0.334717i \(0.108641\pi\)
−0.942319 + 0.334717i \(0.891359\pi\)
\(348\) 1.43794e8i 0.182900i
\(349\) −5.22374e8 −0.657798 −0.328899 0.944365i \(-0.606678\pi\)
−0.328899 + 0.944365i \(0.606678\pi\)
\(350\) 0 0
\(351\) −7.69605e6 −0.00949933
\(352\) − 1.24846e8i − 0.152572i
\(353\) 1.02256e9i 1.23731i 0.785662 + 0.618656i \(0.212323\pi\)
−0.785662 + 0.618656i \(0.787677\pi\)
\(354\) −8.33976e6 −0.00999176
\(355\) 0 0
\(356\) 4.30584e8 0.505805
\(357\) − 8.05077e7i − 0.0936480i
\(358\) 1.04456e9i 1.20322i
\(359\) 1.17896e9 1.34484 0.672418 0.740171i \(-0.265256\pi\)
0.672418 + 0.740171i \(0.265256\pi\)
\(360\) 0 0
\(361\) −8.91435e8 −0.997274
\(362\) − 8.90244e8i − 0.986346i
\(363\) 1.34219e8i 0.147279i
\(364\) 1.78421e7 0.0193906
\(365\) 0 0
\(366\) 4.26363e8 0.454565
\(367\) − 7.85348e8i − 0.829337i −0.909973 0.414668i \(-0.863898\pi\)
0.909973 0.414668i \(-0.136102\pi\)
\(368\) − 4.67558e8i − 0.489067i
\(369\) 9.08742e7 0.0941561
\(370\) 0 0
\(371\) 1.17319e9 1.19278
\(372\) − 1.43713e8i − 0.144742i
\(373\) 7.41463e8i 0.739791i 0.929073 + 0.369895i \(0.120606\pi\)
−0.929073 + 0.369895i \(0.879394\pi\)
\(374\) −1.27467e8 −0.125994
\(375\) 0 0
\(376\) −1.63476e8 −0.158598
\(377\) 3.25367e7i 0.0312736i
\(378\) 1.12272e8i 0.106918i
\(379\) 4.13198e8 0.389871 0.194936 0.980816i \(-0.437550\pi\)
0.194936 + 0.980816i \(0.437550\pi\)
\(380\) 0 0
\(381\) −9.55694e8 −0.885282
\(382\) − 1.11533e9i − 1.02372i
\(383\) 2.07784e9i 1.88980i 0.327361 + 0.944899i \(0.393841\pi\)
−0.327361 + 0.944899i \(0.606159\pi\)
\(384\) 5.66231e7 0.0510310
\(385\) 0 0
\(386\) 1.90314e8 0.168428
\(387\) 1.41249e8i 0.123879i
\(388\) 9.13195e8i 0.793693i
\(389\) 1.62801e9 1.40227 0.701137 0.713027i \(-0.252676\pi\)
0.701137 + 0.713027i \(0.252676\pi\)
\(390\) 0 0
\(391\) −4.77375e8 −0.403870
\(392\) 1.61369e8i 0.135307i
\(393\) − 6.96760e8i − 0.579041i
\(394\) 3.74331e8 0.308332
\(395\) 0 0
\(396\) 1.77759e8 0.143847
\(397\) 6.54372e8i 0.524877i 0.964949 + 0.262439i \(0.0845268\pi\)
−0.964949 + 0.262439i \(0.915473\pi\)
\(398\) − 9.34830e8i − 0.743262i
\(399\) 3.00508e7 0.0236838
\(400\) 0 0
\(401\) 1.91730e9 1.48486 0.742430 0.669924i \(-0.233673\pi\)
0.742430 + 0.669924i \(0.233673\pi\)
\(402\) − 9.52507e8i − 0.731268i
\(403\) − 3.25183e7i − 0.0247491i
\(404\) −4.43596e8 −0.334698
\(405\) 0 0
\(406\) 4.74653e8 0.351994
\(407\) − 8.81383e8i − 0.648013i
\(408\) − 5.78120e7i − 0.0421412i
\(409\) −1.46590e9 −1.05943 −0.529717 0.848175i \(-0.677702\pi\)
−0.529717 + 0.848175i \(0.677702\pi\)
\(410\) 0 0
\(411\) 2.94447e8 0.209199
\(412\) 8.62124e8i 0.607337i
\(413\) 2.75289e7i 0.0192293i
\(414\) 6.65723e8 0.461097
\(415\) 0 0
\(416\) 1.28123e7 0.00872570
\(417\) − 1.43751e9i − 0.970813i
\(418\) − 4.75793e7i − 0.0318640i
\(419\) 1.87001e9 1.24192 0.620961 0.783841i \(-0.286742\pi\)
0.620961 + 0.783841i \(0.286742\pi\)
\(420\) 0 0
\(421\) 1.79884e9 1.17491 0.587456 0.809256i \(-0.300129\pi\)
0.587456 + 0.809256i \(0.300129\pi\)
\(422\) 1.46640e9i 0.949859i
\(423\) − 2.32762e8i − 0.149528i
\(424\) 8.42459e8 0.536745
\(425\) 0 0
\(426\) −2.68013e7 −0.0167966
\(427\) − 1.40739e9i − 0.874819i
\(428\) − 6.75999e8i − 0.416767i
