Properties

Label 168.3.z.b.73.4
Level $168$
Weight $3$
Character 168.73
Analytic conductor $4.578$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [168,3,Mod(73,168)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(168, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("168.73");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 168.z (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.57766844125\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.35911766016.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 7x^{6} - 2x^{5} + 78x^{4} - 18x^{3} - 153x^{2} - 230x + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 7 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 73.4
Root \(-1.33172 + 1.34622i\) of defining polynomial
Character \(\chi\) \(=\) 168.73
Dual form 168.3.z.b.145.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 + 0.866025i) q^{3} +(5.30550 - 3.06313i) q^{5} +(0.664986 + 6.96834i) q^{7} +(1.50000 + 2.59808i) q^{9} +(1.89129 - 3.27581i) q^{11} -9.29319i q^{13} +10.6110 q^{15} +(5.84742 + 3.37601i) q^{17} +(5.71544 - 3.29981i) q^{19} +(-5.03728 + 11.0284i) q^{21} +(19.5920 + 33.9344i) q^{23} +(6.26557 - 10.8523i) q^{25} +5.19615i q^{27} -6.57302 q^{29} +(-18.9941 - 10.9662i) q^{31} +(5.67386 - 3.27581i) q^{33} +(24.8730 + 34.9336i) q^{35} +(-33.5334 - 58.0816i) q^{37} +(8.04814 - 13.9398i) q^{39} -53.6570i q^{41} -42.0426 q^{43} +(15.9165 + 9.18940i) q^{45} +(-49.8304 + 28.7696i) q^{47} +(-48.1156 + 9.26770i) q^{49} +(5.84742 + 10.1280i) q^{51} +(5.71091 - 9.89159i) q^{53} -23.1731i q^{55} +11.4309 q^{57} +(54.0433 + 31.2019i) q^{59} +(-103.607 + 59.8176i) q^{61} +(-17.1068 + 12.1802i) q^{63} +(-28.4663 - 49.3051i) q^{65} +(27.8740 - 48.2792i) q^{67} +67.8687i q^{69} -131.158 q^{71} +(66.7208 + 38.5213i) q^{73} +(18.7967 - 10.8523i) q^{75} +(24.0846 + 11.0008i) q^{77} +(-74.7467 - 129.465i) q^{79} +(-4.50000 + 7.79423i) q^{81} -39.7649i q^{83} +41.3647 q^{85} +(-9.85953 - 5.69240i) q^{87} +(48.4984 - 28.0006i) q^{89} +(64.7582 - 6.17984i) q^{91} +(-18.9941 - 32.8987i) q^{93} +(20.2155 - 35.0143i) q^{95} +142.413i q^{97} +11.3477 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{3} - 6 q^{5} + 8 q^{7} + 12 q^{9} - 22 q^{11} - 12 q^{15} + 36 q^{17} + 42 q^{19} + 6 q^{21} + 48 q^{23} + 42 q^{25} + 68 q^{29} - 60 q^{31} - 66 q^{33} - 12 q^{35} - 118 q^{37} - 18 q^{39}+ \cdots - 132 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.50000 + 0.866025i 0.500000 + 0.288675i
\(4\) 0 0
\(5\) 5.30550 3.06313i 1.06110 0.612627i 0.135364 0.990796i \(-0.456780\pi\)
0.925736 + 0.378169i \(0.123446\pi\)
\(6\) 0 0
\(7\) 0.664986 + 6.96834i 0.0949980 + 0.995477i
\(8\) 0 0
\(9\) 1.50000 + 2.59808i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) 1.89129 3.27581i 0.171935 0.297801i −0.767161 0.641454i \(-0.778331\pi\)
0.939096 + 0.343654i \(0.111665\pi\)
\(12\) 0 0
\(13\) 9.29319i 0.714861i −0.933940 0.357431i \(-0.883653\pi\)
0.933940 0.357431i \(-0.116347\pi\)
\(14\) 0 0
\(15\) 10.6110 0.707400
\(16\) 0 0
\(17\) 5.84742 + 3.37601i 0.343966 + 0.198589i 0.662024 0.749482i \(-0.269698\pi\)
−0.318059 + 0.948071i \(0.603031\pi\)
\(18\) 0 0
\(19\) 5.71544 3.29981i 0.300813 0.173674i −0.341995 0.939702i \(-0.611103\pi\)
0.642808 + 0.766027i \(0.277769\pi\)
\(20\) 0 0
\(21\) −5.03728 + 11.0284i −0.239871 + 0.525162i
\(22\) 0 0
\(23\) 19.5920 + 33.9344i 0.851827 + 1.47541i 0.879558 + 0.475792i \(0.157838\pi\)
−0.0277315 + 0.999615i \(0.508828\pi\)
\(24\) 0 0
\(25\) 6.26557 10.8523i 0.250623 0.434091i
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) −6.57302 −0.226656 −0.113328 0.993558i \(-0.536151\pi\)
−0.113328 + 0.993558i \(0.536151\pi\)
\(30\) 0 0
\(31\) −18.9941 10.9662i −0.612712 0.353750i 0.161314 0.986903i \(-0.448427\pi\)
−0.774026 + 0.633153i \(0.781760\pi\)
\(32\) 0 0
\(33\) 5.67386 3.27581i 0.171935 0.0992669i
\(34\) 0 0
\(35\) 24.8730 + 34.9336i 0.710658 + 0.998103i
\(36\) 0 0
\(37\) −33.5334 58.0816i −0.906309 1.56977i −0.819151 0.573578i \(-0.805555\pi\)
−0.0871580 0.996194i \(-0.527779\pi\)
\(38\) 0 0
\(39\) 8.04814 13.9398i 0.206363 0.357431i
\(40\) 0 0
\(41\) 53.6570i 1.30871i −0.756189 0.654353i \(-0.772941\pi\)
0.756189 0.654353i \(-0.227059\pi\)
\(42\) 0 0
\(43\) −42.0426 −0.977734 −0.488867 0.872358i \(-0.662590\pi\)
−0.488867 + 0.872358i \(0.662590\pi\)
\(44\) 0 0
\(45\) 15.9165 + 9.18940i 0.353700 + 0.204209i
\(46\) 0 0
\(47\) −49.8304 + 28.7696i −1.06022 + 0.612119i −0.925494 0.378763i \(-0.876350\pi\)
−0.134728 + 0.990883i \(0.543016\pi\)
\(48\) 0 0
\(49\) −48.1156 + 9.26770i −0.981951 + 0.189137i
\(50\) 0 0
\(51\) 5.84742 + 10.1280i 0.114655 + 0.198589i
\(52\) 0 0
\(53\) 5.71091 9.89159i 0.107753 0.186634i −0.807107 0.590406i \(-0.798968\pi\)
0.914860 + 0.403772i \(0.132301\pi\)
\(54\) 0 0
\(55\) 23.1731i 0.421329i
\(56\) 0 0
\(57\) 11.4309 0.200542
\(58\) 0 0
\(59\) 54.0433 + 31.2019i 0.915988 + 0.528846i 0.882353 0.470588i \(-0.155958\pi\)
0.0336351 + 0.999434i \(0.489292\pi\)
\(60\) 0 0
\(61\) −103.607 + 59.8176i −1.69848 + 0.980617i −0.751271 + 0.659994i \(0.770559\pi\)
−0.947207 + 0.320622i \(0.896108\pi\)
\(62\) 0 0
\(63\) −17.1068 + 12.1802i −0.271537 + 0.193336i
\(64\) 0 0
\(65\) −28.4663 49.3051i −0.437943 0.758539i
\(66\) 0 0
\(67\) 27.8740 48.2792i 0.416030 0.720585i −0.579506 0.814968i \(-0.696755\pi\)
