Properties

Label 160.6.d.a.81.1
Level $160$
Weight $6$
Character 160.81
Analytic conductor $25.661$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,6,Mod(81,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.81");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 160.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.6614111701\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} - 17 x^{18} + 78 x^{17} + 253 x^{16} - 884 x^{15} + 2396 x^{14} + 19376 x^{13} + \cdots + 1099511627776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{90}\cdot 3^{4}\cdot 5^{12} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 81.1
Root \(3.46430 + 1.99965i\) of defining polynomial
Character \(\chi\) \(=\) 160.81
Dual form 160.6.d.a.81.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-29.2080i q^{3} -25.0000i q^{5} +168.173 q^{7} -610.110 q^{9} -514.493i q^{11} -491.622i q^{13} -730.201 q^{15} +183.094 q^{17} -1250.96i q^{19} -4912.01i q^{21} +423.498 q^{23} -625.000 q^{25} +10722.5i q^{27} +3463.40i q^{29} -2343.92 q^{31} -15027.3 q^{33} -4204.33i q^{35} +7388.25i q^{37} -14359.3 q^{39} +4240.39 q^{41} +15159.4i q^{43} +15252.7i q^{45} +15357.8 q^{47} +11475.3 q^{49} -5347.82i q^{51} -11393.9i q^{53} -12862.3 q^{55} -36538.2 q^{57} -11978.0i q^{59} +41454.0i q^{61} -102604. q^{63} -12290.5 q^{65} -66524.9i q^{67} -12369.6i q^{69} +26214.5 q^{71} -86291.9 q^{73} +18255.0i q^{75} -86524.0i q^{77} +19799.4 q^{79} +164928. q^{81} +8370.24i q^{83} -4577.35i q^{85} +101159. q^{87} -3824.45 q^{89} -82677.7i q^{91} +68461.3i q^{93} -31274.1 q^{95} +35158.5 q^{97} +313897. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 196 q^{7} - 1620 q^{9} - 900 q^{15} + 4676 q^{23} - 12500 q^{25} - 7160 q^{31} + 5672 q^{33} + 44904 q^{39} + 11608 q^{41} - 44180 q^{47} + 18756 q^{49} + 24200 q^{55} + 5032 q^{57} - 240620 q^{63}+ \cdots + 147376 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 29.2080i − 1.87370i −0.349736 0.936848i \(-0.613729\pi\)
0.349736 0.936848i \(-0.386271\pi\)
\(4\) 0 0
\(5\) − 25.0000i − 0.447214i
\(6\) 0 0
\(7\) 168.173 1.29722 0.648608 0.761123i \(-0.275352\pi\)
0.648608 + 0.761123i \(0.275352\pi\)
\(8\) 0 0
\(9\) −610.110 −2.51074
\(10\) 0 0
\(11\) − 514.493i − 1.28203i −0.767529 0.641014i \(-0.778514\pi\)
0.767529 0.641014i \(-0.221486\pi\)
\(12\) 0 0
\(13\) − 491.622i − 0.806813i −0.915021 0.403406i \(-0.867826\pi\)
0.915021 0.403406i \(-0.132174\pi\)
\(14\) 0 0
\(15\) −730.201 −0.837943
\(16\) 0 0
\(17\) 183.094 0.153657 0.0768284 0.997044i \(-0.475521\pi\)
0.0768284 + 0.997044i \(0.475521\pi\)
\(18\) 0 0
\(19\) − 1250.96i − 0.794988i −0.917605 0.397494i \(-0.869880\pi\)
0.917605 0.397494i \(-0.130120\pi\)
\(20\) 0 0
\(21\) − 4912.01i − 2.43059i
\(22\) 0 0
\(23\) 423.498 0.166929 0.0834646 0.996511i \(-0.473401\pi\)
0.0834646 + 0.996511i \(0.473401\pi\)
\(24\) 0 0
\(25\) −625.000 −0.200000
\(26\) 0 0
\(27\) 10722.5i 2.83067i
\(28\) 0 0
\(29\) 3463.40i 0.764729i 0.924012 + 0.382364i \(0.124890\pi\)
−0.924012 + 0.382364i \(0.875110\pi\)
\(30\) 0 0
\(31\) −2343.92 −0.438065 −0.219032 0.975718i \(-0.570290\pi\)
−0.219032 + 0.975718i \(0.570290\pi\)
\(32\) 0 0
\(33\) −15027.3 −2.40213
\(34\) 0 0
\(35\) − 4204.33i − 0.580132i
\(36\) 0 0
\(37\) 7388.25i 0.887232i 0.896217 + 0.443616i \(0.146305\pi\)
−0.896217 + 0.443616i \(0.853695\pi\)
\(38\) 0 0
\(39\) −14359.3 −1.51172
\(40\) 0 0
\(41\) 4240.39 0.393954 0.196977 0.980408i \(-0.436888\pi\)
0.196977 + 0.980408i \(0.436888\pi\)
\(42\) 0 0
\(43\) 15159.4i 1.25029i 0.780510 + 0.625143i \(0.214960\pi\)
−0.780510 + 0.625143i \(0.785040\pi\)
\(44\) 0 0
\(45\) 15252.7i 1.12284i
\(46\) 0 0
\(47\) 15357.8 1.01411 0.507055 0.861914i \(-0.330734\pi\)
0.507055 + 0.861914i \(0.330734\pi\)
\(48\) 0 0
\(49\) 11475.3 0.682768
\(50\) 0 0
\(51\) − 5347.82i − 0.287906i
\(52\) 0 0
\(53\) − 11393.9i − 0.557162i −0.960413 0.278581i \(-0.910136\pi\)
0.960413 0.278581i \(-0.0898640\pi\)
\(54\) 0 0
\(55\) −12862.3 −0.573340
\(56\) 0 0
\(57\) −36538.2 −1.48957
\(58\) 0 0
\(59\) − 11978.0i − 0.447974i −0.974592 0.223987i \(-0.928093\pi\)
0.974592 0.223987i \(-0.0719074\pi\)
\(60\) 0 0
\(61\) 41454.0i 1.42640i 0.700960 + 0.713200i \(0.252755\pi\)
−0.700960 + 0.713200i \(0.747245\pi\)
\(62\) 0 0
\(63\) −102604. −3.25697
\(64\) 0 0
\(65\) −12290.5 −0.360818
\(66\) 0 0
\(67\) − 66524.9i − 1.81049i −0.424885 0.905247i \(-0.639685\pi\)
0.424885 0.905247i \(-0.360315\pi\)
\(68\) 0 0
\(69\) − 12369.6i − 0.312775i
\(70\) 0 0