\(429\) 4.02222e7 0.0245960
\(430\) 0 0
\(431\) 3.61421e7 0.0217442 0.0108721 0.999941i \(-0.496539\pi\)
0.0108721 + 0.999941i \(0.496539\pi\)
\(432\) 8.06216e7i 0.0481125i
\(433\) 1.54727e9i 0.915924i 0.888972 + 0.457962i \(0.151420\pi\)
−0.888972 + 0.457962i \(0.848580\pi\)
\(434\) −4.74385e8 −0.278559
\(435\) 0 0
\(436\) 4.31870e8 0.249546
\(437\) − 1.78188e8i − 0.102140i
\(438\) 8.57009e8i 0.487333i
\(439\) 5.66134e8 0.319370 0.159685 0.987168i \(-0.448952\pi\)
0.159685 + 0.987168i \(0.448952\pi\)
\(440\) 0 0
\(441\) −2.29762e8 −0.127568
\(442\) − 1.30813e7i − 0.00720564i
\(443\) − 9.51833e8i − 0.520173i −0.965585 0.260087i \(-0.916249\pi\)
0.965585 0.260087i \(-0.0837511\pi\)
\(444\) 3.99745e8 0.216742
\(445\) 0 0
\(446\) −1.53320e9 −0.818326
\(447\) − 9.17842e8i − 0.486062i
\(448\) − 1.86909e8i − 0.0982102i
\(449\) 1.12013e9 0.583989 0.291995 0.956420i \(-0.405681\pi\)
0.291995 + 0.956420i \(0.405681\pi\)
\(450\) 0 0
\(451\) −4.74939e8 −0.243792
\(452\) 4.67689e7i 0.0238217i
\(453\) − 8.46206e8i − 0.427693i
\(454\) −8.88955e8 −0.445845
\(455\) 0 0
\(456\) 2.15793e7 0.0106576
\(457\) 2.91044e9i 1.42644i 0.700943 + 0.713218i \(0.252763\pi\)
−0.700943 + 0.713218i \(0.747237\pi\)
\(458\) − 7.13776e8i − 0.347162i
\(459\) 8.23143e7 0.0397311
\(460\) 0 0
\(461\) 4.59640e8 0.218507 0.109253 0.994014i \(-0.465154\pi\)
0.109253 + 0.994014i \(0.465154\pi\)
\(462\) − 5.86770e8i − 0.276835i
\(463\) − 5.60051e8i − 0.262237i −0.991367 0.131118i \(-0.958143\pi\)
0.991367 0.131118i \(-0.0418568\pi\)
\(464\) 3.40845e8 0.158396
\(465\) 0 0
\(466\) 4.03736e8 0.184819
\(467\) − 3.70796e9i − 1.68471i −0.538921 0.842356i \(-0.681168\pi\)
0.538921 0.842356i \(-0.318832\pi\)
\(468\) 1.82425e7i 0.00822666i
\(469\) −3.14415e9 −1.40734
\(470\) 0 0
\(471\) −1.84541e9 −0.813804
\(472\) 1.97683e7i 0.00865312i
\(473\) − 7.38214e8i − 0.320751i
\(474\) 1.53533e9 0.662181
\(475\) 0 0
\(476\) −1.90833e8 −0.0811016
\(477\) 1.19952e9i 0.506048i
\(478\) 6.53251e8i 0.273579i
\(479\) 3.96322e9 1.64768 0.823842 0.566820i \(-0.191826\pi\)
0.823842 + 0.566820i \(0.191826\pi\)
\(480\) 0 0
\(481\) 9.04516e7 0.0370603
\(482\) 1.92259e9i 0.782026i
\(483\) − 2.19750e9i − 0.887389i
\(484\) 3.18149e8 0.127547
\(485\) 0 0
\(486\) −1.14791e8 −0.0453609
\(487\) 1.33008e9i 0.521825i 0.965362 + 0.260913i \(0.0840235\pi\)
−0.965362 + 0.260913i \(0.915977\pi\)
\(488\) − 1.01064e9i − 0.393665i
\(489\) −1.24950e9 −0.483231
\(490\) 0 0
\(491\) −2.55785e9 −0.975191 −0.487596 0.873070i \(-0.662126\pi\)
−0.487596 + 0.873070i \(0.662126\pi\)
\(492\) − 2.15406e8i − 0.0815416i
\(493\) − 3.48001e8i − 0.130803i
\(494\) 4.88281e6 0.00182232
\(495\) 0 0
\(496\) −3.40652e8 −0.125350
\(497\) 8.84690e7i 0.0323254i
\(498\) 1.75342e9i 0.636185i
\(499\) −4.31855e9 −1.55592 −0.777959 0.628316i \(-0.783745\pi\)
−0.777959 + 0.628316i \(0.783745\pi\)
\(500\) 0 0
\(501\) −1.07903e9 −0.383354
\(502\) 2.58993e9i 0.913745i
\(503\) − 6.29536e8i − 0.220563i −0.993900 0.110281i \(-0.964825\pi\)
0.993900 0.110281i \(-0.0351752\pi\)
\(504\) 2.66126e8 0.0925934
\(505\) 0 0
\(506\) −3.47929e9 −1.19389
\(507\) − 1.69008e9i − 0.575944i
\(508\) 2.26535e9i 0.766676i