0.995536 + 0.0943832i \(0.0300879\pi\)
\(68\) 0 0
\(69\) 67.8687i 0.983605i
\(70\) 0 0
\(71\) −131.158 −1.84730 −0.923648 0.383243i \(-0.874807\pi\)
−0.923648 + 0.383243i \(0.874807\pi\)
\(72\) 0 0
\(73\) 66.7208 + 38.5213i 0.913984 + 0.527689i 0.881711 0.471790i \(-0.156392\pi\)
0.0322732 + 0.999479i \(0.489725\pi\)
\(74\) 0 0
\(75\) 18.7967 10.8523i 0.250623 0.144697i
\(76\) 0 0
\(77\) 24.0846 + 11.0008i 0.312787 + 0.142867i
\(78\) 0 0
\(79\) −74.7467 129.465i −0.946160 1.63880i −0.753412 0.657549i \(-0.771593\pi\)
−0.192749 0.981248i \(-0.561740\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 39.7649i 0.479096i −0.970885 0.239548i \(-0.923001\pi\)
0.970885 0.239548i \(-0.0769992\pi\)
\(84\) 0 0
\(85\) 41.3647 0.486643
\(86\) 0 0
\(87\) −9.85953 5.69240i −0.113328 0.0654299i
\(88\) 0 0
\(89\) 48.4984 28.0006i 0.544926 0.314613i −0.202147 0.979355i \(-0.564792\pi\)
0.747073 + 0.664742i \(0.231459\pi\)
\(90\) 0 0
\(91\) 64.7582 6.17984i 0.711628 0.0679104i
\(92\) 0 0
\(93\) −18.9941 32.8987i −0.204237 0.353750i
\(94\) 0 0
\(95\) 20.2155 35.0143i 0.212795 0.368572i
\(96\) 0 0
\(97\) 142.413i 1.46818i 0.679054 + 0.734089i \(0.262390\pi\)
−0.679054 + 0.734089i \(0.737610\pi\)
\(98\) 0 0
\(99\) 11.3477 0.114624
\(100\) 0 0
\(101\) 127.020 + 73.3353i 1.25763 + 0.726092i 0.972613 0.232431i \(-0.0746680\pi\)
0.285015 + 0.958523i \(0.408001\pi\)
\(102\) 0 0
\(103\) −6.66772 + 3.84961i −0.0647351 + 0.0373748i −0.532018 0.846733i \(-0.678566\pi\)
0.467283 + 0.884108i \(0.345233\pi\)
\(104\) 0 0
\(105\) 7.05617 + 73.9411i 0.0672016 + 0.704201i
\(106\) 0 0
\(107\) 69.7970 + 120.892i 0.652308 + 1.12983i 0.982561 + 0.185939i \(0.0595327\pi\)
−0.330253 + 0.943893i \(0.607134\pi\)
\(108\) 0 0
\(109\) 75.8059 131.300i 0.695467 1.20458i −0.274556 0.961571i \(-0.588531\pi\)
0.970023 0.243013i \(-0.0781356\pi\)
\(110\) 0 0
\(111\) 116.163i 1.04652i
\(112\) 0 0
\(113\) −40.4809 −0.358238 −0.179119 0.983827i \(-0.557325\pi\)
−0.179119 + 0.983827i \(0.557325\pi\)
\(114\) 0 0
\(115\) 207.891 + 120.026i 1.80775 + 1.04370i
\(116\) 0 0
\(117\) 24.1444 13.9398i 0.206363 0.119144i
\(118\) 0 0
\(119\) −19.6367 + 42.9918i −0.165015 + 0.361276i
\(120\) 0 0
\(121\) 53.3461 + 92.3981i 0.440877 + 0.763621i
\(122\) 0 0
\(123\) 46.4683 80.4854i 0.377791 0.654353i
\(124\) 0 0
\(125\) 76.3876i 0.611101i
\(126\) 0 0
\(127\) −88.3367 −0.695565 −0.347782 0.937575i \(-0.613065\pi\)
−0.347782 + 0.937575i \(0.613065\pi\)
\(128\) 0 0
\(129\) −63.0639 36.4099i −0.488867 0.282248i
\(130\) 0 0
\(131\) 58.5849 33.8240i 0.447213 0.258198i −0.259440 0.965759i \(-0.583538\pi\)
0.706652 + 0.707561i \(0.250205\pi\)
\(132\) 0 0
\(133\) 26.7949 + 37.6328i 0.201465 + 0.282954i
\(134\) 0 0
\(135\) 15.9165 + 27.5682i 0.117900 + 0.204209i
\(136\) 0 0
\(137\) 82.6190 143.100i 0.603058 1.04453i −0.389297 0.921112i \(-0.627282\pi\)
0.992355 0.123415i \(-0.0393847\pi\)
\(138\) 0 0
\(139\) 73.0610i 0.525619i −0.964848 0.262809i \(-0.915351\pi\)
0.964848 0.262809i \(-0.0846490\pi\)
\(140\) 0 0
\(141\) −99.6609 −0.706815
\(142\) 0 0
\(143\) −30.4427 17.5761i −0.212886 0.122910i
\(144\) 0 0
\(145\) −34.8732 + 20.1340i −0.240505 + 0.138855i
\(146\) 0 0
\(147\) −80.1994 27.7678i −0.545574 0.188896i
\(148\) 0 0
\(149\) −75.2940 130.413i −0.505329 0.875255i −0.999981 0.00616430i \(-0.998038\pi\)
0.494652 0.869091i \(-0.335296\pi\)
\(150\) 0 0
\(151\) −69.4921 + 120.364i −0.460213 + 0.797112i −0.998971 0.0453486i \(-0.985560\pi\)
0.538759 + 0.842460i \(0.318893\pi\)
\(152\) 0 0
\(153\) 20.2561i 0.132393i
\(154\) 0 0
\(155\) −134.364 −0.866866
\(156\) 0 0
\(157\) 136.184 + 78.6256i 0.867412 + 0.500800i 0.866487 0.499199i \(-0.166372\pi\)
0.000924354 1.00000i \(0.499706\pi\)
\(158\) 0 0
\(159\) 17.1327 9.89159i 0.107753 0.0622113i
\(160\) 0 0
\(161\) −223.438 + 159.090i −1.38781 + 0.988135i
\(162\) 0 0
\(163\) 10.6613 + 18.4660i 0.0654069 + 0.113288i 0.896874 0.442285i \(-0.145832\pi\)
−0.831467 + 0.555573i \(0.812499\pi\)
\(164\) 0 0
\(165\) 20.0685 34.7596i 0.121627 0.210664i
\(166\) 0 0
\(167\) 177.968i 1.06567i −0.846218 0.532837i \(-0.821126\pi\)
0.846218 0.532837i \(-0.178874\pi\)
\(168\) 0 0
\(169\) 82.6365 0.488974
\(170\) 0 0
\(171\) 17.1463 + 9.89944i 0.100271 + 0.0578914i
\(172\) 0 0
\(173\) 95.3511 55.0510i 0.551163 0.318214i −0.198428 0.980115i \(-0.563584\pi\)
0.749591 + 0.661902i \(0.230250\pi\)
\(174\) 0 0
\(175\) 79.7889 + 36.4440i 0.455937 + 0.208251i
\(176\) 0 0
\(177\) 54.0433 + 93.6057i 0.305329 + 0.528846i
\(178\) 0 0
\(179\) 14.1225 24.4608i 0.0788964 0.136653i −0.823878 0.566768i \(-0.808194\pi\)
0.902774 + 0.430115i \(0.141527\pi\)
\(180\) 0 0
\(181\) 206.410i 1.14039i 0.821510 + 0.570195i \(0.193132\pi\)
−0.821510 + 0.570195i \(0.806868\pi\)
\(182\) 0 0
\(183\) −207.214 −1.13232
\(184\) 0 0
\(185\) −355.823 205.435i −1.92337 1.11046i
\(186\) 0 0
\(187\) 22.1183 12.7700i 0.118280 0.0682888i
\(188\) 0 0
\(189\) −36.2086 + 3.45537i −0.191580 + 0.0182824i
\(190\) 0 0
\(191\) 31.8684 + 55.1977i 0.166850 + 0.288993i 0.937311 0.348494i \(-0.113307\pi\)
−0.770460 + 0.637488i \(0.779974\pi\)
\(192\) 0 0
\(193\) 33.6762 58.3288i 0.174488 0.302222i −0.765496 0.643441i \(-0.777506\pi\)
0.939984 + 0.341219i \(0.110840\pi\)
\(194\) 0 0
\(195\) 98.6101i 0.505693i
\(196\) 0 0
\(197\) 96.0707 0.487668 0.243834 0.969817i \(-0.421595\pi\)