\(71\) 26214.5 0.617157 0.308579 0.951199i \(-0.400147\pi\)
0.308579 + 0.951199i \(0.400147\pi\)
\(72\) 0 0
\(73\) −86291.9 −1.89523 −0.947617 0.319409i \(-0.896516\pi\)
−0.947617 + 0.319409i \(0.896516\pi\)
\(74\) 0 0
\(75\) 18255.0i 0.374739i
\(76\) 0 0
\(77\) − 86524.0i − 1.66307i
\(78\) 0 0
\(79\) 19799.4 0.356931 0.178466 0.983946i \(-0.442887\pi\)
0.178466 + 0.983946i \(0.442887\pi\)
\(80\) 0 0
\(81\) 164928. 2.79307
\(82\) 0 0
\(83\) 8370.24i 0.133365i 0.997774 + 0.0666826i \(0.0212415\pi\)
−0.997774 + 0.0666826i \(0.978759\pi\)
\(84\) 0 0
\(85\) − 4577.35i − 0.0687174i
\(86\) 0 0
\(87\) 101159. 1.43287
\(88\) 0 0
\(89\) −3824.45 −0.0511793 −0.0255896 0.999673i \(-0.508146\pi\)
−0.0255896 + 0.999673i \(0.508146\pi\)
\(90\) 0 0
\(91\) − 82677.7i − 1.04661i
\(92\) 0 0
\(93\) 68461.3i 0.820801i
\(94\) 0 0
\(95\) −31274.1 −0.355529
\(96\) 0 0
\(97\) 35158.5 0.379403 0.189702 0.981842i \(-0.439248\pi\)
0.189702 + 0.981842i \(0.439248\pi\)
\(98\) 0 0
\(99\) 313897.i 3.21884i
\(100\) 0 0
\(101\) − 99536.3i − 0.970908i −0.874262 0.485454i \(-0.838654\pi\)
0.874262 0.485454i \(-0.161346\pi\)
\(102\) 0 0
\(103\) −46921.2 −0.435789 −0.217895 0.975972i \(-0.569919\pi\)
−0.217895 + 0.975972i \(0.569919\pi\)
\(104\) 0 0
\(105\) −122800. −1.08699
\(106\) 0 0
\(107\) 38381.3i 0.324086i 0.986784 + 0.162043i \(0.0518083\pi\)
−0.986784 + 0.162043i \(0.948192\pi\)
\(108\) 0 0
\(109\) − 14288.7i − 0.115193i −0.998340 0.0575966i \(-0.981656\pi\)
0.998340 0.0575966i \(-0.0183437\pi\)
\(110\) 0 0
\(111\) 215796. 1.66240
\(112\) 0 0
\(113\) 130552. 0.961804 0.480902 0.876774i \(-0.340309\pi\)
0.480902 + 0.876774i \(0.340309\pi\)
\(114\) 0 0
\(115\) − 10587.5i − 0.0746530i
\(116\) 0 0
\(117\) 299943.i 2.02570i
\(118\) 0 0
\(119\) 30791.5 0.199326
\(120\) 0 0
\(121\) −103652. −0.643596
\(122\) 0 0
\(123\) − 123853.i − 0.738151i
\(124\) 0 0
\(125\) 15625.0i 0.0894427i
\(126\) 0 0
\(127\) 327594. 1.80230 0.901150 0.433508i \(-0.142724\pi\)
0.901150 + 0.433508i \(0.142724\pi\)
\(128\) 0 0
\(129\) 442775. 2.34266
\(130\) 0 0
\(131\) − 116999.i − 0.595669i −0.954618 0.297834i \(-0.903736\pi\)
0.954618 0.297834i \(-0.0962643\pi\)
\(132\) 0 0
\(133\) − 210379.i − 1.03127i
\(134\) 0 0
\(135\) 268064. 1.26591
\(136\) 0 0
\(137\) −74409.1 −0.338707 −0.169354 0.985555i \(-0.554168\pi\)
−0.169354 + 0.985555i \(0.554168\pi\)
\(138\) 0 0
\(139\) − 80434.5i − 0.353106i −0.984291 0.176553i \(-0.943505\pi\)
0.984291 0.176553i \(-0.0564947\pi\)
\(140\) 0 0
\(141\) − 448572.i − 1.90013i
\(142\) 0 0
\(143\) −252936. −1.03436
\(144\) 0 0
\(145\) 86585.0 0.341997
\(146\) 0 0
\(147\) − 335171.i − 1.27930i
\(148\) 0 0
\(149\) − 57917.4i − 0.213719i −0.994274 0.106860i \(-0.965920\pi\)
0.994274 0.106860i \(-0.0340795\pi\)
\(150\) 0 0
\(151\) −450813. −1.60899 −0.804497 0.593957i \(-0.797565\pi\)
−0.804497 + 0.593957i \(0.797565\pi\)
\(152\) 0 0
\(153\) −111707. −0.385792
\(154\) 0 0
\(155\) 58598.0i 0.195909i
\(156\) 0 0
\(157\) 72067.3i 0.233340i 0.993171 + 0.116670i \(0.0372220\pi\)
−0.993171 + 0.116670i \(0.962778\pi\)
\(158\) 0 0
\(159\) −332792. −1.04395
\(160\) 0 0
\(161\) 71221.2 0.216543
\(162\) 0 0
\(163\) − 471144.i − 1.38895i −0.719519 0.694473i \(-0.755638\pi\)
0.719519 0.694473i \(-0.244362\pi\)
\(164\) 0 0
\(165\) 375683.i 1.07427i
\(166\) 0 0
\(167\) −519164. −1.44050 −0.720250 0.693715i \(-0.755973\pi\)
−0.720250 + 0.693715i \(0.755973\pi\)
\(168\) 0 0
\(169\) 129601. 0.349053
\(170\) 0 0
\(171\) 763225.i 1.99601i
\(172\) 0 0
\(173\) − 726898.i − 1.84654i −0.384153 0.923269i \(-0.625506\pi\)
0.384153 0.923269i \(-0.374494\pi\)
\(174\) 0 0
\(175\) −105108. −0.259443
\(176\) 0 0
\(177\) −349853. −0.839368
\(178\) 0 0
\(179\) − 327278.i − 0.763457i −0.924274 0.381729i \(-0.875329\pi\)
0.924274 0.381729i \(-0.124671\pi\)
\(180\) 0 0
\(181\) 651584.i 1.47834i 0.673519 + 0.739170i \(0.264782\pi\)
−0.673519 + 0.739170i \(0.735218\pi\)
\(182\) 0 0
\(183\) 1.21079e6 2.67264
\(184\) 0 0
\(185\) 184706. 0.396782
\(186\) 0 0
\(187\) − 94200.5i − 0.196992i
\(188\) 0 0
\(189\) 1.80325e6i 3.67198i
\(190\) 0 0
\(191\) 427987. 0.848882 0.424441 0.905456i \(-0.360471\pi\)
0.424441 + 0.905456i \(0.360471\pi\)
\(192\) 0 0
\(193\) 560696. 1.08351 0.541757 0.840535i \(-0.317759\pi\)
0.541757 + 0.840535i \(0.317759\pi\)
\(194\) 0 0
\(195\) 358983.i 0.676063i
\(196\) 0 0
\(197\) − 268824.i − 0.493518i −0.969077 0.246759i \(-0.920634\pi\)
0.969077 0.246759i \(-0.0793656\pi\)
\(198\) 0 0
\(199\) −512715. −0.917789 −0.458895 0.888491i \(-0.651754\pi\)