\(509\) −5.79723e9 −1.94853 −0.974267 0.225397i \(-0.927632\pi\)
−0.974267 + 0.225397i \(0.927632\pi\)
\(510\) 0 0
\(511\) 2.82892e9 0.937882
\(512\) − 1.34218e8i − 0.0441942i
\(513\) 3.07252e7i 0.0100481i
\(514\) −6.48308e8 −0.210577
\(515\) 0 0
\(516\) 3.34812e8 0.107282
\(517\) 1.21649e9i 0.387163i
\(518\) − 1.31953e9i − 0.417124i
\(519\) 2.44974e9 0.769191
\(520\) 0 0
\(521\) 1.39059e9 0.430790 0.215395 0.976527i \(-0.430896\pi\)
0.215395 + 0.976527i \(0.430896\pi\)
\(522\) 4.85304e8i 0.149337i
\(523\) − 1.35994e9i − 0.415684i −0.978162 0.207842i \(-0.933356\pi\)
0.978162 0.207842i \(-0.0666440\pi\)
\(524\) −1.65158e9 −0.501464
\(525\) 0 0
\(526\) −1.69010e9 −0.506363
\(527\) 3.47804e8i 0.103514i
\(528\) − 4.21356e8i − 0.124575i
\(529\) −9.62540e9 −2.82699
\(530\) 0 0
\(531\) −2.81467e7 −0.00815824
\(532\) − 7.12316e7i − 0.0205108i
\(533\) − 4.87405e7i − 0.0139426i
\(534\) 1.45322e9 0.412988
\(535\) 0 0
\(536\) −2.25779e9 −0.633297
\(537\) 3.52540e9i 0.982421i
\(538\) 3.36666e9i 0.932097i
\(539\) 1.20081e9 0.330305
\(540\) 0 0
\(541\) 6.15055e8 0.167003 0.0835013 0.996508i \(-0.473390\pi\)
0.0835013 + 0.996508i \(0.473390\pi\)
\(542\) 1.71087e9i 0.461551i
\(543\) − 3.00457e9i − 0.805348i
\(544\) −1.37036e8 −0.0364954
\(545\) 0 0
\(546\) 6.02171e7 0.0158324
\(547\) 3.38341e8i 0.0883890i 0.999023 + 0.0441945i \(0.0140721\pi\)
−0.999023 + 0.0441945i \(0.985928\pi\)
\(548\) − 6.97948e8i − 0.181172i
\(549\) 1.43898e9 0.371151
\(550\) 0 0
\(551\) 1.29897e8 0.0330802
\(552\) − 1.57801e9i − 0.399322i
\(553\) − 5.06800e9i − 1.27438i
\(554\) −2.35732e9 −0.589025
\(555\) 0 0
\(556\) −3.40744e9 −0.840748
\(557\) 1.09577e9i 0.268674i 0.990936 + 0.134337i \(0.0428905\pi\)
−0.990936 + 0.134337i \(0.957110\pi\)
\(558\) − 4.85030e8i − 0.118181i
\(559\) 7.57590e7 0.0183439
\(560\) 0 0
\(561\) −4.30202e8 −0.102873
\(562\) 2.24801e9i 0.534222i
\(563\) − 7.36019e8i − 0.173824i −0.996216 0.0869119i \(-0.972300\pi\)
0.996216 0.0869119i \(-0.0276999\pi\)
\(564\) −5.51733e8 −0.129495
\(565\) 0 0
\(566\) −4.65172e9 −1.07834
\(567\) 3.78917e8i 0.0872979i
\(568\) 6.35290e7i 0.0145463i
\(569\) −9.08142e8 −0.206662 −0.103331 0.994647i \(-0.532950\pi\)
−0.103331 + 0.994647i \(0.532950\pi\)
\(570\) 0 0
\(571\) 1.02179e9 0.229685 0.114843 0.993384i \(-0.463364\pi\)
0.114843 + 0.993384i \(0.463364\pi\)
\(572\) − 9.53414e7i − 0.0213008i
\(573\) − 3.76424e9i − 0.835865i
\(574\) −7.11038e8 −0.156928
\(575\) 0 0
\(576\) 1.91103e8 0.0416667
\(577\) 9.10202e8i 0.197253i 0.995125 + 0.0986263i \(0.0314448\pi\)
−0.995125 + 0.0986263i \(0.968555\pi\)
\(578\) − 3.14280e9i − 0.676969i
\(579\) 6.42310e8 0.137521
\(580\) 0 0
\(581\) 5.78792e9 1.22435
\(582\) 3.08203e9i 0.648048i
\(583\) − 6.26908e9i − 1.31028i
\(584\) 2.03143e9 0.422043
\(585\) 0 0
\(586\) 6.33639e9 1.30077
\(587\) − 7.80594e9i − 1.59291i −0.604697 0.796456i \(-0.706706\pi\)
0.604697 0.796456i \(-0.293294\pi\)
\(588\) 5.44621e8i 0.110477i
\(589\) −1.29824e8 −0.0261788
\(590\) 0 0
\(591\) 1.26337e9 0.251752
\(592\) − 9.47544e8i − 0.187704i
\(593\) 5.90086e9i 1.16205i 0.813886 + 0.581024i \(0.197348\pi\)
−0.813886 + 0.581024i \(0.802652\pi\)
\(594\) 5.99938e8 0.117450