0.243834 + 0.969817i \(0.421595\pi\)
\(198\) 0 0
\(199\) 178.392 + 102.995i 0.896444 + 0.517562i 0.876045 0.482230i \(-0.160173\pi\)
0.0203995 + 0.999792i \(0.493506\pi\)
\(200\) 0 0
\(201\) 83.6220 48.2792i 0.416030 0.240195i
\(202\) 0 0
\(203\) −4.37097 45.8030i −0.0215319 0.225631i
\(204\) 0 0
\(205\) −164.358 284.677i −0.801748 1.38867i
\(206\) 0 0
\(207\) −58.7760 + 101.803i −0.283942 + 0.491802i
\(208\) 0 0
\(209\) 24.9636i 0.119443i
\(210\) 0 0
\(211\) −121.942 −0.577925 −0.288963 0.957340i \(-0.593310\pi\)
−0.288963 + 0.957340i \(0.593310\pi\)
\(212\) 0 0
\(213\) −196.737 113.586i −0.923648 0.533268i
\(214\) 0 0
\(215\) −223.057 + 128.782i −1.03747 + 0.598986i
\(216\) 0 0
\(217\) 63.7857 139.650i 0.293943 0.643547i
\(218\) 0 0
\(219\) 66.7208 + 115.564i 0.304661 + 0.527689i
\(220\) 0 0
\(221\) 31.3739 54.3412i 0.141963 0.245888i
\(222\) 0 0
\(223\) 18.5026i 0.0829712i −0.999139 0.0414856i \(-0.986791\pi\)
0.999139 0.0414856i \(-0.0132091\pi\)
\(224\) 0 0
\(225\) 37.5934 0.167082
\(226\) 0 0
\(227\) −127.348 73.5243i −0.561004 0.323896i 0.192545 0.981288i \(-0.438326\pi\)
−0.753548 + 0.657393i \(0.771659\pi\)
\(228\) 0 0
\(229\) −311.695 + 179.957i −1.36112 + 0.785840i −0.989772 0.142656i \(-0.954436\pi\)
−0.371343 + 0.928496i \(0.621103\pi\)
\(230\) 0 0
\(231\) 26.6000 + 37.3591i 0.115151 + 0.161728i
\(232\) 0 0
\(233\) −22.0340 38.1641i −0.0945667 0.163794i 0.814861 0.579656i \(-0.196813\pi\)
−0.909428 + 0.415862i \(0.863480\pi\)
\(234\) 0 0
\(235\) −176.250 + 305.274i −0.750001 + 1.29904i
\(236\) 0 0
\(237\) 258.930i 1.09253i
\(238\) 0 0
\(239\) 165.077 0.690698 0.345349 0.938474i \(-0.387761\pi\)
0.345349 + 0.938474i \(0.387761\pi\)
\(240\) 0 0
\(241\) −115.828 66.8732i −0.480613 0.277482i 0.240059 0.970758i \(-0.422833\pi\)
−0.720672 + 0.693276i \(0.756167\pi\)
\(242\) 0 0
\(243\) −13.5000 + 7.79423i −0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) −226.889 + 196.554i −0.926078 + 0.802262i
\(246\) 0 0
\(247\) −30.6658 53.1147i −0.124153 0.215039i
\(248\) 0 0
\(249\) 34.4374 59.6474i 0.138303 0.239548i
\(250\) 0 0
\(251\) 403.639i 1.60812i 0.594545 + 0.804062i \(0.297332\pi\)
−0.594545 + 0.804062i \(0.702668\pi\)
\(252\) 0 0
\(253\) 148.217 0.585836
\(254\) 0 0
\(255\) 62.0470 + 35.8228i 0.243322 + 0.140482i
\(256\) 0 0
\(257\) 242.418 139.960i 0.943260 0.544592i 0.0522795 0.998632i \(-0.483351\pi\)
0.890981 + 0.454041i \(0.150018\pi\)
\(258\) 0 0
\(259\) 382.433 272.296i 1.47658 1.05134i
\(260\) 0 0
\(261\) −9.85953 17.0772i −0.0377760 0.0654299i
\(262\) 0 0
\(263\) 70.9462 122.882i 0.269758 0.467234i −0.699042 0.715081i \(-0.746390\pi\)
0.968799 + 0.247847i \(0.0797231\pi\)
\(264\) 0 0
\(265\) 69.9731i 0.264050i
\(266\) 0 0
\(267\) 96.9968 0.363284
\(268\) 0 0
\(269\) 344.508 + 198.902i 1.28070 + 0.739411i 0.976976 0.213350i \(-0.0684374\pi\)
0.303722 + 0.952761i \(0.401771\pi\)
\(270\) 0 0
\(271\) −378.562 + 218.563i −1.39691 + 0.806505i −0.994067 0.108765i \(-0.965310\pi\)
−0.402840 + 0.915270i \(0.631977\pi\)
\(272\) 0 0
\(273\) 102.489 + 46.8124i 0.375418 + 0.171474i
\(274\) 0 0
\(275\) −23.7000 41.0496i −0.0861818 0.149271i
\(276\) 0 0
\(277\) −2.65404 + 4.59692i −0.00958136 + 0.0165954i −0.870776 0.491679i \(-0.836383\pi\)
0.861195 + 0.508275i \(0.169717\pi\)
\(278\) 0 0
\(279\) 65.7974i 0.235833i
\(280\) 0 0
\(281\) 297.662 1.05930 0.529648 0.848217i \(-0.322324\pi\)
0.529648 + 0.848217i \(0.322324\pi\)
\(282\) 0 0
\(283\) 178.296 + 102.939i 0.630020 + 0.363742i 0.780760 0.624831i \(-0.214832\pi\)
−0.150740 + 0.988573i \(0.548166\pi\)
\(284\) 0 0
\(285\) 60.6466 35.0143i 0.212795 0.122857i
\(286\) 0 0
\(287\) 373.900 35.6811i 1.30279 0.124325i
\(288\) 0 0
\(289\) −121.705 210.799i −0.421125 0.729410i
\(290\) 0 0
\(291\) −123.333 + 213.620i −0.423826 + 0.734089i
\(292\) 0 0
\(293\) 138.398i 0.472347i 0.971711 + 0.236173i \(0.0758933\pi\)
−0.971711 + 0.236173i \(0.924107\pi\)
\(294\) 0 0
\(295\) 382.302 1.29594
\(296\) 0 0
\(297\) 17.0216 + 9.82742i 0.0573118 + 0.0330890i
\(298\) 0 0
\(299\) 315.359 182.072i 1.05471 0.608938i
\(300\) 0 0
\(301\) −27.9577 292.967i −0.0928828 0.973312i
\(302\) 0 0
\(303\) 127.020 + 220.006i 0.419209 + 0.726092i
\(304\) 0 0
\(305\) −366.459 + 634.725i −1.20150 + 2.08107i
\(306\) 0 0
\(307\) 157.473i 0.512941i −0.966552 0.256471i \(-0.917440\pi\)
0.966552 0.256471i \(-0.0825597\pi\)
\(308\) 0 0
\(309\) −13.3354 −0.0431567
\(310\) 0 0
\(311\) −237.994 137.406i −0.765253 0.441819i 0.0659254 0.997825i \(-0.479000\pi\)
−0.831179 + 0.556005i \(0.812333\pi\)
\(312\) 0 0
\(313\) 152.602 88.1048i 0.487546 0.281485i −0.236010 0.971751i \(-0.575840\pi\)
0.723556 + 0.690266i \(0.242506\pi\)
\(314\) 0 0
\(315\) −53.4506 + 117.022i −0.169685 + 0.371500i
\(316\) 0 0
\(317\) 146.183 + 253.197i 0.461146 + 0.798729i 0.999018 0.0442975i \(-0.0141050\pi\)
−0.537872 + 0.843027i \(0.680772\pi\)
\(318\) 0 0
\(319\) −12.4315 + 21.5319i −0.0389701 + 0.0674983i
\(320\) 0 0
\(321\) 241.784i 0.753221i
\(322\) 0 0
\(323\) 44.5608 0.137959
\(324\) 0 0
\(325\) −100.852 58.2271i −0.310315 0.179160i
\(326\) 0 0
\(327\) 227.418 131.300i 0.695467 0.401528i
\(328\) 0 0
\(329\) −233.613 328.104i −0.710070 0.997277i
\(330\) 0 0
\(331\) −71.2984 123.492i −0.215403 0.373089i 0.737994 0.674807i \(-0.235773\pi\)
−0.953397 + 0.301718i \(0.902440\pi\)