−0.458895 + 0.888491i \(0.651754\pi\)
\(200\) 0 0
\(201\) −1.94306e6 −3.39232
\(202\) 0 0
\(203\) 582451.i 0.992018i
\(204\) 0 0
\(205\) − 106010.i − 0.176182i
\(206\) 0 0
\(207\) −258380. −0.419116
\(208\) 0 0
\(209\) −643612. −1.01920
\(210\) 0 0
\(211\) − 661872.i − 1.02345i −0.859148 0.511726i \(-0.829006\pi\)
0.859148 0.511726i \(-0.170994\pi\)
\(212\) 0 0
\(213\) − 765674.i − 1.15637i
\(214\) 0 0
\(215\) 378984. 0.559145
\(216\) 0 0
\(217\) −394185. −0.568265
\(218\) 0 0
\(219\) 2.52042e6i 3.55109i
\(220\) 0 0
\(221\) − 90013.0i − 0.123972i
\(222\) 0 0
\(223\) −1.06479e6 −1.43384 −0.716922 0.697153i \(-0.754450\pi\)
−0.716922 + 0.697153i \(0.754450\pi\)
\(224\) 0 0
\(225\) 381318. 0.502148
\(226\) 0 0
\(227\) 619730.i 0.798248i 0.916897 + 0.399124i \(0.130686\pi\)
−0.916897 + 0.399124i \(0.869314\pi\)
\(228\) 0 0
\(229\) − 434907.i − 0.548035i −0.961725 0.274017i \(-0.911647\pi\)
0.961725 0.274017i \(-0.0883525\pi\)
\(230\) 0 0
\(231\) −2.52720e6 −3.11608
\(232\) 0 0
\(233\) 793810. 0.957915 0.478957 0.877838i \(-0.341015\pi\)
0.478957 + 0.877838i \(0.341015\pi\)
\(234\) 0 0
\(235\) − 383945.i − 0.453523i
\(236\) 0 0
\(237\) − 578302.i − 0.668781i
\(238\) 0 0
\(239\) 1.64777e6 1.86596 0.932978 0.359933i \(-0.117200\pi\)
0.932978 + 0.359933i \(0.117200\pi\)
\(240\) 0 0
\(241\) 592599. 0.657231 0.328616 0.944464i \(-0.393418\pi\)
0.328616 + 0.944464i \(0.393418\pi\)
\(242\) 0 0
\(243\) − 2.21164e6i − 2.40270i
\(244\) 0 0
\(245\) − 286882.i − 0.305343i
\(246\) 0 0
\(247\) −615001. −0.641406
\(248\) 0 0
\(249\) 244478. 0.249886
\(250\) 0 0
\(251\) − 1.64581e6i − 1.64890i −0.565933 0.824451i \(-0.691484\pi\)
0.565933 0.824451i \(-0.308516\pi\)
\(252\) 0 0
\(253\) − 217887.i − 0.214008i
\(254\) 0 0
\(255\) −133695. −0.128756
\(256\) 0 0
\(257\) −1.18756e6 −1.12156 −0.560779 0.827966i \(-0.689498\pi\)
−0.560779 + 0.827966i \(0.689498\pi\)
\(258\) 0 0
\(259\) 1.24251e6i 1.15093i
\(260\) 0 0
\(261\) − 2.11305e6i − 1.92003i
\(262\) 0 0
\(263\) 1.62916e6 1.45236 0.726180 0.687505i \(-0.241294\pi\)
0.726180 + 0.687505i \(0.241294\pi\)
\(264\) 0 0
\(265\) −284846. −0.249170
\(266\) 0 0
\(267\) 111705.i 0.0958944i
\(268\) 0 0
\(269\) 895226.i 0.754314i 0.926149 + 0.377157i \(0.123098\pi\)
−0.926149 + 0.377157i \(0.876902\pi\)
\(270\) 0 0
\(271\) −16721.4 −0.0138309 −0.00691545 0.999976i \(-0.502201\pi\)
−0.00691545 + 0.999976i \(0.502201\pi\)
\(272\) 0 0
\(273\) −2.41485e6 −1.96103
\(274\) 0 0
\(275\) 321558.i 0.256406i
\(276\) 0 0
\(277\) 573914.i 0.449415i 0.974426 + 0.224708i \(0.0721427\pi\)
−0.974426 + 0.224708i \(0.927857\pi\)
\(278\) 0 0
\(279\) 1.43005e6 1.09987
\(280\) 0 0
\(281\) 1.95965e6 1.48052 0.740258 0.672322i \(-0.234703\pi\)
0.740258 + 0.672322i \(0.234703\pi\)
\(282\) 0 0
\(283\) − 2.04454e6i − 1.51751i −0.651378 0.758753i \(-0.725809\pi\)
0.651378 0.758753i \(-0.274191\pi\)
\(284\) 0 0
\(285\) 913455.i 0.666154i
\(286\) 0 0
\(287\) 713120. 0.511044
\(288\) 0 0
\(289\) −1.38633e6 −0.976390
\(290\) 0 0
\(291\) − 1.02691e6i − 0.710886i
\(292\) 0 0
\(293\) 2.25113e6i 1.53190i 0.642899 + 0.765951i \(0.277731\pi\)
−0.642899 + 0.765951i \(0.722269\pi\)
\(294\) 0 0
\(295\) −299449. −0.200340
\(296\) 0 0
\(297\) 5.51667e6 3.62899
\(298\) 0 0
\(299\) − 208201.i − 0.134681i
\(300\) 0 0
\(301\) 2.54940e6i 1.62189i
\(302\) 0 0
\(303\) −2.90726e6 −1.81919
\(304\) 0 0
\(305\) 1.03635e6 0.637906
\(306\) 0 0
\(307\) 572436.i 0.346642i 0.984865 + 0.173321i \(0.0554498\pi\)
−0.984865 + 0.173321i \(0.944550\pi\)
\(308\) 0 0
\(309\) 1.37048e6i 0.816537i
\(310\) 0 0
\(311\) 2.86177e6 1.67778 0.838889 0.544303i \(-0.183206\pi\)
0.838889 + 0.544303i \(0.183206\pi\)
\(312\) 0 0
\(313\) −345643. −0.199419 −0.0997095 0.995017i \(-0.531791\pi\)
−0.0997095 + 0.995017i \(0.531791\pi\)
\(314\) 0 0
\(315\) 2.56510e6i 1.45656i
\(316\) 0 0
\(317\) − 2.84370e6i − 1.58941i −0.606995 0.794706i \(-0.707625\pi\)
0.606995 0.794706i \(-0.292375\pi\)
\(318\) 0 0
\(319\) 1.78189e6 0.980404
\(320\) 0 0
\(321\) 1.12104e6 0.607238
\(322\) 0 0
\(323\) − 229044.i − 0.122155i
\(324\) 0 0
\(325\) 307264.i 0.161363i
\(326\) 0 0
\(327\) −417345. −0.215837
\(328\) 0 0
\(329\) 2.58278e6 1.31552
\(330\) 0 0
\(331\) 2.20630e6i 1.10686i 0.832895 + 0.553431i \(0.186682\pi\)
−0.832895 + 0.553431i \(0.813318\pi\)
\(332\) 0 0
\(333\) − 4.50764e6i − 2.22761i
\(334\) 0 0
\(335\) −1.66312e6 −0.809678
\(336\) 0 0
\(337\) −210820. −0.101120 −0.0505599 0.998721i \(-0.516101\pi\)
−0.0505599 + 0.998721i \(0.516101\pi\)