\(595\) 0 0
\(596\) −2.17562e9 −0.420942
\(597\) − 3.15505e9i − 0.606871i
\(598\) − 3.57061e8i − 0.0682792i
\(599\) 3.05005e9 0.579847 0.289924 0.957050i \(-0.406370\pi\)
0.289924 + 0.957050i \(0.406370\pi\)
\(600\) 0 0
\(601\) 6.80081e8 0.127791 0.0638954 0.997957i \(-0.479648\pi\)
0.0638954 + 0.997957i \(0.479648\pi\)
\(602\) − 1.10519e9i − 0.206466i
\(603\) − 3.21471e9i − 0.597078i
\(604\) −2.00582e9 −0.370393
\(605\) 0 0
\(606\) −1.49714e9 −0.273280
\(607\) 7.79549e9i 1.41476i 0.706833 + 0.707381i \(0.250123\pi\)
−0.706833 + 0.707381i \(0.749877\pi\)
\(608\) − 5.11508e7i − 0.00922976i
\(609\) 1.60195e9 0.287402
\(610\) 0 0
\(611\) −1.24842e8 −0.0221421
\(612\) − 1.95115e8i − 0.0344082i
\(613\) 9.21168e9i 1.61520i 0.589728 + 0.807602i \(0.299235\pi\)
−0.589728 + 0.807602i \(0.700765\pi\)
\(614\) 1.62664e9 0.283597
\(615\) 0 0
\(616\) −1.39086e9 −0.239746
\(617\) − 5.26863e9i − 0.903024i −0.892265 0.451512i \(-0.850885\pi\)
0.892265 0.451512i \(-0.149115\pi\)
\(618\) 2.90967e9i 0.495888i
\(619\) 5.84901e9 0.991208 0.495604 0.868548i \(-0.334947\pi\)
0.495604 + 0.868548i \(0.334947\pi\)
\(620\) 0 0
\(621\) 2.24681e9 0.376484
\(622\) − 2.63542e9i − 0.439121i
\(623\) − 4.79697e9i − 0.794802i
\(624\) 4.32415e7 0.00712450
\(625\) 0 0
\(626\) −1.29196e9 −0.210494
\(627\) − 1.60580e8i − 0.0260169i
\(628\) 4.37430e9i 0.704775i
\(629\) −9.67439e8 −0.155005
\(630\) 0 0
\(631\) 2.65927e9 0.421366 0.210683 0.977554i \(-0.432431\pi\)
0.210683 + 0.977554i \(0.432431\pi\)
\(632\) − 3.63929e9i − 0.573465i
\(633\) 4.94910e9i 0.775556i
\(634\) 5.11318e9 0.796853
\(635\) 0 0
\(636\) 2.84330e9 0.438251
\(637\) 1.23233e8i 0.0188903i
\(638\) − 2.53636e9i − 0.386669i
\(639\) −9.04543e7 −0.0137144
\(640\) 0 0
\(641\) 4.97659e8 0.0746327 0.0373163 0.999304i \(-0.488119\pi\)
0.0373163 + 0.999304i \(0.488119\pi\)
\(642\) − 2.28150e9i − 0.340288i
\(643\) − 2.59642e9i − 0.385156i −0.981282 0.192578i \(-0.938315\pi\)
0.981282 0.192578i \(-0.0616849\pi\)
\(644\) −5.20889e9 −0.768502
\(645\) 0 0
\(646\) −5.22248e7 −0.00762190
\(647\) − 4.44711e9i − 0.645525i −0.946480 0.322762i \(-0.895389\pi\)
0.946480 0.322762i \(-0.104611\pi\)
\(648\) 2.72098e8i 0.0392837i
\(649\) 1.47104e8 0.0211236
\(650\) 0 0
\(651\) −1.60105e9 −0.227442
\(652\) 2.96177e9i 0.418490i
\(653\) 1.83971e9i 0.258556i 0.991608 + 0.129278i \(0.0412659\pi\)
−0.991608 + 0.129278i \(0.958734\pi\)
\(654\) 1.45756e9 0.203753
\(655\) 0 0
\(656\) −5.10591e8 −0.0706171
\(657\) 2.89241e9i 0.397906i
\(658\) 1.82123e9i 0.249215i
\(659\) 3.41580e9 0.464936 0.232468 0.972604i \(-0.425320\pi\)
0.232468 + 0.972604i \(0.425320\pi\)
\(660\) 0 0
\(661\) −4.71690e9 −0.635260 −0.317630 0.948215i \(-0.602887\pi\)
−0.317630 + 0.948215i \(0.602887\pi\)
\(662\) 4.31521e9i 0.578094i
\(663\) − 4.41494e7i − 0.00588338i
\(664\) 4.15626e9 0.550953
\(665\) 0 0
\(666\) 1.34914e9 0.176969
\(667\) − 9.49888e9i − 1.23946i
\(668\) 2.55769e9i 0.331994i
\(669\) −5.17454e9 −0.668160
\(670\) 0 0
\(671\) −7.52058e9 −0.960998
\(672\) − 6.30817e8i − 0.0801883i
\(673\) 5.83430e9i 0.737796i 0.929470 + 0.368898i \(0.120265\pi\)
−0.929470 + 0.368898i \(0.879735\pi\)
\(674\) 6.17869e9 0.777297