\(332\) 0 0
\(333\) 100.600 174.245i 0.302103 0.523258i
\(334\) 0 0
\(335\) 341.527i 1.01948i
\(336\) 0 0
\(337\) 477.413 1.41666 0.708328 0.705884i \(-0.249450\pi\)
0.708328 + 0.705884i \(0.249450\pi\)
\(338\) 0 0
\(339\) −60.7213 35.0574i −0.179119 0.103414i
\(340\) 0 0
\(341\) −71.8466 + 41.4806i −0.210694 + 0.121644i
\(342\) 0 0
\(343\) −96.5767 329.123i −0.281565 0.959542i
\(344\) 0 0
\(345\) 207.891 + 360.078i 0.602582 + 1.04370i
\(346\) 0 0
\(347\) 226.686 392.632i 0.653275 1.13151i −0.329048 0.944313i \(-0.606728\pi\)
0.982323 0.187192i \(-0.0599387\pi\)
\(348\) 0 0
\(349\) 55.8211i 0.159946i 0.996797 + 0.0799730i \(0.0254834\pi\)
−0.996797 + 0.0799730i \(0.974517\pi\)
\(350\) 0 0
\(351\) 48.2889 0.137575
\(352\) 0 0
\(353\) −197.638 114.107i −0.559882 0.323248i 0.193216 0.981156i \(-0.438108\pi\)
−0.753098 + 0.657908i \(0.771442\pi\)
\(354\) 0 0
\(355\) −695.859 + 401.754i −1.96017 + 1.13170i
\(356\) 0 0
\(357\) −66.6871 + 47.4818i −0.186799 + 0.133002i
\(358\) 0 0
\(359\) 233.905 + 405.136i 0.651547 + 1.12851i 0.982748 + 0.184952i \(0.0592128\pi\)
−0.331201 + 0.943560i \(0.607454\pi\)
\(360\) 0 0
\(361\) −158.722 + 274.915i −0.439674 + 0.761539i
\(362\) 0 0
\(363\) 184.796i 0.509080i
\(364\) 0 0
\(365\) 471.983 1.29311
\(366\) 0 0
\(367\) −264.699 152.824i −0.721252 0.416415i 0.0939615 0.995576i \(-0.470047\pi\)
−0.815213 + 0.579161i \(0.803380\pi\)
\(368\) 0 0
\(369\) 139.405 80.4854i 0.377791 0.218118i
\(370\) 0 0
\(371\) 72.7257 + 33.2178i 0.196026 + 0.0895359i
\(372\) 0 0
\(373\) −131.217 227.274i −0.351787 0.609313i 0.634776 0.772697i \(-0.281093\pi\)
−0.986563 + 0.163383i \(0.947759\pi\)
\(374\) 0 0
\(375\) −66.1536 + 114.581i −0.176410 + 0.305550i
\(376\) 0 0
\(377\) 61.0843i 0.162027i
\(378\) 0 0
\(379\) −489.503 −1.29156 −0.645782 0.763522i \(-0.723469\pi\)
−0.645782 + 0.763522i \(0.723469\pi\)
\(380\) 0 0
\(381\) −132.505 76.5019i −0.347782 0.200792i
\(382\) 0 0
\(383\) 289.022 166.867i 0.754627 0.435684i −0.0727364 0.997351i \(-0.523173\pi\)
0.827363 + 0.561667i \(0.189840\pi\)
\(384\) 0 0
\(385\) 161.478 15.4098i 0.419423 0.0400254i
\(386\) 0 0
\(387\) −63.0639 109.230i −0.162956 0.282248i
\(388\) 0 0
\(389\) −298.042 + 516.223i −0.766174 + 1.32705i 0.173449 + 0.984843i \(0.444509\pi\)
−0.939624 + 0.342210i \(0.888825\pi\)
\(390\) 0 0
\(391\) 264.571i 0.676653i
\(392\) 0 0
\(393\) 117.170 0.298142
\(394\) 0 0
\(395\) −793.137 457.918i −2.00794 1.15929i
\(396\) 0 0
\(397\) 268.394 154.957i 0.676055 0.390321i −0.122312 0.992492i \(-0.539031\pi\)
0.798367 + 0.602171i \(0.205697\pi\)
\(398\) 0 0
\(399\) 7.60138 + 79.6543i 0.0190511 + 0.199635i
\(400\) 0 0
\(401\) 167.573 + 290.245i 0.417888 + 0.723803i 0.995727 0.0923475i \(-0.0294371\pi\)
−0.577839 + 0.816151i \(0.696104\pi\)
\(402\) 0 0
\(403\) −101.911 + 176.516i −0.252882 + 0.438004i
\(404\) 0 0
\(405\) 55.1364i 0.136139i
\(406\) 0 0
\(407\) −253.685 −0.623306
\(408\) 0 0
\(409\) −302.456 174.623i −0.739501 0.426951i 0.0823869 0.996600i \(-0.473746\pi\)
−0.821888 + 0.569649i \(0.807079\pi\)
\(410\) 0 0
\(411\) 247.857 143.100i 0.603058 0.348176i
\(412\) 0 0
\(413\) −181.488 + 397.341i −0.439437 + 0.962085i
\(414\) 0 0
\(415\) −121.805 210.973i −0.293507 0.508369i
\(416\) 0 0
\(417\) 63.2727 109.591i 0.151733 0.262809i
\(418\) 0 0
\(419\) 359.369i 0.857683i −0.903380 0.428841i \(-0.858922\pi\)
0.903380 0.428841i \(-0.141078\pi\)
\(420\) 0 0
\(421\) −831.803 −1.97578 −0.987890 0.155159i \(-0.950411\pi\)
−0.987890 + 0.155159i \(0.950411\pi\)
\(422\) 0 0
\(423\) −149.491 86.3088i −0.353407 0.204040i
\(424\) 0 0
\(425\) 73.2748 42.3052i 0.172411 0.0995417i
\(426\) 0 0
\(427\) −485.727 682.192i −1.13753 1.59764i
\(428\) 0 0
\(429\) −30.4427 52.7283i −0.0709620 0.122910i
\(430\) 0 0
\(431\) −161.420 + 279.587i −0.374524 + 0.648694i −0.990256 0.139262i \(-0.955527\pi\)
0.615732 + 0.787956i \(0.288860\pi\)
\(432\) 0 0
\(433\) 523.962i 1.21007i 0.796197 + 0.605037i \(0.206842\pi\)
−0.796197 + 0.605037i \(0.793158\pi\)
\(434\) 0 0
\(435\) −69.7463 −0.160336
\(436\) 0 0
\(437\) 223.954 + 129.300i 0.512481 + 0.295881i
\(438\) 0 0
\(439\) 606.881 350.383i 1.38242 0.798138i 0.389971 0.920827i \(-0.372485\pi\)
0.992445 + 0.122689i \(0.0391516\pi\)
\(440\) 0 0
\(441\) −96.2516 111.106i −0.218258 0.251942i
\(442\) 0 0
\(443\) 48.4446 + 83.9086i 0.109356 + 0.189410i 0.915509 0.402296i \(-0.131788\pi\)
−0.806154 + 0.591706i \(0.798455\pi\)
\(444\) 0 0
\(445\) 171.539 297.114i 0.385481 0.667672i
\(446\) 0 0
\(447\) 260.826i 0.583504i
\(448\) 0 0
\(449\) −499.063 −1.11150 −0.555749 0.831350i \(-0.687568\pi\)
−0.555749 + 0.831350i \(0.687568\pi\)
\(450\) 0 0
\(451\) −175.770 101.481i −0.389734 0.225013i
\(452\) 0 0
\(453\) −208.476 + 120.364i −0.460213 + 0.265704i
\(454\) 0 0
\(455\) 324.645 231.150i 0.713505 0.508022i
\(456\) 0 0
\(457\) −158.284 274.156i −0.346354 0.599903i 0.639245 0.769003i \(-0.279247\pi\)
−0.985599 + 0.169100i \(0.945914\pi\)
\(458\) 0 0
\(459\) −17.5423 + 30.3841i −0.0382184 + 0.0661963i
\(460\) 0 0
\(461\) 387.287i 0.840103i −0.907500 0.420051i \(-0.862012\pi\)
0.907500 0.420051i \(-0.137988\pi\)
\(462\) 0 0
\(463\) 909.661 1.96471 0.982355 0.187027i \(-0.0598852\pi\)
0.982355 + 0.187027i \(0.0598852\pi\)
\(464\) 0 0
\(465\) −201.546 116.363i −0.433433 0.250243i
\(466\) 0 0