\(338\) 0 0
\(339\) − 3.81316e6i − 1.80213i
\(340\) 0 0
\(341\) 1.20593e6i 0.561611i
\(342\) 0 0
\(343\) −896652. −0.411518
\(344\) 0 0
\(345\) −309239. −0.139877
\(346\) 0 0
\(347\) 2.39916e6i 1.06963i 0.844968 + 0.534817i \(0.179619\pi\)
−0.844968 + 0.534817i \(0.820381\pi\)
\(348\) 0 0
\(349\) 1.76207e6i 0.774392i 0.921997 + 0.387196i \(0.126556\pi\)
−0.921997 + 0.387196i \(0.873444\pi\)
\(350\) 0 0
\(351\) 5.27144e6 2.28382
\(352\) 0 0
\(353\) −2.11387e6 −0.902904 −0.451452 0.892296i \(-0.649094\pi\)
−0.451452 + 0.892296i \(0.649094\pi\)
\(354\) 0 0
\(355\) − 655363.i − 0.276001i
\(356\) 0 0
\(357\) − 899360.i − 0.373476i
\(358\) 0 0
\(359\) 25391.5 0.0103981 0.00519903 0.999986i \(-0.498345\pi\)
0.00519903 + 0.999986i \(0.498345\pi\)
\(360\) 0 0
\(361\) 911190. 0.367994
\(362\) 0 0
\(363\) 3.02747e6i 1.20590i
\(364\) 0 0
\(365\) 2.15730e6i 0.847574i
\(366\) 0 0
\(367\) −1.55872e6 −0.604091 −0.302046 0.953293i \(-0.597670\pi\)
−0.302046 + 0.953293i \(0.597670\pi\)
\(368\) 0 0
\(369\) −2.58710e6 −0.989116
\(370\) 0 0
\(371\) − 1.91614e6i − 0.722759i
\(372\) 0 0
\(373\) − 741743.i − 0.276046i −0.990429 0.138023i \(-0.955925\pi\)
0.990429 0.138023i \(-0.0440748\pi\)
\(374\) 0 0
\(375\) 456376. 0.167589
\(376\) 0 0
\(377\) 1.70268e6 0.616993
\(378\) 0 0
\(379\) 2.61039e6i 0.933487i 0.884393 + 0.466743i \(0.154573\pi\)
−0.884393 + 0.466743i \(0.845427\pi\)
\(380\) 0 0
\(381\) − 9.56839e6i − 3.37696i
\(382\) 0 0
\(383\) 3.05949e6 1.06574 0.532871 0.846197i \(-0.321113\pi\)
0.532871 + 0.846197i \(0.321113\pi\)
\(384\) 0 0
\(385\) −2.16310e6 −0.743746
\(386\) 0 0
\(387\) − 9.24887e6i − 3.13914i
\(388\) 0 0
\(389\) − 498203.i − 0.166929i −0.996511 0.0834646i \(-0.973401\pi\)
0.996511 0.0834646i \(-0.0265985\pi\)
\(390\) 0 0
\(391\) 77540.0 0.0256498
\(392\) 0 0
\(393\) −3.41732e6 −1.11610
\(394\) 0 0
\(395\) − 494985.i − 0.159624i
\(396\) 0 0
\(397\) 3.95290e6i 1.25875i 0.777101 + 0.629376i \(0.216689\pi\)
−0.777101 + 0.629376i \(0.783311\pi\)
\(398\) 0 0
\(399\) −6.14475e6 −1.93229
\(400\) 0 0
\(401\) −1.15248e6 −0.357909 −0.178955 0.983857i \(-0.557272\pi\)
−0.178955 + 0.983857i \(0.557272\pi\)
\(402\) 0 0
\(403\) 1.15232e6i 0.353436i
\(404\) 0 0
\(405\) − 4.12320e6i − 1.24910i
\(406\) 0 0
\(407\) 3.80120e6 1.13746
\(408\) 0 0
\(409\) 2.54459e6 0.752159 0.376079 0.926587i \(-0.377272\pi\)
0.376079 + 0.926587i \(0.377272\pi\)
\(410\) 0 0
\(411\) 2.17334e6i 0.634635i
\(412\) 0 0
\(413\) − 2.01438e6i − 0.581119i
\(414\) 0 0
\(415\) 209256. 0.0596427
\(416\) 0 0
\(417\) −2.34933e6 −0.661614
\(418\) 0 0
\(419\) 62820.4i 0.0174810i 0.999962 + 0.00874049i \(0.00278222\pi\)
−0.999962 + 0.00874049i \(0.997218\pi\)
\(420\) 0 0
\(421\) 1.89940e6i 0.522289i 0.965300 + 0.261145i \(0.0841000\pi\)
−0.965300 + 0.261145i \(0.915900\pi\)
\(422\) 0 0
\(423\) −9.36995e6 −2.54616
\(424\) 0 0
\(425\) −114434. −0.0307314
\(426\) 0 0
\(427\) 6.97145e6i 1.85035i
\(428\) 0 0
\(429\) 7.38776e6i 1.93807i
\(430\) 0 0
\(431\) −5.91659e6 −1.53419 −0.767094 0.641535i \(-0.778298\pi\)
−0.767094 + 0.641535i \(0.778298\pi\)
\(432\) 0 0
\(433\) −1.64308e6 −0.421153 −0.210577 0.977577i \(-0.567534\pi\)
−0.210577 + 0.977577i \(0.567534\pi\)
\(434\) 0 0
\(435\) − 2.52898e6i − 0.640799i
\(436\) 0 0
\(437\) − 529781.i − 0.132707i
\(438\) 0 0
\(439\) 4.34976e6 1.07722 0.538610 0.842555i \(-0.318950\pi\)
0.538610 + 0.842555i \(0.318950\pi\)
\(440\) 0 0
\(441\) −7.00118e6 −1.71425
\(442\) 0 0
\(443\) 2.27280e6i 0.550239i 0.961410 + 0.275119i \(0.0887174\pi\)
−0.961410 + 0.275119i \(0.911283\pi\)
\(444\) 0 0
\(445\) 95611.3i 0.0228881i
\(446\) 0 0
\(447\) −1.69165e6 −0.400445
\(448\) 0 0
\(449\) 7.36304e6 1.72362 0.861809 0.507233i \(-0.169331\pi\)
0.861809 + 0.507233i \(0.169331\pi\)
\(450\) 0 0
\(451\) − 2.18165e6i − 0.505060i
\(452\) 0 0
\(453\) 1.31674e7i 3.01477i
\(454\) 0 0
\(455\) −2.06694e6 −0.468058
\(456\) 0 0
\(457\) −6.23984e6 −1.39760 −0.698800 0.715317i \(-0.746282\pi\)
−0.698800 + 0.715317i \(0.746282\pi\)
\(458\) 0 0
\(459\) 1.96323e6i 0.434951i
\(460\) 0 0
\(461\) 832291.i 0.182399i 0.995833 + 0.0911996i \(0.0290701\pi\)
−0.995833 + 0.0911996i \(0.970930\pi\)
\(462\) 0 0
\(463\) 3.61852e6 0.784474 0.392237 0.919864i \(-0.371701\pi\)
0.392237 + 0.919864i \(0.371701\pi\)
\(464\) 0 0
\(465\) 1.71153e6 0.367073
\(466\) 0 0
\(467\) − 286010.i − 0.0606861i −0.999540 0.0303431i \(-0.990340\pi\)
0.999540 0.0303431i \(-0.00965998\pi\)
\(468\) 0 0
\(469\) − 1.11877e7i − 2.34860i
\(470\) 0 0
\(471\) 2.10494e6 0.437208