\(675\) 0 0
\(676\) −4.00612e9 −0.498782
\(677\) 1.34655e8i 0.0166787i 0.999965 + 0.00833935i \(0.00265453\pi\)
−0.999965 + 0.00833935i \(0.997345\pi\)
\(678\) 1.57845e8i 0.0194503i
\(679\) 1.01736e10 1.24718
\(680\) 0 0
\(681\) −3.00022e9 −0.364031
\(682\) 2.53493e9i 0.305999i
\(683\) 1.33536e10i 1.60371i 0.597521 + 0.801853i \(0.296152\pi\)
−0.597521 + 0.801853i \(0.703848\pi\)
\(684\) 7.28300e7 0.00870190
\(685\) 0 0
\(686\) 6.49524e9 0.768176
\(687\) − 2.40899e9i − 0.283457i
\(688\) − 7.93629e8i − 0.0929090i
\(689\) 6.43362e8 0.0749356
\(690\) 0 0
\(691\) −3.26642e9 −0.376616 −0.188308 0.982110i \(-0.560300\pi\)
−0.188308 + 0.982110i \(0.560300\pi\)
\(692\) − 5.80679e9i − 0.666139i
\(693\) − 1.98035e9i − 0.226035i
\(694\) 4.16823e9 0.473362
\(695\) 0 0
\(696\) 1.15035e9 0.129330
\(697\) 5.21311e8i 0.0583153i
\(698\) 4.17899e9i 0.465134i
\(699\) 1.36261e9 0.150904
\(700\) 0 0
\(701\) 7.82925e9 0.858434 0.429217 0.903201i \(-0.358789\pi\)
0.429217 + 0.903201i \(0.358789\pi\)
\(702\) 6.15684e7i 0.00671704i
\(703\) − 3.61112e8i − 0.0392011i
\(704\) −9.98769e8 −0.107885
\(705\) 0 0
\(706\) 8.18052e9 0.874912
\(707\) 4.94194e9i 0.525932i
\(708\) 6.67181e7i 0.00706524i
\(709\) 3.26880e9 0.344450 0.172225 0.985058i \(-0.444904\pi\)
0.172225 + 0.985058i \(0.444904\pi\)
\(710\) 0 0
\(711\) 5.18173e9 0.540668
\(712\) − 3.44467e9i − 0.357658i
\(713\) 9.49351e9i 0.980875i
\(714\) −6.44061e8 −0.0662191
\(715\) 0 0
\(716\) 8.35649e9 0.850802
\(717\) 2.20472e9i 0.223376i
\(718\) − 9.43170e9i − 0.950943i
\(719\) 4.69765e9 0.471335 0.235668 0.971834i \(-0.424272\pi\)
0.235668 + 0.971834i \(0.424272\pi\)
\(720\) 0 0
\(721\) 9.60460e9 0.954346
\(722\) 7.13148e9i 0.705179i
\(723\) 6.48873e9i 0.638522i
\(724\) −7.12195e9 −0.697452
\(725\) 0 0
\(726\) 1.07375e9 0.104142
\(727\) − 1.10503e10i − 1.06661i −0.845924 0.533304i \(-0.820950\pi\)
0.845924 0.533304i \(-0.179050\pi\)
\(728\) − 1.42737e8i − 0.0137112i
\(729\) −3.87420e8 −0.0370370
\(730\) 0 0
\(731\) −8.10292e8 −0.0767239
\(732\) − 3.41091e9i − 0.321426i
\(733\) 1.52446e10i 1.42972i 0.699268 + 0.714860i \(0.253509\pi\)
−0.699268 + 0.714860i \(0.746491\pi\)
\(734\) −6.28279e9 −0.586430
\(735\) 0 0
\(736\) −3.74047e9 −0.345823
\(737\) 1.68012e10i 1.54598i
\(738\) − 7.26994e8i − 0.0665784i
\(739\) 1.54738e10 1.41039 0.705197 0.709012i \(-0.250859\pi\)
0.705197 + 0.709012i \(0.250859\pi\)
\(740\) 0 0
\(741\) 1.64795e7 0.00148792
\(742\) − 9.38552e9i − 0.843422i
\(743\) − 1.25550e9i − 0.112294i −0.998423 0.0561471i \(-0.982118\pi\)
0.998423 0.0561471i \(-0.0178816\pi\)
\(744\) −1.14970e9 −0.102348
\(745\) 0 0
\(746\) 5.93171e9 0.523111
\(747\) 5.91780e9i 0.519443i
\(748\) 1.01974e9i 0.0890909i
\(749\) −7.53105e9 −0.654891
\(750\) 0 0
\(751\) −1.75101e10 −1.50851 −0.754257 0.656580i \(-0.772003\pi\)
−0.754257 + 0.656580i \(0.772003\pi\)
\(752\) 1.30781e9i 0.112146i
\(753\) 8.74101e9i 0.746069i
\(754\) 2.60293e8 0.0221138
\(755\) 0 0
\(756\) 8.98175e8 0.0756022
\(757\) 1.55877e9i 0.130601i 0.997866 + 0.0653005i \(0.0208006\pi\)
−0.997866 + 0.0653005i \(0.979199\pi\)
\(758\) − 3.30559e9i − 0.275681i
\(759\) −1.17426e10 −0.974807
\(760\) 0 0