\(467\) −38.4408 + 22.1938i −0.0823143 + 0.0475242i −0.540592 0.841285i \(-0.681800\pi\)
0.458278 + 0.888809i \(0.348466\pi\)
\(468\) 0 0
\(469\) 354.962 + 162.131i 0.756848 + 0.345694i
\(470\) 0 0
\(471\) 136.184 + 235.877i 0.289137 + 0.500800i
\(472\) 0 0
\(473\) −79.5146 + 137.723i −0.168107 + 0.291170i
\(474\) 0 0
\(475\) 82.7008i 0.174107i
\(476\) 0 0
\(477\) 34.2655 0.0718354
\(478\) 0 0
\(479\) 129.513 + 74.7741i 0.270381 + 0.156105i 0.629061 0.777356i \(-0.283440\pi\)
−0.358680 + 0.933461i \(0.616773\pi\)
\(480\) 0 0
\(481\) −539.764 + 311.633i −1.12217 + 0.647885i
\(482\) 0 0
\(483\) −472.932 + 45.1318i −0.979156 + 0.0934405i
\(484\) 0 0
\(485\) 436.230 + 755.573i 0.899444 + 1.55788i
\(486\) 0 0
\(487\) −28.5141 + 49.3879i −0.0585505 + 0.101413i −0.893815 0.448436i \(-0.851981\pi\)
0.835264 + 0.549848i \(0.185315\pi\)
\(488\) 0 0
\(489\) 36.9319i 0.0755254i
\(490\) 0 0
\(491\) −563.958 −1.14859 −0.574296 0.818648i \(-0.694724\pi\)
−0.574296 + 0.818648i \(0.694724\pi\)
\(492\) 0 0
\(493\) −38.4352 22.1906i −0.0779619 0.0450113i
\(494\) 0 0
\(495\) 60.2054 34.7596i 0.121627 0.0702214i
\(496\) 0 0
\(497\) −87.2182 913.954i −0.175489 1.83894i
\(498\) 0 0
\(499\) 194.019 + 336.050i 0.388815 + 0.673447i 0.992290 0.123935i \(-0.0395513\pi\)
−0.603476 + 0.797381i \(0.706218\pi\)
\(500\) 0 0
\(501\) 154.125 266.951i 0.307634 0.532837i
\(502\) 0 0
\(503\) 712.944i 1.41738i 0.705518 + 0.708692i \(0.250714\pi\)
−0.705518 + 0.708692i \(0.749286\pi\)
\(504\) 0 0
\(505\) 898.543 1.77929
\(506\) 0 0
\(507\) 123.955 + 71.5653i 0.244487 + 0.141155i
\(508\) 0 0
\(509\) 446.040 257.521i 0.876306 0.505935i 0.00686712 0.999976i \(-0.497814\pi\)
0.869439 + 0.494041i \(0.164481\pi\)
\(510\) 0 0
\(511\) −224.061 + 490.550i −0.438476 + 0.959980i
\(512\) 0 0
\(513\) 17.1463 + 29.6983i 0.0334236 + 0.0578914i
\(514\) 0 0
\(515\) −23.5837 + 40.8482i −0.0457936 + 0.0793169i
\(516\) 0 0
\(517\) 217.647i 0.420980i
\(518\) 0 0
\(519\) 190.702 0.367442
\(520\) 0 0
\(521\) 27.7063 + 15.9962i 0.0531791 + 0.0307030i 0.526354 0.850266i \(-0.323559\pi\)
−0.473175 + 0.880969i \(0.656892\pi\)
\(522\) 0 0
\(523\) 275.525 159.075i 0.526817 0.304158i −0.212902 0.977073i \(-0.568292\pi\)
0.739719 + 0.672916i \(0.234958\pi\)
\(524\) 0 0
\(525\) 88.1219 + 123.765i 0.167851 + 0.235743i
\(526\) 0 0
\(527\) −74.0443 128.248i −0.140501 0.243356i
\(528\) 0 0
\(529\) −503.194 + 871.557i −0.951217 + 1.64756i
\(530\) 0 0
\(531\) 187.211i 0.352564i
\(532\) 0 0
\(533\) −498.645 −0.935543
\(534\) 0 0
\(535\) 740.616 + 427.595i 1.38433 + 0.799243i
\(536\) 0 0
\(537\) 42.3674 24.4608i 0.0788964 0.0455509i
\(538\) 0 0
\(539\) −60.6412 + 175.145i −0.112507 + 0.324945i
\(540\) 0 0
\(541\) −119.509 206.995i −0.220903 0.382615i 0.734179 0.678956i \(-0.237567\pi\)
−0.955082 + 0.296340i \(0.904234\pi\)
\(542\) 0 0
\(543\) −178.757 + 309.616i −0.329202 + 0.570195i
\(544\) 0 0
\(545\) 928.814i 1.70425i
\(546\) 0 0
\(547\) 436.346 0.797707 0.398854 0.917015i \(-0.369408\pi\)
0.398854 + 0.917015i \(0.369408\pi\)
\(548\) 0 0
\(549\) −310.821 179.453i −0.566159 0.326872i
\(550\) 0 0
\(551\) −37.5677 + 21.6897i −0.0681810 + 0.0393643i
\(552\) 0 0
\(553\) 852.451 606.953i 1.54150 1.09756i
\(554\) 0 0
\(555\) −355.823 616.304i −0.641123 1.11046i
\(556\) 0 0
\(557\) 442.789 766.932i 0.794953 1.37690i −0.127917 0.991785i \(-0.540829\pi\)
0.922869 0.385113i \(-0.125838\pi\)
\(558\) 0 0
\(559\) 390.710i 0.698944i
\(560\) 0 0
\(561\) 44.2366 0.0788532
\(562\) 0 0
\(563\) −154.219 89.0382i −0.273923 0.158150i 0.356746 0.934201i \(-0.383886\pi\)
−0.630669 + 0.776052i \(0.717219\pi\)
\(564\) 0 0
\(565\) −214.771 + 123.998i −0.380126 + 0.219466i
\(566\) 0 0
\(567\) −57.3053 26.1745i −0.101068 0.0461631i
\(568\) 0 0
\(569\) −451.288 781.654i −0.793125 1.37373i −0.924023 0.382336i \(-0.875120\pi\)
0.130898 0.991396i \(-0.458214\pi\)
\(570\) 0 0
\(571\) −40.0141 + 69.3064i −0.0700771 + 0.121377i −0.898935 0.438082i \(-0.855658\pi\)
0.828858 + 0.559459i \(0.188991\pi\)
\(572\) 0 0
\(573\) 110.395i 0.192662i
\(574\) 0 0
\(575\) 491.020 0.853948
\(576\) 0 0
\(577\) 436.345 + 251.924i 0.756231 + 0.436610i 0.827941 0.560815i \(-0.189512\pi\)
−0.0717099 + 0.997426i \(0.522846\pi\)
\(578\) 0 0
\(579\) 101.028 58.3288i 0.174488 0.100741i
\(580\) 0 0
\(581\) 277.096 26.4431i 0.476929 0.0455131i
\(582\) 0 0
\(583\) −21.6020 37.4157i −0.0370531 0.0641779i
\(584\) 0 0
\(585\) 85.3989 147.915i 0.145981 0.252846i
\(586\) 0 0
\(587\) 458.274i 0.780706i 0.920665 + 0.390353i \(0.127647\pi\)
−0.920665 + 0.390353i \(0.872353\pi\)
\(588\) 0 0
\(589\) −144.746 −0.245749
\(590\) 0 0
\(591\) 144.106 + 83.1997i 0.243834 + 0.140778i
\(592\) 0 0
\(593\) −580.642 + 335.234i −0.979160 + 0.565318i −0.902017 0.431701i \(-0.857913\pi\)
−0.0771438 + 0.997020i \(0.524580\pi\)
\(594\) 0 0
\(595\) 27.5069 + 288.243i 0.0462301 + 0.484442i
\(596\) 0 0
\(597\) 178.392 + 308.985i 0.298815 + 0.517562i
\(598\) 0 0
\(599\) 220.065 381.163i 0.367387 0.636332i −0.621770 0.783200i \(-0.713586\pi\)
0.989156 + 0.146868i \(0.0469193\pi\)
\(600\) 0 0
\(601\) 732.160i 1.21824i 0.793080 + 0.609118i \(0.208476\pi\)
−0.793080 + 0.609118i \(0.791524\pi\)
\(602\) 0 0
\(603\) 167.244 0.277353
\(604\) 0 0
\(605\) 566.055 + 326.812i 0.935628 + 0.540185i
\(606\) 0 0
\(607\) −283.101 + 163.449i −0.466394 + 0.269273i −0.714729 0.699401i \(-0.753450\pi\)
