Properties

Label 1700.1.ct
Level $1700$
Weight $1$
Character orbit 1700.ct
Rep. character $\chi_{1700}(3,\cdot)$
Character field $\Q(\zeta_{80})$
Dimension $32$
Newform subspaces $1$
Sturm bound $270$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1700 = 2^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1700.ct (of order \(80\) and degree \(32\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1700 \)
Character field: \(\Q(\zeta_{80})\)
Newform subspaces: \( 1 \)
Sturm bound: \(270\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1700, [\chi])\).

Total New Old
Modular forms 160 160 0
Cusp forms 32 32 0
Eisenstein series 128 128 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 32 0 0 0

Trace form

\( 32 q - 32 q^{20} + 8 q^{41} + 8 q^{53} - 8 q^{68} + 8 q^{74} - 8 q^{82} - 8 q^{90}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1700, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1700.1.ct.a 1700.ct 1700.bt $32$ $0.848$ \(\Q(\zeta_{80})\) $D_{80}$ \(\Q(\sqrt{-1}) \) None 1700.1.cm.a \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{80}^{37}q^{2}-\zeta_{80}^{34}q^{4}-\zeta_{80}^{6}q^{5}+\cdots\)