\(761\) 8.14586e9 0.670025 0.335012 0.942214i \(-0.391260\pi\)
0.335012 + 0.942214i \(0.391260\pi\)
\(762\) 7.64555e9i 0.625989i
\(763\) − 4.81130e9i − 0.392127i
\(764\) −8.92264e9 −0.723880
\(765\) 0 0
\(766\) 1.66227e10 1.33629
\(767\) 1.50965e7i 0.00120807i
\(768\) − 4.52985e8i − 0.0360844i
\(769\) −1.61934e10 −1.28409 −0.642046 0.766666i \(-0.721914\pi\)
−0.642046 + 0.766666i \(0.721914\pi\)
\(770\) 0 0
\(771\) −2.18804e9 −0.171935
\(772\) − 1.52251e9i − 0.119097i
\(773\) 3.85870e9i 0.300478i 0.988650 + 0.150239i \(0.0480044\pi\)
−0.988650 + 0.150239i \(0.951996\pi\)
\(774\) 1.12999e9 0.0875955
\(775\) 0 0
\(776\) 7.30556e9 0.561226
\(777\) − 4.45341e9i − 0.340580i
\(778\) − 1.30241e10i − 0.991557i
\(779\) −1.94588e8 −0.0147481
\(780\) 0 0
\(781\) 4.72745e8 0.0355098
\(782\) 3.81900e9i 0.285579i
\(783\) 1.63790e9i 0.121933i
\(784\) 1.29095e9 0.0956762
\(785\) 0 0
\(786\) −5.57408e9 −0.409444
\(787\) − 9.76950e9i − 0.714431i −0.934022 0.357216i \(-0.883726\pi\)
0.934022 0.357216i \(-0.116274\pi\)
\(788\) − 2.99465e9i − 0.218024i
\(789\) −5.70409e9 −0.413444
\(790\) 0 0
\(791\) 5.21035e8 0.0374325
\(792\) − 1.42207e9i − 0.101715i
\(793\) − 7.71797e8i − 0.0549600i
\(794\) 5.23498e9 0.371144
\(795\) 0 0
\(796\) −7.47864e9 −0.525566
\(797\) 1.86704e10i 1.30632i 0.757221 + 0.653159i \(0.226557\pi\)
−0.757221 + 0.653159i \(0.773443\pi\)
\(798\) − 2.40406e8i − 0.0167470i
\(799\) 1.33527e9 0.0926095
\(800\) 0 0
\(801\) 4.90462e9 0.337203
\(802\) − 1.53384e10i − 1.04995i
\(803\) − 1.51167e10i − 1.03027i
\(804\) −7.62005e9 −0.517085
\(805\) 0 0
\(806\) −2.60146e8 −0.0175003
\(807\) 1.13625e10i 0.761054i
\(808\) 3.54877e9i 0.236667i
\(809\) 7.97985e9 0.529877 0.264938 0.964265i \(-0.414648\pi\)
0.264938 + 0.964265i \(0.414648\pi\)
\(810\) 0 0
\(811\) −1.70481e10 −1.12228 −0.561141 0.827720i \(-0.689638\pi\)
−0.561141 + 0.827720i \(0.689638\pi\)
\(812\) − 3.79722e9i − 0.248897i
\(813\) 5.77419e9i 0.376855i
\(814\) −7.05106e9 −0.458215
\(815\) 0 0
\(816\) −4.62496e8 −0.0297983
\(817\) − 3.02455e8i − 0.0194036i
\(818\) 1.17272e10i 0.749132i
\(819\) 2.03233e8 0.0129271
\(820\) 0 0
\(821\) −6.64028e9 −0.418779 −0.209390 0.977832i \(-0.567148\pi\)
−0.209390 + 0.977832i \(0.567148\pi\)
\(822\) − 2.35557e9i − 0.147926i
\(823\) − 2.99586e10i − 1.87336i −0.350180 0.936682i \(-0.613880\pi\)
0.350180 0.936682i \(-0.386120\pi\)
\(824\) 6.89699e9 0.429452
\(825\) 0 0
\(826\) 2.20231e8 0.0135972
\(827\) 3.07056e9i 0.188777i 0.995535 + 0.0943883i \(0.0300895\pi\)
−0.995535 + 0.0943883i \(0.969910\pi\)
\(828\) − 5.32578e9i − 0.326045i
\(829\) 2.10442e10 1.28289 0.641447 0.767167i \(-0.278334\pi\)
0.641447 + 0.767167i \(0.278334\pi\)
\(830\) 0 0
\(831\) −7.95594e9 −0.480937
\(832\) − 1.02498e8i − 0.00617000i
\(833\) − 1.31806e9i − 0.0790091i
\(834\) −1.15001e10 −0.686468
\(835\) 0 0
\(836\) −3.80634e8 −0.0225313
\(837\) − 1.63698e9i − 0.0964946i
\(838\) − 1.49601e10i − 0.878172i
\(839\) −1.16048e10 −0.678377 −0.339189 0.940718i \(-0.610152\pi\)
−0.339189 + 0.940718i \(0.610152\pi\)
\(840\) 0 0
\(841\) −1.03253e10 −0.598573
\(842\) − 1.43907e10i − 0.830789i
\(843\) 7.58704e9i 0.436190i
\(844\) 1.17312e10 0.671651
\(845\) 0 0