0.248335 + 0.968674i \(0.420117\pi\)
\(608\) 0 0
\(609\) 33.1102 72.4899i 0.0543681 0.119031i
\(610\) 0 0
\(611\) 267.362 + 463.084i 0.437580 + 0.757911i
\(612\) 0 0
\(613\) 494.332 856.207i 0.806414 1.39675i −0.108919 0.994051i \(-0.534739\pi\)
0.915333 0.402699i \(-0.131928\pi\)
\(614\) 0 0
\(615\) 569.354i 0.925779i
\(616\) 0 0
\(617\) 280.536 0.454678 0.227339 0.973816i \(-0.426997\pi\)
0.227339 + 0.973816i \(0.426997\pi\)
\(618\) 0 0
\(619\) 894.439 + 516.405i 1.44497 + 0.834256i 0.998176 0.0603780i \(-0.0192306\pi\)
0.446799 + 0.894634i \(0.352564\pi\)
\(620\) 0 0
\(621\) −176.328 + 101.803i −0.283942 + 0.163934i
\(622\) 0 0
\(623\) 227.368 + 319.334i 0.364957 + 0.512574i
\(624\) 0 0
\(625\) 390.625 + 676.582i 0.624999 + 1.08253i
\(626\) 0 0
\(627\) 21.6191 37.4454i 0.0344802 0.0597215i
\(628\) 0 0
\(629\) 452.837i 0.719931i
\(630\) 0 0
\(631\) 178.252 0.282491 0.141245 0.989975i \(-0.454889\pi\)
0.141245 + 0.989975i \(0.454889\pi\)
\(632\) 0 0
\(633\) −182.913 105.605i −0.288963 0.166833i
\(634\) 0 0
\(635\) −468.671 + 270.587i −0.738064 + 0.426122i
\(636\) 0 0
\(637\) 86.1265 + 447.148i 0.135207 + 0.701958i
\(638\) 0 0
\(639\) −196.737 340.758i −0.307883 0.533268i
\(640\) 0 0
\(641\) −334.263 + 578.961i −0.521471 + 0.903215i 0.478217 + 0.878242i \(0.341283\pi\)
−0.999688 + 0.0249729i \(0.992050\pi\)
\(642\) 0 0
\(643\) 313.584i 0.487690i −0.969814 0.243845i \(-0.921591\pi\)
0.969814 0.243845i \(-0.0784088\pi\)
\(644\) 0 0
\(645\) −446.114 −0.691649
\(646\) 0 0
\(647\) −292.310 168.765i −0.451793 0.260843i 0.256794 0.966466i \(-0.417334\pi\)
−0.708587 + 0.705623i \(0.750667\pi\)
\(648\) 0 0
\(649\) 204.423 118.024i 0.314981 0.181855i
\(650\) 0 0
\(651\) 216.619 154.234i 0.332748 0.236919i
\(652\) 0 0
\(653\) −451.677 782.328i −0.691695 1.19805i −0.971282 0.237931i \(-0.923531\pi\)
0.279587 0.960120i \(-0.409803\pi\)
\(654\) 0 0
\(655\) 207.215 358.907i 0.316358 0.547949i
\(656\) 0 0
\(657\) 231.128i 0.351793i
\(658\) 0 0
\(659\) 768.092 1.16554 0.582771 0.812637i \(-0.301969\pi\)
0.582771 + 0.812637i \(0.301969\pi\)
\(660\) 0 0
\(661\) 356.130 + 205.612i 0.538774 + 0.311062i 0.744582 0.667531i \(-0.232649\pi\)
−0.205808 + 0.978592i \(0.565982\pi\)
\(662\) 0 0
\(663\) 94.1217 54.3412i 0.141963 0.0819626i
\(664\) 0 0
\(665\) 257.435 + 117.585i 0.387120 + 0.176819i
\(666\) 0 0
\(667\) −128.779 223.051i −0.193071 0.334410i
\(668\) 0 0
\(669\) 16.0237 27.7539i 0.0239517 0.0414856i
\(670\) 0 0
\(671\) 452.529i 0.674410i
\(672\) 0 0
\(673\) −818.448 −1.21612 −0.608060 0.793891i \(-0.708052\pi\)
−0.608060 + 0.793891i \(0.708052\pi\)
\(674\) 0 0
\(675\) 56.3901 + 32.5568i 0.0835409 + 0.0482323i
\(676\) 0 0
\(677\) −48.0858 + 27.7623i −0.0710277 + 0.0410079i −0.535093 0.844793i \(-0.679724\pi\)
0.464066 + 0.885801i \(0.346390\pi\)
\(678\) 0 0
\(679\) −992.384 + 94.7028i −1.46154 + 0.139474i
\(680\) 0 0
\(681\) −127.348 220.573i −0.187001 0.323896i
\(682\) 0 0
\(683\) −38.1419 + 66.0637i −0.0558447 + 0.0967258i −0.892596 0.450857i \(-0.851118\pi\)
0.836752 + 0.547583i \(0.184452\pi\)
\(684\) 0 0
\(685\) 1012.29i 1.47780i
\(686\) 0 0
\(687\) −623.391 −0.907410
\(688\) 0 0
\(689\) −91.9245 53.0726i −0.133417 0.0770285i
\(690\) 0 0
\(691\) −19.4780 + 11.2456i −0.0281881 + 0.0162744i −0.514028 0.857774i \(-0.671847\pi\)
0.485840 + 0.874048i \(0.338514\pi\)
\(692\) 0 0
\(693\) 7.54608 + 79.0749i 0.0108890 + 0.114105i
\(694\) 0 0
\(695\) −223.796 387.625i −0.322008 0.557734i
\(696\) 0 0
\(697\) 181.146 313.755i 0.259894 0.450150i
\(698\) 0 0
\(699\) 76.3282i 0.109196i
\(700\) 0 0
\(701\) −854.197 −1.21854 −0.609270 0.792963i \(-0.708538\pi\)
−0.609270 + 0.792963i \(0.708538\pi\)
\(702\) 0 0
\(703\) −383.317 221.308i −0.545258 0.314805i
\(704\) 0 0
\(705\) −528.751 + 305.274i −0.750001 + 0.433013i
\(706\) 0 0
\(707\) −426.558 + 933.889i −0.603336 + 1.32092i
\(708\) 0 0
\(709\) 79.3009 + 137.353i 0.111849 + 0.193728i 0.916516 0.399999i \(-0.130989\pi\)
−0.804667 + 0.593727i \(0.797656\pi\)
\(710\) 0 0
\(711\) 224.240 388.395i 0.315387 0.546266i
\(712\) 0 0
\(713\) 859.403i 1.20533i
\(714\) 0 0
\(715\) −215.352 −0.301191
\(716\) 0 0
\(717\) 247.615 + 142.961i 0.345349 + 0.199387i
\(718\) 0 0
\(719\) −329.191 + 190.059i −0.457846 + 0.264338i −0.711138 0.703052i \(-0.751820\pi\)
0.253292 + 0.967390i \(0.418487\pi\)
\(720\) 0 0
\(721\) −31.2593 43.9030i −0.0433555 0.0608918i
\(722\) 0 0
\(723\) −115.828 200.620i −0.160204 0.277482i
\(724\) 0 0
\(725\) −41.1837 + 71.3322i −0.0568051 + 0.0983893i
\(726\) 0 0
\(727\) 159.283i 0.219096i −0.993981 0.109548i \(-0.965060\pi\)
0.993981 0.109548i \(-0.0349404\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) −245.841 141.936i −0.336307 0.194167i
\(732\) 0 0
\(733\) −154.308 + 89.0895i −0.210515 + 0.121541i −0.601551 0.798835i \(-0.705450\pi\)
0.391036 + 0.920376i \(0.372117\pi\)
\(734\) 0 0
\(735\) −510.555 + 98.3396i −0.694632 + 0.133795i
\(736\) 0 0
\(737\) −105.436 182.620i −0.143060 0.247788i
\(738\) 0 0
\(739\) −158.693 + 274.864i −0.214740 + 0.371941i −0.953192 0.302365i \(-0.902224\pi\)
0.738452 + 0.674306i \(0.235557\pi\)
\(740\) 0 0
\(741\) 106.229i 0.143360i
\(742\) 0 0
\(743\) −1055.73 −1.42090 −0.710450 0.703748i \(-0.751508\pi\)
−0.710450 + 0.703748i \(0.751508\pi\)
\(744\) 0 0
