Properties

Label 1632.2.a.r
Level $1632$
Weight $2$
Character orbit 1632.a
Self dual yes
Analytic conductor $13.032$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1632,2,Mod(1,1632)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1632, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1632.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1632 = 2^{5} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1632.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.0315856099\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + ( - \beta_1 + 1) q^{5} + ( - \beta_{2} - \beta_1 - 1) q^{7} + q^{9} - \beta_{2} q^{11} + ( - \beta_{2} + 2) q^{13} + (\beta_1 - 1) q^{15} + q^{17} + \beta_{2} q^{19} + (\beta_{2} + \beta_1 + 1) q^{21}+ \cdots - \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + 3 q^{5} - 2 q^{7} + 3 q^{9} + q^{11} + 7 q^{13} - 3 q^{15} + 3 q^{17} - q^{19} + 2 q^{21} - 3 q^{23} + 2 q^{25} - 3 q^{27} + 10 q^{29} - 10 q^{31} - q^{33} + 6 q^{35} + 8 q^{37} - 7 q^{39}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{2} + 2\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.34292
−1.81361
0.470683
0 −1.00000 0 −1.48929 0 −4.68585 0 1.00000 0
1.2 0 −1.00000 0 0.710831 0 3.62721 0 1.00000 0
1.3 0 −1.00000 0 3.77846 0 −0.941367 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1632.2.a.r 3
3.b odd 2 1 4896.2.a.ba 3
4.b odd 2 1 1632.2.a.t yes 3
8.b even 2 1 3264.2.a.bs 3
8.d odd 2 1 3264.2.a.bq 3
12.b even 2 1 4896.2.a.bb 3
24.f even 2 1 9792.2.a.dl 3
24.h odd 2 1 9792.2.a.dk 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1632.2.a.r 3 1.a even 1 1 trivial
1632.2.a.t yes 3 4.b odd 2 1
3264.2.a.bq 3 8.d odd 2 1
3264.2.a.bs 3 8.b even 2 1
4896.2.a.ba 3 3.b odd 2 1
4896.2.a.bb 3 12.b even 2 1
9792.2.a.dk 3 24.h odd 2 1
9792.2.a.dl 3 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1632))\):

\( T_{5}^{3} - 3T_{5}^{2} - 4T_{5} + 4 \) Copy content Toggle raw display
\( T_{7}^{3} + 2T_{7}^{2} - 16T_{7} - 16 \) Copy content Toggle raw display
\( T_{11}^{3} - T_{11}^{2} - 16T_{11} - 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T + 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 3 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$7$ \( T^{3} + 2 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$11$ \( T^{3} - T^{2} + \cdots - 16 \) Copy content Toggle raw display
$13$ \( T^{3} - 7T^{2} + 4 \) Copy content Toggle raw display
$17$ \( (T - 1)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} + T^{2} + \cdots + 16 \) Copy content Toggle raw display
$23$ \( T^{3} + 3 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$29$ \( T^{3} - 10 T^{2} + \cdots + 344 \) Copy content Toggle raw display
$31$ \( T^{3} + 10 T^{2} + \cdots - 656 \) Copy content Toggle raw display
$37$ \( T^{3} - 8 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$41$ \( T^{3} - T^{2} + \cdots + 172 \) Copy content Toggle raw display
$43$ \( T^{3} - 5 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$47$ \( T^{3} - 4 T^{2} + \cdots + 128 \) Copy content Toggle raw display
$53$ \( T^{3} - 12 T^{2} + \cdots + 64 \) Copy content Toggle raw display
$59$ \( T^{3} - 18 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$61$ \( T^{3} - 10 T^{2} + \cdots + 88 \) Copy content Toggle raw display
$67$ \( T^{3} - 4 T^{2} + \cdots - 64 \) Copy content Toggle raw display
$71$ \( T^{3} + 4 T^{2} + \cdots - 256 \) Copy content Toggle raw display
$73$ \( T^{3} - 4 T^{2} + \cdots + 256 \) Copy content Toggle raw display
$79$ \( T^{3} + 6 T^{2} + \cdots - 432 \) Copy content Toggle raw display
$83$ \( T^{3} - 20 T^{2} + \cdots + 2752 \) Copy content Toggle raw display
$89$ \( T^{3} + 6 T^{2} + \cdots - 344 \) Copy content Toggle raw display
$97$ \( T^{3} - 26 T^{2} + \cdots - 88 \) Copy content Toggle raw display
show more
show less