\(846\) −1.86210e9 −0.105732
\(847\) − 3.54437e9i − 0.200423i
\(848\) − 6.73967e9i − 0.379536i
\(849\) −1.56995e10 −0.880461
\(850\) 0 0
\(851\) −2.64068e10 −1.46880
\(852\) 2.14410e8i 0.0118770i
\(853\) − 3.08015e10i − 1.69922i −0.527411 0.849610i \(-0.676837\pi\)
0.527411 0.849610i \(-0.323163\pi\)
\(854\) −1.12592e10 −0.618590
\(855\) 0 0
\(856\) −5.40799e9 −0.294698
\(857\) 2.03442e10i 1.10410i 0.833811 + 0.552050i \(0.186154\pi\)
−0.833811 + 0.552050i \(0.813846\pi\)
\(858\) − 3.21777e8i − 0.0173920i
\(859\) 5.51078e9 0.296645 0.148323 0.988939i \(-0.452613\pi\)
0.148323 + 0.988939i \(0.452613\pi\)
\(860\) 0 0
\(861\) −2.39975e9 −0.128131
\(862\) − 2.89137e8i − 0.0153755i
\(863\) − 2.54712e10i − 1.34900i −0.738274 0.674501i \(-0.764359\pi\)
0.738274 0.674501i \(-0.235641\pi\)
\(864\) 6.44973e8 0.0340207
\(865\) 0 0
\(866\) 1.23782e10 0.647656
\(867\) − 1.06069e10i − 0.552743i
\(868\) 3.79508e9i 0.196971i
\(869\) −2.70814e10 −1.39992
\(870\) 0 0
\(871\) −1.72421e9 −0.0884153
\(872\) − 3.45496e9i − 0.176455i
\(873\) 1.04019e10i 0.529129i
\(874\) −1.42551e9 −0.0722235
\(875\) 0 0
\(876\) 6.85607e9 0.344597
\(877\) − 1.83885e9i − 0.0920549i −0.998940 0.0460275i \(-0.985344\pi\)
0.998940 0.0460275i \(-0.0146562\pi\)
\(878\) − 4.52907e9i − 0.225828i
\(879\) 2.13853e10 1.06207
\(880\) 0 0
\(881\) −3.40718e10 −1.67873 −0.839363 0.543571i \(-0.817072\pi\)
−0.839363 + 0.543571i \(0.817072\pi\)
\(882\) 1.83809e9i 0.0902044i
\(883\) 2.54935e10i 1.24614i 0.782165 + 0.623071i \(0.214115\pi\)
−0.782165 + 0.623071i \(0.785885\pi\)
\(884\) −1.04650e8 −0.00509516
\(885\) 0 0
\(886\) −7.61467e9 −0.367818
\(887\) 2.29613e10i 1.10475i 0.833596 + 0.552374i \(0.186278\pi\)
−0.833596 + 0.552374i \(0.813722\pi\)
\(888\) − 3.19796e9i − 0.153260i
\(889\) 2.52374e10 1.20473
\(890\) 0 0
\(891\) 2.02479e9 0.0958977
\(892\) 1.22656e10i 0.578644i
\(893\) 4.98412e8i 0.0234211i
\(894\) −7.34273e9 −0.343698
\(895\) 0 0
\(896\) −1.49527e9 −0.0694451
\(897\) − 1.20508e9i − 0.0557497i
\(898\) − 8.96101e9i − 0.412943i
\(899\) −6.92066e9 −0.317679
\(900\) 0 0
\(901\) −6.88118e9 −0.313420
\(902\) 3.79951e9i 0.172387i
\(903\) − 3.73002e9i − 0.168579i
\(904\) 3.74151e8 0.0168445
\(905\) 0 0
\(906\) −6.76965e9 −0.302425
\(907\) 5.32481e9i 0.236962i 0.992956 + 0.118481i \(0.0378025\pi\)
−0.992956 + 0.118481i \(0.962198\pi\)
\(908\) 7.11164e9i 0.315260i
\(909\) −5.05284e9 −0.223132
\(910\) 0 0
\(911\) 2.29502e10 1.00571 0.502853 0.864372i \(-0.332284\pi\)
0.502853 + 0.864372i \(0.332284\pi\)
\(912\) − 1.72634e8i − 0.00753607i
\(913\) − 3.09284e10i − 1.34496i
\(914\) 2.32835e10 1.00864
\(915\) 0 0
\(916\) −5.71021e9 −0.245481
\(917\) 1.83996e10i 0.787982i
\(918\) − 6.58514e8i − 0.0280942i
\(919\) 2.49309e10 1.05958 0.529790 0.848129i \(-0.322271\pi\)
0.529790 + 0.848129i \(0.322271\pi\)
\(920\) 0 0
\(921\) 5.48991e9 0.231556
\(922\) − 3.67712e9i − 0.154507i
\(923\) 4.85153e7i 0.00203083i
\(924\) −4.69416e9 −0.195752
\(925\) 0 0
\(926\) −4.48040e9 −0.185429
\(927\) 9.82013e9i 0.404891i
\(928\) − 2.72676e9i − 0.112003i
\(929\) −1.04115e10 −0.426049 −0.213024 0.977047i \(-0.568331\pi\)
−0.213024 + 0.977047i \(0.568331\pi\)
\(930\) 0 0