\(745\) −798.945 461.271i −1.07241 0.619156i
\(746\) 0 0
\(747\) 103.312 59.6474i 0.138303 0.0798493i
\(748\) 0 0
\(749\) −796.003 + 566.761i −1.06275 + 0.756690i
\(750\) 0 0
\(751\) −153.605 266.051i −0.204533 0.354262i 0.745451 0.666561i \(-0.232234\pi\)
−0.949984 + 0.312299i \(0.898901\pi\)
\(752\) 0 0
\(753\) −349.562 + 605.459i −0.464226 + 0.804062i
\(754\) 0 0
\(755\) 851.454i 1.12775i
\(756\) 0 0
\(757\) −711.179 −0.939470 −0.469735 0.882808i \(-0.655651\pi\)
−0.469735 + 0.882808i \(0.655651\pi\)
\(758\) 0 0
\(759\) 222.325 + 128.359i 0.292918 + 0.169116i
\(760\) 0 0
\(761\) 457.221 263.977i 0.600816 0.346881i −0.168546 0.985694i \(-0.553907\pi\)
0.769363 + 0.638812i \(0.220574\pi\)
\(762\) 0 0
\(763\) 965.350 + 440.929i 1.26520 + 0.577888i
\(764\) 0 0
\(765\) 62.0470 + 107.469i 0.0811072 + 0.140482i
\(766\) 0 0
\(767\) 289.965 502.235i 0.378051 0.654804i
\(768\) 0 0
\(769\) 831.961i 1.08187i −0.841063 0.540937i \(-0.818070\pi\)
0.841063 0.540937i \(-0.181930\pi\)
\(770\) 0 0
\(771\) 484.836 0.628840
\(772\) 0 0
\(773\) 657.060 + 379.354i 0.850012 + 0.490755i 0.860655 0.509188i \(-0.170054\pi\)
−0.0106426 + 0.999943i \(0.503388\pi\)
\(774\) 0 0
\(775\) −238.017 + 137.419i −0.307119 + 0.177315i
\(776\) 0 0
\(777\) 809.465 77.2469i 1.04178 0.0994169i
\(778\) 0 0
\(779\) −177.058 306.673i −0.227289 0.393676i
\(780\) 0 0
\(781\) −248.058 + 429.648i −0.317615 + 0.550126i
\(782\) 0 0
\(783\) 34.1544i 0.0436199i
\(784\) 0 0
\(785\) 963.363 1.22721
\(786\) 0 0
\(787\) −595.121 343.593i −0.756190 0.436586i 0.0717363 0.997424i \(-0.477146\pi\)
−0.827926 + 0.560837i \(0.810479\pi\)
\(788\) 0 0
\(789\) 212.839 122.882i 0.269758 0.155745i
\(790\) 0 0
\(791\) −26.9192 282.084i −0.0340319 0.356617i
\(792\) 0 0
\(793\) 555.897 + 962.841i 0.701005 + 1.21418i
\(794\) 0 0
\(795\) 60.5985 104.960i 0.0762245 0.132025i
\(796\) 0 0
\(797\) 716.069i 0.898456i −0.893417 0.449228i \(-0.851699\pi\)
0.893417 0.449228i \(-0.148301\pi\)
\(798\) 0 0
\(799\) −388.506 −0.486240
\(800\) 0 0
\(801\) 145.495 + 84.0017i 0.181642 + 0.104871i
\(802\) 0 0
\(803\) 252.377 145.710i 0.314292 0.181457i
\(804\) 0 0
\(805\) −698.137 + 1528.47i −0.867251 + 1.89872i
\(806\) 0 0
\(807\) 344.508 + 596.705i 0.426899 + 0.739411i
\(808\) 0 0
\(809\) 68.0836 117.924i 0.0841577 0.145765i −0.820874 0.571109i \(-0.806513\pi\)
0.905032 + 0.425344i \(0.139847\pi\)
\(810\) 0 0
\(811\) 421.599i 0.519851i −0.965629 0.259926i \(-0.916302\pi\)
0.965629 0.259926i \(-0.0836981\pi\)
\(812\) 0 0
\(813\) −757.124 −0.931272
\(814\) 0 0
\(815\) 113.127 + 65.3141i 0.138807 + 0.0801401i
\(816\) 0 0
\(817\) −240.292 + 138.733i −0.294115 + 0.169807i
\(818\) 0 0
\(819\) 113.193 + 158.977i 0.138209 + 0.194111i
\(820\) 0 0
\(821\) −39.8238 68.9769i −0.0485065 0.0840157i 0.840753 0.541419i \(-0.182113\pi\)
−0.889259 + 0.457404i \(0.848779\pi\)
\(822\) 0 0
\(823\) 666.149 1153.80i 0.809416 1.40195i −0.103853 0.994593i \(-0.533117\pi\)
0.913269 0.407357i \(-0.133549\pi\)
\(824\) 0 0
\(825\) 82.0991i 0.0995141i
\(826\) 0 0
\(827\) 468.548 0.566564 0.283282 0.959037i \(-0.408577\pi\)
0.283282 + 0.959037i \(0.408577\pi\)
\(828\) 0 0
\(829\) 426.112 + 246.016i 0.514007 + 0.296762i 0.734479 0.678631i \(-0.237426\pi\)
−0.220472 + 0.975393i \(0.570760\pi\)
\(830\) 0 0
\(831\) −7.96211 + 4.59692i −0.00958136 + 0.00553180i
\(832\) 0 0
\(833\) −312.640 108.247i −0.375318 0.129948i
\(834\) 0 0
\(835\) −545.139 944.208i −0.652861 1.13079i
\(836\) 0 0
\(837\) 56.9823 98.6962i 0.0680792 0.117917i
\(838\) 0 0
\(839\) 1045.41i 1.24602i 0.782214 + 0.623010i \(0.214090\pi\)
−0.782214 + 0.623010i \(0.785910\pi\)
\(840\) 0 0
\(841\) −797.795 −0.948627
\(842\) 0 0
\(843\) 446.493 + 257.783i 0.529648 + 0.305792i
\(844\) 0 0
\(845\) 438.428 253.127i 0.518850 0.299558i
\(846\) 0 0
\(847\) −608.387 + 433.177i −0.718285 + 0.511425i
\(848\) 0 0
\(849\) 178.296 + 308.817i 0.210007 + 0.363742i
\(850\) 0 0
\(851\) 1313.97 2275.87i 1.54404 2.67435i
\(852\) 0 0
\(853\) 339.686i 0.398225i −0.979977 0.199113i \(-0.936194\pi\)
0.979977 0.199113i \(-0.0638060\pi\)
\(854\) 0 0
\(855\) 121.293 0.141863
\(856\) 0 0
\(857\) 1216.76 + 702.497i 1.41979 + 0.819717i 0.996280 0.0861737i \(-0.0274640\pi\)
0.423511 + 0.905891i \(0.360797\pi\)
\(858\) 0 0
\(859\) 1047.21 604.609i 1.21911 0.703853i 0.254381 0.967104i \(-0.418128\pi\)
0.964727 + 0.263251i \(0.0847949\pi\)
\(860\) 0 0
\(861\) 591.751 + 270.285i 0.687283 + 0.313920i
\(862\) 0 0
\(863\) −497.129 861.052i −0.576047 0.997743i −0.995927 0.0901632i \(-0.971261\pi\)
0.419880 0.907580i \(-0.362072\pi\)
\(864\) 0 0
\(865\) 337.257 584.146i 0.389893 0.675314i
\(866\) 0 0
\(867\) 421.599i 0.486273i
\(868\) 0 0
\(869\) −565.470 −0.650713
\(870\) 0 0
\(871\) −448.668 259.038i −0.515118 0.297403i
\(872\) 0 0
\(873\) −370.000 + 213.620i −0.423826 + 0.244696i
\(874\) 0 0
\(875\) −532.295 + 50.7967i −0.608337 + 0.0580534i
\(876\) 0 0
\(877\) 777.369 + 1346.44i 0.886396 + 1.53528i 0.844105 + 0.536177i \(0.180132\pi\)
0.0422903 + 0.999105i \(0.486535\pi\)
\(878\) 0 0
\(879\) −119.856 + 207.596i −0.136355 + 0.236173i
\(880\) 0 0
\(881\) 921.015i 1.04542i 0.852511 + 0.522710i \(0.175079\pi\)
−0.852511 + 0.522710i \(0.824921\pi\)
\(882\) 0 0
\(883\) −156.823 −0.177603 −0.0888014 0.996049i \(-0.528304\pi\)
−0.0888014 + 0.996049i \(0.528304\pi\)
\(884\) 0 0