\(472\) 0 0
\(473\) 7.79938e6 1.60290
\(474\) 0 0
\(475\) 781852.i 0.158998i
\(476\) 0 0
\(477\) 6.95150e6i 1.39889i
\(478\) 0 0
\(479\) 2.28996e6 0.456026 0.228013 0.973658i \(-0.426777\pi\)
0.228013 + 0.973658i \(0.426777\pi\)
\(480\) 0 0
\(481\) 3.63222e6 0.715830
\(482\) 0 0
\(483\) − 2.08023e6i − 0.405736i
\(484\) 0 0
\(485\) − 878962.i − 0.169674i
\(486\) 0 0
\(487\) −6.55915e6 −1.25321 −0.626607 0.779335i \(-0.715557\pi\)
−0.626607 + 0.779335i \(0.715557\pi\)
\(488\) 0 0
\(489\) −1.37612e7 −2.60246
\(490\) 0 0
\(491\) 3.50573e6i 0.656257i 0.944633 + 0.328129i \(0.106418\pi\)
−0.944633 + 0.328129i \(0.893582\pi\)
\(492\) 0 0
\(493\) 634127.i 0.117506i
\(494\) 0 0
\(495\) 7.84742e6 1.43951
\(496\) 0 0
\(497\) 4.40858e6 0.800586
\(498\) 0 0
\(499\) 1.11789e6i 0.200977i 0.994938 + 0.100489i \(0.0320406\pi\)
−0.994938 + 0.100489i \(0.967959\pi\)
\(500\) 0 0
\(501\) 1.51638e7i 2.69906i
\(502\) 0 0
\(503\) 3.97264e6 0.700098 0.350049 0.936731i \(-0.386165\pi\)
0.350049 + 0.936731i \(0.386165\pi\)
\(504\) 0 0
\(505\) −2.48841e6 −0.434203
\(506\) 0 0
\(507\) − 3.78539e6i − 0.654020i
\(508\) 0 0
\(509\) − 5.19239e6i − 0.888327i −0.895946 0.444164i \(-0.853501\pi\)
0.895946 0.444164i \(-0.146499\pi\)
\(510\) 0 0
\(511\) −1.45120e7 −2.45853
\(512\) 0 0
\(513\) 1.34135e7 2.25035
\(514\) 0 0
\(515\) 1.17303e6i 0.194891i
\(516\) 0 0
\(517\) − 7.90148e6i − 1.30012i
\(518\) 0 0
\(519\) −2.12313e7 −3.45985
\(520\) 0 0
\(521\) 1.09827e6 0.177262 0.0886311 0.996065i \(-0.471751\pi\)
0.0886311 + 0.996065i \(0.471751\pi\)
\(522\) 0 0
\(523\) − 8.67189e6i − 1.38631i −0.720790 0.693154i \(-0.756221\pi\)
0.720790 0.693154i \(-0.243779\pi\)
\(524\) 0 0
\(525\) 3.07001e6i 0.486118i
\(526\) 0 0
\(527\) −429158. −0.0673116
\(528\) 0 0
\(529\) −6.25699e6 −0.972135
\(530\) 0 0
\(531\) 7.30787e6i 1.12475i
\(532\) 0 0
\(533\) − 2.08467e6i − 0.317847i
\(534\) 0 0
\(535\) 959532. 0.144936
\(536\) 0 0
\(537\) −9.55916e6 −1.43049
\(538\) 0 0
\(539\) − 5.90395e6i − 0.875328i
\(540\) 0 0
\(541\) − 746497.i − 0.109657i −0.998496 0.0548283i \(-0.982539\pi\)
0.998496 0.0548283i \(-0.0174612\pi\)
\(542\) 0 0
\(543\) 1.90315e7 2.76996
\(544\) 0 0
\(545\) −357218. −0.0515160
\(546\) 0 0
\(547\) 2.52087e6i 0.360231i 0.983645 + 0.180116i \(0.0576472\pi\)
−0.983645 + 0.180116i \(0.942353\pi\)
\(548\) 0 0
\(549\) − 2.52915e7i − 3.58132i
\(550\) 0 0
\(551\) 4.33258e6 0.607950
\(552\) 0 0
\(553\) 3.32973e6 0.463017
\(554\) 0 0
\(555\) − 5.39490e6i − 0.743449i
\(556\) 0 0
\(557\) 186236.i 0.0254347i 0.999919 + 0.0127173i \(0.00404816\pi\)
−0.999919 + 0.0127173i \(0.995952\pi\)
\(558\) 0 0
\(559\) 7.45267e6 1.00875
\(560\) 0 0
\(561\) −2.75141e6 −0.369104
\(562\) 0 0
\(563\) − 358662.i − 0.0476886i −0.999716 0.0238443i \(-0.992409\pi\)
0.999716 0.0238443i \(-0.00759059\pi\)
\(564\) 0 0
\(565\) − 3.26379e6i − 0.430132i
\(566\) 0 0
\(567\) 2.77365e7 3.62321
\(568\) 0 0
\(569\) 1.08964e7 1.41093 0.705463 0.708747i \(-0.250739\pi\)
0.705463 + 0.708747i \(0.250739\pi\)
\(570\) 0 0
\(571\) − 1.93042e6i − 0.247778i −0.992296 0.123889i \(-0.960463\pi\)
0.992296 0.123889i \(-0.0395366\pi\)
\(572\) 0 0
\(573\) − 1.25007e7i − 1.59055i
\(574\) 0 0
\(575\) −264687. −0.0333858
\(576\) 0 0
\(577\) −1.33310e7 −1.66695 −0.833477 0.552555i \(-0.813653\pi\)
−0.833477 + 0.552555i \(0.813653\pi\)
\(578\) 0 0
\(579\) − 1.63768e7i − 2.03018i
\(580\) 0 0
\(581\) 1.40765e6i 0.173003i
\(582\) 0 0
\(583\) −5.86206e6 −0.714297
\(584\) 0 0
\(585\) 7.49858e6 0.905919
\(586\) 0 0
\(587\) − 7.15350e6i − 0.856887i −0.903569 0.428443i \(-0.859062\pi\)
0.903569 0.428443i \(-0.140938\pi\)
\(588\) 0 0
\(589\) 2.93216e6i 0.348256i
\(590\) 0 0
\(591\) −7.85183e6 −0.924703
\(592\) 0 0
\(593\) 1.46858e7 1.71499 0.857496 0.514490i \(-0.172019\pi\)
0.857496 + 0.514490i \(0.172019\pi\)
\(594\) 0 0
\(595\) − 769788.i − 0.0891413i
\(596\) 0 0
\(597\) 1.49754e7i 1.71966i
\(598\) 0 0
\(599\) 9.83597e6 1.12008 0.560042 0.828465i \(-0.310785\pi\)
0.560042 + 0.828465i \(0.310785\pi\)
\(600\) 0 0
\(601\) 2.68643e6 0.303381 0.151691 0.988428i \(-0.451528\pi\)
0.151691 + 0.988428i \(0.451528\pi\)
\(602\) 0 0
\(603\) 4.05875e7i 4.54568i
\(604\) 0 0
\(605\) 2.59130e6i 0.287825i
\(606\) 0 0
\(607\) −387079. −0.0426411 −0.0213205 0.999773i \(-0.506787\pi\)
−0.0213205 + 0.999773i \(0.506787\pi\)
\(608\) 0 0
\(609\) 1.70123e7 1.85874
\(610\) 0 0
\(611\) − 7.55024e6i − 0.818196i
\(612\) 0 0
\(613\) 1.37500e7i 1.47792i 0.673748 + 0.738962i \(0.264684\pi\)