\(931\) 4.91987e8 0.0199816
\(932\) − 3.22989e9i − 0.130687i
\(933\) − 8.89456e9i − 0.358541i
\(934\) −2.96637e10 −1.19127
\(935\) 0 0
\(936\) 1.45940e8 0.00581713
\(937\) − 7.28154e9i − 0.289158i −0.989493 0.144579i \(-0.953817\pi\)
0.989493 0.144579i \(-0.0461827\pi\)
\(938\) 2.51532e10i 0.995139i
\(939\) −4.36038e9 −0.171868
\(940\) 0 0
\(941\) 2.30278e10 0.900927 0.450464 0.892795i \(-0.351259\pi\)
0.450464 + 0.892795i \(0.351259\pi\)
\(942\) 1.47633e10i 0.575446i
\(943\) 1.42295e10i 0.552584i
\(944\) 1.58147e8 0.00611868
\(945\) 0 0
\(946\) −5.90571e9 −0.226805
\(947\) − 4.69600e10i − 1.79681i −0.439164 0.898407i \(-0.644725\pi\)
0.439164 0.898407i \(-0.355275\pi\)
\(948\) − 1.22826e10i − 0.468232i
\(949\) 1.55134e9 0.0589219
\(950\) 0 0
\(951\) 1.72570e10 0.650628
\(952\) 1.52666e9i 0.0573475i
\(953\) − 3.43809e10i − 1.28674i −0.765553 0.643372i \(-0.777535\pi\)
0.765553 0.643372i \(-0.222465\pi\)
\(954\) 9.59614e9 0.357830
\(955\) 0 0
\(956\) 5.22600e9 0.193449
\(957\) − 8.56022e9i − 0.315714i
\(958\) − 3.17058e10i − 1.16509i
\(959\) −7.77558e9 −0.284687
\(960\) 0 0
\(961\) −2.05959e10 −0.748597
\(962\) − 7.23613e8i − 0.0262056i
\(963\) − 7.70005e9i − 0.277844i
\(964\) 1.53807e10 0.552976
\(965\) 0 0
\(966\) −1.75800e10 −0.627479
\(967\) 1.14483e10i 0.407146i 0.979060 + 0.203573i \(0.0652554\pi\)
−0.979060 + 0.203573i \(0.934745\pi\)
\(968\) − 2.54519e9i − 0.0901895i
\(969\) −1.76259e8 −0.00622325
\(970\) 0 0
\(971\) 1.85255e8 0.00649385 0.00324693 0.999995i \(-0.498966\pi\)
0.00324693 + 0.999995i \(0.498966\pi\)
\(972\) 9.18330e8i 0.0320750i
\(973\) 3.79610e10i 1.32112i
\(974\) 1.06406e10 0.368986
\(975\) 0 0
\(976\) −8.08511e9 −0.278363
\(977\) − 3.06849e10i − 1.05267i −0.850276 0.526337i \(-0.823565\pi\)
0.850276 0.526337i \(-0.176435\pi\)
\(978\) 9.99598e9i 0.341696i
\(979\) −2.56332e10 −0.873099
\(980\) 0 0
\(981\) 4.91927e9 0.166364
\(982\) 2.04628e10i 0.689564i
\(983\) 1.00287e9i 0.0336751i 0.999858 + 0.0168376i \(0.00535982\pi\)
−0.999858 + 0.0168376i \(0.994640\pi\)
\(984\) −1.72324e9 −0.0576586
\(985\) 0 0
\(986\) −2.78401e9 −0.0924914
\(987\) 6.14665e9i 0.203483i
\(988\) − 3.90625e7i − 0.00128858i
\(989\) −2.21174e10 −0.727020
\(990\) 0 0
\(991\) 4.82282e10 1.57414 0.787070 0.616864i \(-0.211597\pi\)
0.787070 + 0.616864i \(0.211597\pi\)
\(992\) 2.72522e9i 0.0886360i
\(993\) 1.45638e10i 0.472012i
\(994\) 7.07752e8 0.0228575
\(995\) 0 0
\(996\) 1.40274e10 0.449851
\(997\) − 4.68836e10i − 1.49826i −0.662421 0.749132i \(-0.730471\pi\)
0.662421 0.749132i \(-0.269529\pi\)
\(998\) 3.45484e10i 1.10020i
\(999\) 4.55335e9 0.144495
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.8.c.c.49.1 2
3.2 odd 2 450.8.c.e.199.2 2
5.2 odd 4 150.8.a.j.1.1 yes 1
5.3 odd 4 150.8.a.h.1.1 1
5.4 even 2 inner 150.8.c.c.49.2 2
15.2 even 4 450.8.a.d.1.1 1
15.8 even 4 450.8.a.w.1.1 1
15.14 odd 2 450.8.c.e.199.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.8.a.h.1.1 1 5.3 odd 4
150.8.a.j.1.1 yes 1 5.2 odd 4
150.8.c.c.49.1 2 1.1 even 1 trivial
150.8.c.c.49.2 2 5.4 even 2 inner
450.8.a.d.1.1 1 15.2 even 4
450.8.a.w.1.1 1 15.8 even 4
450.8.c.e.199.1 2 15.14 odd 2
450.8.c.e.199.2 2 3.2 odd 2