\(885\) 573.454 + 331.084i 0.647970 + 0.374106i
\(886\) 0 0
\(887\) −1401.86 + 809.362i −1.58045 + 0.912471i −0.585653 + 0.810562i \(0.699162\pi\)
−0.994794 + 0.101909i \(0.967505\pi\)
\(888\) 0 0
\(889\) −58.7427 615.561i −0.0660773 0.692419i
\(890\) 0 0
\(891\) 17.0216 + 29.4823i 0.0191039 + 0.0330890i
\(892\) 0 0
\(893\) −189.869 + 328.862i −0.212619 + 0.368267i
\(894\) 0 0
\(895\) 173.036i 0.193336i
\(896\) 0 0
\(897\) 630.717 0.703141
\(898\) 0 0
\(899\) 124.848 + 72.0813i 0.138875 + 0.0801794i
\(900\) 0 0
\(901\) 66.7882 38.5602i 0.0741267 0.0427971i
\(902\) 0 0
\(903\) 211.780 463.663i 0.234530 0.513469i
\(904\) 0 0
\(905\) 632.263 + 1095.11i 0.698633 + 1.21007i
\(906\) 0 0
\(907\) 279.345 483.839i 0.307988 0.533450i −0.669934 0.742420i \(-0.733678\pi\)
0.977922 + 0.208970i \(0.0670111\pi\)
\(908\) 0 0
\(909\) 440.012i 0.484061i
\(910\) 0 0
\(911\) 510.774 0.560674 0.280337 0.959902i \(-0.409554\pi\)
0.280337 + 0.959902i \(0.409554\pi\)
\(912\) 0 0
\(913\) −130.262 75.2070i −0.142675 0.0823735i
\(914\) 0 0
\(915\) −1099.38 + 634.725i −1.20150 + 0.693688i
\(916\) 0 0
\(917\) 274.655 + 385.747i 0.299515 + 0.420662i
\(918\) 0 0
\(919\) −333.677 577.945i −0.363087 0.628885i 0.625380 0.780320i \(-0.284944\pi\)
−0.988467 + 0.151435i \(0.951611\pi\)
\(920\) 0 0
\(921\) 136.376 236.209i 0.148073 0.256471i
\(922\) 0 0
\(923\) 1218.88i 1.32056i
\(924\) 0 0
\(925\) −840.424 −0.908566
\(926\) 0 0
\(927\) −20.0032 11.5488i −0.0215784 0.0124583i
\(928\) 0 0
\(929\) 760.086 438.836i 0.818177 0.472375i −0.0316106 0.999500i \(-0.510064\pi\)
0.849787 + 0.527126i \(0.176730\pi\)
\(930\) 0 0
\(931\) −244.420 + 211.741i −0.262535 + 0.227434i
\(932\) 0 0
\(933\) −237.994 412.217i −0.255084 0.441819i
\(934\) 0 0
\(935\) 78.2325 135.503i 0.0836711 0.144923i
\(936\) 0 0
\(937\) 211.107i 0.225301i −0.993635 0.112650i \(-0.964066\pi\)
0.993635 0.112650i \(-0.0359340\pi\)
\(938\) 0 0
\(939\) 305.204 0.325031
\(940\) 0 0
\(941\) 1321.72 + 763.093i 1.40459 + 0.810938i 0.994859 0.101270i \(-0.0322908\pi\)
0.409727 + 0.912208i \(0.365624\pi\)
\(942\) 0 0
\(943\) 1820.81 1051.25i 1.93087 1.11479i
\(944\) 0 0
\(945\) −181.520 + 129.244i −0.192085 + 0.136766i
\(946\) 0 0
\(947\) 321.155 + 556.256i 0.339129 + 0.587388i 0.984269 0.176676i \(-0.0565345\pi\)
−0.645140 + 0.764064i \(0.723201\pi\)
\(948\) 0 0
\(949\) 357.986 620.050i 0.377224 0.653372i
\(950\) 0 0
\(951\) 506.394i 0.532486i
\(952\) 0 0
\(953\) 208.041 0.218302 0.109151 0.994025i \(-0.465187\pi\)
0.109151 + 0.994025i \(0.465187\pi\)
\(954\) 0 0
\(955\) 338.156 + 195.234i 0.354090 + 0.204434i
\(956\) 0 0
\(957\) −37.2944 + 21.5319i −0.0389701 + 0.0224994i
\(958\) 0 0
\(959\) 1052.11 + 480.558i 1.09709 + 0.501103i
\(960\) 0 0
\(961\) −239.983 415.663i −0.249722 0.432532i
\(962\) 0 0
\(963\) −209.391 + 362.676i −0.217436 + 0.376610i
\(964\) 0 0
\(965\) 412.618i 0.427584i
\(966\) 0 0
\(967\) −1485.38 −1.53607 −0.768034 0.640409i \(-0.778765\pi\)
−0.768034 + 0.640409i \(0.778765\pi\)
\(968\) 0 0
\(969\) 66.8412 + 38.5908i 0.0689795 + 0.0398254i
\(970\) 0 0
\(971\) 296.922 171.428i 0.305790 0.176548i −0.339251 0.940696i \(-0.610174\pi\)
0.645041 + 0.764148i \(0.276840\pi\)
\(972\) 0 0
\(973\) 509.114 48.5845i 0.523241 0.0499327i
\(974\) 0 0
\(975\) −100.852 174.681i −0.103438 0.179160i
\(976\) 0 0
\(977\) −835.089 + 1446.42i −0.854748 + 1.48047i 0.0221298 + 0.999755i \(0.492955\pi\)
−0.876878 + 0.480713i \(0.840378\pi\)
\(978\) 0 0
\(979\) 211.829i 0.216372i
\(980\) 0 0
\(981\) 454.835 0.463644
\(982\) 0 0
\(983\) 697.316 + 402.596i 0.709376 + 0.409558i 0.810830 0.585282i \(-0.199016\pi\)
−0.101454 + 0.994840i \(0.532350\pi\)
\(984\) 0 0
\(985\) 509.703 294.277i 0.517465 0.298759i
\(986\) 0 0
\(987\) −66.2731 694.471i −0.0671460 0.703618i
\(988\) 0 0
\(989\) −823.698 1426.69i −0.832860 1.44256i
\(990\) 0 0
\(991\) −751.501 + 1301.64i −0.758326 + 1.31346i 0.185378 + 0.982667i \(0.440649\pi\)
−0.943704 + 0.330792i \(0.892684\pi\)
\(992\) 0 0
\(993\) 246.985i 0.248726i
\(994\) 0 0
\(995\) 1261.95 1.26829
\(996\) 0 0
\(997\) 609.714 + 352.019i 0.611549 + 0.353078i 0.773571 0.633709i \(-0.218468\pi\)
−0.162023 + 0.986787i \(0.551802\pi\)
\(998\) 0 0
\(999\) 301.801 174.245i 0.302103 0.174419i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.3.z.b.73.4 8
3.2 odd 2 504.3.by.c.73.1 8
4.3 odd 2 336.3.bh.g.241.4 8
7.2 even 3 1176.3.z.c.313.1 8
7.3 odd 6 1176.3.f.c.97.5 8
7.4 even 3 1176.3.f.c.97.4 8
7.5 odd 6 inner 168.3.z.b.145.4 yes 8
7.6 odd 2 1176.3.z.c.913.1 8
12.11 even 2 1008.3.cg.p.577.1 8
21.5 even 6 504.3.by.c.145.1 8
21.11 odd 6 3528.3.f.b.2449.2 8
21.17 even 6 3528.3.f.b.2449.7 8
28.3 even 6 2352.3.f.g.97.1 8
28.11 odd 6 2352.3.f.g.97.8 8
28.19 even 6 336.3.bh.g.145.4 8
84.47 odd 6 1008.3.cg.p.145.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.z.b.73.4 8 1.1 even 1 trivial
168.3.z.b.145.4 yes 8 7.5 odd 6 inner
336.3.bh.g.145.4 8 28.19 even 6
336.3.bh.g.241.4 8 4.3 odd 2
504.3.by.c.73.1 8 3.2 odd 2
504.3.by.c.145.1 8 21.5 even 6
1008.3.cg.p.145.1 8 84.47 odd 6
1008.3.cg.p.577.1 8 12.11 even 2
1176.3.f.c.97.4 8 7.4 even 3
1176.3.f.c.97.5 8 7.3 odd 6
1176.3.z.c.313.1 8 7.2 even 3
1176.3.z.c.913.1 8 7.6 odd 2
2352.3.f.g.97.1 8 28.3 even 6
2352.3.f.g.97.8 8 28.11 odd 6
3528.3.f.b.2449.2 8 21.11 odd 6
3528.3.f.b.2449.7 8 21.17 even 6