−0.673748 + 0.738962i \(0.735316\pi\)
\(614\) 0 0
\(615\) −3.09633e6 −0.330111
\(616\) 0 0
\(617\) −1.13239e7 −1.19752 −0.598758 0.800930i \(-0.704339\pi\)
−0.598758 + 0.800930i \(0.704339\pi\)
\(618\) 0 0
\(619\) 6.62505e6i 0.694965i 0.937687 + 0.347482i \(0.112963\pi\)
−0.937687 + 0.347482i \(0.887037\pi\)
\(620\) 0 0
\(621\) 4.54098e6i 0.472521i
\(622\) 0 0
\(623\) −643171. −0.0663905
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) 1.87986e7i 1.90967i
\(628\) 0 0
\(629\) 1.35274e6i 0.136329i
\(630\) 0 0
\(631\) 1.12049e7 1.12030 0.560152 0.828390i \(-0.310743\pi\)
0.560152 + 0.828390i \(0.310743\pi\)
\(632\) 0 0
\(633\) −1.93320e7 −1.91764
\(634\) 0 0
\(635\) − 8.18986e6i − 0.806013i
\(636\) 0 0
\(637\) − 5.64150e6i − 0.550866i
\(638\) 0 0
\(639\) −1.59937e7 −1.54952
\(640\) 0 0
\(641\) −5.35866e6 −0.515123 −0.257562 0.966262i \(-0.582919\pi\)
−0.257562 + 0.966262i \(0.582919\pi\)
\(642\) 0 0
\(643\) 5.64079e6i 0.538038i 0.963135 + 0.269019i \(0.0866994\pi\)
−0.963135 + 0.269019i \(0.913301\pi\)
\(644\) 0 0
\(645\) − 1.10694e7i − 1.04767i
\(646\) 0 0
\(647\) −5.67405e6 −0.532884 −0.266442 0.963851i \(-0.585848\pi\)
−0.266442 + 0.963851i \(0.585848\pi\)
\(648\) 0 0
\(649\) −6.16258e6 −0.574316
\(650\) 0 0
\(651\) 1.15134e7i 1.06476i
\(652\) 0 0
\(653\) − 1.50064e7i − 1.37719i −0.725148 0.688593i \(-0.758229\pi\)
0.725148 0.688593i \(-0.241771\pi\)
\(654\) 0 0
\(655\) −2.92498e6 −0.266391
\(656\) 0 0
\(657\) 5.26475e7 4.75844
\(658\) 0 0
\(659\) − 7.48265e6i − 0.671184i −0.942007 0.335592i \(-0.891064\pi\)
0.942007 0.335592i \(-0.108936\pi\)
\(660\) 0 0
\(661\) − 1.85142e7i − 1.64817i −0.566467 0.824084i \(-0.691690\pi\)
0.566467 0.824084i \(-0.308310\pi\)
\(662\) 0 0
\(663\) −2.62910e6 −0.232286
\(664\) 0 0
\(665\) −5.25947e6 −0.461198
\(666\) 0 0
\(667\) 1.46674e6i 0.127656i
\(668\) 0 0
\(669\) 3.11004e7i 2.68659i
\(670\) 0 0
\(671\) 2.13278e7 1.82869
\(672\) 0 0
\(673\) −4.62662e6 −0.393755 −0.196878 0.980428i \(-0.563080\pi\)
−0.196878 + 0.980428i \(0.563080\pi\)
\(674\) 0 0
\(675\) − 6.70159e6i − 0.566133i
\(676\) 0 0
\(677\) 1.21437e7i 1.01831i 0.860675 + 0.509155i \(0.170042\pi\)
−0.860675 + 0.509155i \(0.829958\pi\)
\(678\) 0 0
\(679\) 5.91272e6 0.492168
\(680\) 0 0
\(681\) 1.81011e7 1.49567
\(682\) 0 0
\(683\) − 9.19906e6i − 0.754557i −0.926100 0.377278i \(-0.876860\pi\)
0.926100 0.377278i \(-0.123140\pi\)
\(684\) 0 0
\(685\) 1.86023e6i 0.151474i
\(686\) 0 0
\(687\) −1.27028e7 −1.02685
\(688\) 0 0
\(689\) −5.60147e6 −0.449525
\(690\) 0 0
\(691\) − 1.02344e7i − 0.815394i −0.913117 0.407697i \(-0.866332\pi\)
0.913117 0.407697i \(-0.133668\pi\)
\(692\) 0 0
\(693\) 5.27891e7i 4.17553i
\(694\) 0 0
\(695\) −2.01086e6 −0.157914
\(696\) 0 0
\(697\) 776389. 0.0605338
\(698\) 0 0
\(699\) − 2.31856e7i − 1.79484i
\(700\) 0 0
\(701\) − 1.23863e6i − 0.0952023i −0.998866 0.0476011i \(-0.984842\pi\)
0.998866 0.0476011i \(-0.0151576\pi\)
\(702\) 0 0
\(703\) 9.24242e6 0.705339
\(704\) 0 0
\(705\) −1.12143e7 −0.849765
\(706\) 0 0
\(707\) − 1.67394e7i − 1.25948i
\(708\) 0 0
\(709\) − 2.52759e7i − 1.88839i −0.329386 0.944195i \(-0.606842\pi\)
0.329386 0.944195i \(-0.393158\pi\)
\(710\) 0 0
\(711\) −1.20798e7 −0.896161
\(712\) 0 0
\(713\) −992646. −0.0731258
\(714\) 0 0
\(715\) 6.32340e6i 0.462578i
\(716\) 0 0
\(717\) − 4.81281e7i − 3.49624i
\(718\) 0 0
\(719\) 5.23203e6 0.377440 0.188720 0.982031i \(-0.439566\pi\)
0.188720 + 0.982031i \(0.439566\pi\)
\(720\) 0 0
\(721\) −7.89090e6 −0.565313
\(722\) 0 0
\(723\) − 1.73087e7i − 1.23145i
\(724\) 0 0
\(725\) − 2.16462e6i − 0.152946i
\(726\) 0 0
\(727\) −1.79530e7 −1.25980 −0.629899 0.776677i \(-0.716904\pi\)
−0.629899 + 0.776677i \(0.716904\pi\)
\(728\) 0 0
\(729\) −2.45203e7 −1.70886
\(730\) 0 0
\(731\) 2.77559e6i 0.192115i
\(732\) 0 0
\(733\) 2.06019e6i 0.141627i 0.997490 + 0.0708137i \(0.0225596\pi\)
−0.997490 + 0.0708137i \(0.977440\pi\)
\(734\) 0 0
\(735\) −8.37927e6 −0.572121
\(736\) 0 0
\(737\) −3.42266e7 −2.32111
\(738\) 0 0
\(739\) 1.47746e6i 0.0995187i 0.998761 + 0.0497594i \(0.0158454\pi\)
−0.998761 + 0.0497594i \(0.984155\pi\)
\(740\) 0 0
\(741\) 1.79630e7i 1.20180i
\(742\) 0 0
\(743\) −2.46543e7 −1.63840 −0.819200 0.573508i \(-0.805582\pi\)
−0.819200 + 0.573508i \(0.805582\pi\)
\(744\) 0 0
\(745\) −1.44794e6 −0.0955782
\(746\) 0 0
\(747\) − 5.10676e6i − 0.334845i
\(748\) 0 0
\(749\) 6.45471e6i 0.420409i
\(750\) 0 0
\(751\) 6.30342e6 0.407827 0.203914 0.978989i \(-0.434634\pi\)
0.203914 + 0.978989i \(0.434634\pi\)
\(752\) 0 0
\(753\) −4.80708e7 −3.08954
\(754\) 0 0
\(755\) 1.12703e7i 0.719564i
\(756\) 0 0
\(757\) 1.44827e7i 0.918567i 0.888290 + 0.459284i \(0.151894\pi\)
−0.888290 + 0.459284i \(0.848106\pi\)
\(758\) 0 0
\(759\) −6.36405e6 −0.400986
\(760\) 0 0
\(761\) 9.50962e6 0.595253 0.297626 0.954682i \(-0.403805\pi\)
0.297626 + 0.954682i \(0.403805\pi\)
\(762\) 0 0
\(763\) − 2.40298e6i − 0.149430i
\(764\) 0 0
\(765\) 2.79268e6i 0.172531i
\(766\) 0 0
\(767\) −5.88863e6 −0.361431
\(768\) 0 0
\(769\) 2.88208e6 0.175748 0.0878741 0.996132i \(-0.471993\pi\)
0.0878741 + 0.996132i \(0.471993\pi\)
\(770\) 0 0
\(771\) 3.46862e7i 2.10146i
\(772\) 0 0
\(773\) − 1.83423e7i − 1.10409i −0.833815 0.552044i \(-0.813848\pi\)
0.833815 0.552044i \(-0.186152\pi\)
\(774\) 0 0
\(775\) 1.46495e6 0.0876130
\(776\) 0 0
\(777\) 3.62912e7 2.15650
\(778\) 0 0
\(779\) − 5.30457e6i − 0.313189i
\(780\) 0 0
\(781\) − 1.34872e7i − 0.791213i
\(782\) 0 0
\(783\) −3.71365e7 −2.16469
\(784\) 0 0
\(785\) 1.80168e6 0.104353
\(786\) 0 0
\(787\) − 1.35279e7i − 0.778564i −0.921119 0.389282i \(-0.872723\pi\)
0.921119 0.389282i \(-0.127277\pi\)
\(788\) 0 0
\(789\) − 4.75846e7i − 2.72128i
\(790\) 0 0
\(791\) 2.19553e7 1.24767
\(792\) 0 0
\(793\) 2.03797e7 1.15084
\(794\) 0 0
\(795\) 8.31981e6i 0.466869i
\(796\) 0 0
\(797\) 3.10994e7i 1.73423i 0.498109 + 0.867115i \(0.334028\pi\)
−0.498109 + 0.867115i \(0.665972\pi\)
\(798\) 0 0
\(799\) 2.81192e6 0.155825
\(800\) 0 0
\(801\) 2.33333e6 0.128498
\(802\) 0 0
\(803\) 4.43965e7i 2.42974i
\(804\) 0 0
\(805\) − 1.78053e6i − 0.0968410i
\(806\) 0 0
\(807\) 2.61478e7 1.41336
\(808\) 0 0
\(809\) 1.19594e6 0.0642449 0.0321225 0.999484i \(-0.489773\pi\)
0.0321225 + 0.999484i \(0.489773\pi\)
\(810\) 0 0
\(811\) − 5.59211e6i − 0.298554i −0.988795 0.149277i \(-0.952305\pi\)
0.988795 0.149277i \(-0.0476947\pi\)
\(812\) 0 0
\(813\) 488400.i 0.0259149i
\(814\) 0 0
\(815\) −1.17786e7 −0.621155
\(816\) 0 0
\(817\) 1.89638e7 0.993963
\(818\) 0 0
\(819\) 5.04424e7i 2.62776i
\(820\) 0 0
\(821\) 2.42817e7i 1.25725i 0.777708 + 0.628625i \(0.216382\pi\)
−0.777708 + 0.628625i \(0.783618\pi\)
\(822\) 0 0
\(823\) 1.21094e7 0.623193 0.311597 0.950214i \(-0.399136\pi\)
0.311597 + 0.950214i \(0.399136\pi\)
\(824\) 0 0
\(825\) 9.39208e6 0.480426
\(826\) 0 0
\(827\) 2.18004e7i 1.10841i 0.832380 + 0.554205i \(0.186977\pi\)
−0.832380 + 0.554205i \(0.813023\pi\)
\(828\) 0 0
\(829\) 2.81218e7i 1.42121i 0.703593 + 0.710603i \(0.251578\pi\)
−0.703593 + 0.710603i \(0.748422\pi\)
\(830\) 0 0
\(831\) 1.67629e7 0.842067
\(832\) 0 0
\(833\) 2.10106e6 0.104912
\(834\) 0 0
\(835\) 1.29791e7i 0.644211i
\(836\) 0 0
\(837\) − 2.51328e7i − 1.24002i
\(838\) 0 0
\(839\) −1.77035e6 −0.0868270 −0.0434135 0.999057i \(-0.513823\pi\)
−0.0434135 + 0.999057i \(0.513823\pi\)
\(840\) 0 0
\(841\) 8.51602e6 0.415190
\(842\) 0 0
\(843\) − 5.72376e7i − 2.77404i
\(844\) 0 0
\(845\) − 3.24003e6i − 0.156101i
\(846\) 0 0
\(847\) −1.74315e7 −0.834883
\(848\) 0 0
\(849\) −5.97171e7 −2.84335
\(850\) 0 0
\(851\) 3.12891e6i 0.148105i
\(852\) 0 0
\(853\) 2.98606e7i 1.40516i 0.711604 + 0.702581i \(0.247969\pi\)
−0.711604 + 0.702581i \(0.752031\pi\)
\(854\) 0 0
\(855\) 1.90806e7 0.892641
\(856\) 0 0
\(857\) −1.59538e7 −0.742012 −0.371006 0.928630i \(-0.620987\pi\)
−0.371006 + 0.928630i \(0.620987\pi\)
\(858\) 0 0
\(859\) − 2.68382e7i − 1.24099i −0.784209 0.620497i \(-0.786931\pi\)
0.784209 0.620497i \(-0.213069\pi\)
\(860\) 0 0
\(861\) − 2.08288e7i − 0.957541i
\(862\) 0 0
\(863\) −1.99512e7 −0.911891 −0.455946 0.890008i \(-0.650699\pi\)
−0.455946 + 0.890008i \(0.650699\pi\)
\(864\) 0 0
\(865\) −1.81725e7 −0.825797
\(866\) 0 0
\(867\) 4.04921e7i 1.82946i
\(868\) 0 0
\(869\) − 1.01867e7i − 0.457596i
\(870\) 0 0
\(871\) −3.27051e7 −1.46073
\(872\) 0 0
\(873\) −2.14505e7 −0.952582
\(874\) 0 0
\(875\) 2.62771e6i 0.116026i
\(876\) 0 0
\(877\) 2.73500e7i 1.20077i 0.799712 + 0.600384i \(0.204986\pi\)
−0.799712 + 0.600384i \(0.795014\pi\)
\(878\) 0 0
\(879\) 6.57510e7 2.87032
\(880\) 0 0
\(881\) −3.29524e7 −1.43037 −0.715184 0.698937i \(-0.753657\pi\)
−0.715184 + 0.698937i \(0.753657\pi\)
\(882\) 0 0
\(883\) 1.45135e7i 0.626429i 0.949682 + 0.313214i \(0.101406\pi\)
−0.949682 + 0.313214i \(0.898594\pi\)
\(884\) 0 0
\(885\) 8.74633e6i 0.375377i
\(886\) 0 0
\(887\) −2.89058e7 −1.23360 −0.616802 0.787118i \(-0.711572\pi\)
−0.616802 + 0.787118i \(0.711572\pi\)
\(888\) 0 0
\(889\) 5.50926e7 2.33797
\(890\) 0 0
\(891\) − 8.48543e7i − 3.58079i
\(892\) 0 0
\(893\) − 1.92121e7i − 0.806205i
\(894\) 0 0
\(895\) −8.18196e6 −0.341428
\(896\) 0 0
\(897\) −6.08114e6 −0.252351
\(898\) 0 0
\(899\) − 8.11793e6i − 0.335001i
\(900\) 0 0
\(901\) − 2.08615e6i − 0.0856117i
\(902\) 0 0
\(903\) 7.44630e7 3.03893
\(904\) 0 0
\(905\) 1.62896e7 0.661134
\(906\) 0 0
\(907\) 1.75219e7i 0.707233i 0.935390 + 0.353617i \(0.115048\pi\)
−0.935390 + 0.353617i \(0.884952\pi\)
\(908\) 0 0
\(909\) 6.07280e7i 2.43770i
\(910\) 0 0
\(911\) 5.49598e6 0.219406 0.109703 0.993964i \(-0.465010\pi\)
0.109703 + 0.993964i \(0.465010\pi\)
\(912\) 0 0
\(913\) 4.30643e6 0.170978
\(914\) 0 0
\(915\) − 3.02697e7i − 1.19524i
\(916\) 0 0
\(917\) − 1.96762e7i − 0.772711i
\(918\) 0 0
\(919\) −1.89582e6 −0.0740472 −0.0370236 0.999314i \(-0.511788\pi\)
−0.0370236 + 0.999314i \(0.511788\pi\)
\(920\) 0 0
\(921\) 1.67197e7 0.649502
\(922\) 0 0
\(923\) − 1.28876e7i − 0.497930i
\(924\) 0 0
\(925\) − 4.61765e6i − 0.177446i
\(926\) 0 0
\(927\) 2.86271e7 1.09415
\(928\) 0 0
\(929\) 3.44700e7 1.31040 0.655198 0.755457i \(-0.272585\pi\)
0.655198 + 0.755457i \(0.272585\pi\)
\(930\) 0 0
\(931\) − 1.43552e7i − 0.542793i
\(932\) 0 0
\(933\) − 8.35868e7i − 3.14365i
\(934\) 0 0
\(935\) −2.35501e6 −0.0880977
\(936\) 0 0
\(937\) 3.96544e7 1.47551 0.737756 0.675068i \(-0.235886\pi\)
0.737756 + 0.675068i \(0.235886\pi\)
\(938\) 0 0
\(939\) 1.00955e7i 0.373651i
\(940\) 0 0
\(941\) − 1.88367e7i − 0.693474i −0.937962 0.346737i \(-0.887290\pi\)
0.937962 0.346737i \(-0.112710\pi\)
\(942\) 0 0
\(943\) 1.79580e6 0.0657625
\(944\) 0 0
\(945\) 4.50812e7 1.64216
\(946\) 0 0
\(947\) − 4.04648e6i − 0.146623i −0.997309 0.0733115i \(-0.976643\pi\)
0.997309 0.0733115i \(-0.0233567\pi\)
\(948\) 0 0
\(949\) 4.24230e7i 1.52910i
\(950\) 0 0
\(951\) −8.30590e7 −2.97807
\(952\) 0 0
\(953\) 4.74092e7 1.69095 0.845474 0.534016i \(-0.179318\pi\)
0.845474 + 0.534016i \(0.179318\pi\)
\(954\) 0 0
\(955\) − 1.06997e7i − 0.379632i
\(956\) 0 0
\(957\) − 5.20456e7i − 1.83698i
\(958\) 0 0
\(959\) −1.25136e7 −0.439376
\(960\) 0 0
\(961\) −2.31352e7 −0.808099
\(962\) 0 0
\(963\) − 2.34168e7i − 0.813695i
\(964\) 0 0
\(965\) − 1.40174e7i − 0.484562i
\(966\) 0 0
\(967\) 1.05815e7 0.363898 0.181949 0.983308i \(-0.441759\pi\)
0.181949 + 0.983308i \(0.441759\pi\)
\(968\) 0 0
\(969\) −6.68992e6 −0.228882
\(970\) 0 0
\(971\) 3.45206e7i 1.17498i 0.809232 + 0.587489i \(0.199884\pi\)
−0.809232 + 0.587489i \(0.800116\pi\)
\(972\) 0 0
\(973\) − 1.35269e7i − 0.458055i
\(974\) 0 0
\(975\) 8.97457e6 0.302344
\(976\) 0 0
\(977\) −1.80039e7 −0.603433 −0.301717 0.953398i \(-0.597560\pi\)
−0.301717 + 0.953398i \(0.597560\pi\)
\(978\) 0 0
\(979\) 1.96765e6i 0.0656133i
\(980\) 0 0
\(981\) 8.71768e6i 0.289220i
\(982\) 0 0
\(983\) 2.71815e7 0.897200 0.448600 0.893733i \(-0.351923\pi\)
0.448600 + 0.893733i \(0.351923\pi\)
\(984\) 0 0
\(985\) −6.72061e6 −0.220708
\(986\) 0 0
\(987\) − 7.54378e7i − 2.46488i
\(988\) 0 0
\(989\) 6.41996e6i 0.208709i
\(990\) 0 0
\(991\) 2.26954e7 0.734097 0.367048 0.930202i \(-0.380368\pi\)
0.367048 + 0.930202i \(0.380368\pi\)
\(992\) 0 0
\(993\) 6.44416e7 2.07393
\(994\) 0 0
\(995\) 1.28179e7i 0.410448i
\(996\) 0 0
\(997\) 2.28102e7i 0.726762i 0.931641 + 0.363381i \(0.118378\pi\)
−0.931641 + 0.363381i \(0.881622\pi\)
\(998\) 0 0
\(999\) −7.92208e7 −2.51146
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.6.d.a.81.1 20
4.3 odd 2 40.6.d.a.21.13 20
5.2 odd 4 800.6.f.b.49.2 20
5.3 odd 4 800.6.f.c.49.19 20
5.4 even 2 800.6.d.c.401.20 20
8.3 odd 2 40.6.d.a.21.14 yes 20
8.5 even 2 inner 160.6.d.a.81.20 20
12.11 even 2 360.6.k.b.181.8 20
20.3 even 4 200.6.f.b.149.3 20
20.7 even 4 200.6.f.c.149.18 20
20.19 odd 2 200.6.d.b.101.8 20
24.11 even 2 360.6.k.b.181.7 20
40.3 even 4 200.6.f.c.149.17 20
40.13 odd 4 800.6.f.b.49.1 20
40.19 odd 2 200.6.d.b.101.7 20
40.27 even 4 200.6.f.b.149.4 20
40.29 even 2 800.6.d.c.401.1 20
40.37 odd 4 800.6.f.c.49.20 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.6.d.a.21.13 20 4.3 odd 2
40.6.d.a.21.14 yes 20 8.3 odd 2
160.6.d.a.81.1 20 1.1 even 1 trivial
160.6.d.a.81.20 20 8.5 even 2 inner
200.6.d.b.101.7 20 40.19 odd 2
200.6.d.b.101.8 20 20.19 odd 2
200.6.f.b.149.3 20 20.3 even 4
200.6.f.b.149.4 20 40.27 even 4
200.6.f.c.149.17 20 40.3 even 4
200.6.f.c.149.18 20 20.7 even 4
360.6.k.b.181.7 20 24.11 even 2
360.6.k.b.181.8 20 12.11 even 2
800.6.d.c.401.1 20 40.29 even 2
800.6.d.c.401.20 20 5.4 even 2
800.6.f.b.49.1 20 40.13 odd 4
800.6.f.b.49.2 20 5.2 odd 4
800.6.f.c.49.19 20 5.3 odd 4
800.6.f.c.49.20 20 40.37 odd 4