Properties

Label 171.4.a.c
Level $171$
Weight $4$
Character orbit 171.a
Self dual yes
Analytic conductor $10.089$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,4,Mod(1,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 171.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.0893266110\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{2} + q^{4} - 6 q^{5} - 16 q^{7} - 21 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 q^{2} + q^{4} - 6 q^{5} - 16 q^{7} - 21 q^{8} - 18 q^{10} - 18 q^{11} - 16 q^{13} - 48 q^{14} - 71 q^{16} - 24 q^{17} + 19 q^{19} - 6 q^{20} - 54 q^{22} + 60 q^{23} - 89 q^{25} - 48 q^{26} - 16 q^{28} + 186 q^{29} - 214 q^{31} - 45 q^{32} - 72 q^{34} + 96 q^{35} - 196 q^{37} + 57 q^{38} + 126 q^{40} + 282 q^{41} + 20 q^{43} - 18 q^{44} + 180 q^{46} + 240 q^{47} - 87 q^{49} - 267 q^{50} - 16 q^{52} - 210 q^{53} + 108 q^{55} + 336 q^{56} + 558 q^{58} - 240 q^{59} - 250 q^{61} - 642 q^{62} + 433 q^{64} + 96 q^{65} + 632 q^{67} - 24 q^{68} + 288 q^{70} - 168 q^{71} - 538 q^{73} - 588 q^{74} + 19 q^{76} + 288 q^{77} - 142 q^{79} + 426 q^{80} + 846 q^{82} + 126 q^{83} + 144 q^{85} + 60 q^{86} + 378 q^{88} - 1470 q^{89} + 256 q^{91} + 60 q^{92} + 720 q^{94} - 114 q^{95} + 434 q^{97} - 261 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
3.00000 0 1.00000 −6.00000 0 −16.0000 −21.0000 0 −18.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 171.4.a.c yes 1
3.b odd 2 1 171.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
171.4.a.a 1 3.b odd 2 1
171.4.a.c yes 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(171))\):

\( T_{2} - 3 \) Copy content Toggle raw display
\( T_{5} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 3 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 6 \) Copy content Toggle raw display
$7$ \( T + 16 \) Copy content Toggle raw display
$11$ \( T + 18 \) Copy content Toggle raw display
$13$ \( T + 16 \) Copy content Toggle raw display
$17$ \( T + 24 \) Copy content Toggle raw display
$19$ \( T - 19 \) Copy content Toggle raw display
$23$ \( T - 60 \) Copy content Toggle raw display
$29$ \( T - 186 \) Copy content Toggle raw display
$31$ \( T + 214 \) Copy content Toggle raw display
$37$ \( T + 196 \) Copy content Toggle raw display
$41$ \( T - 282 \) Copy content Toggle raw display
$43$ \( T - 20 \) Copy content Toggle raw display
$47$ \( T - 240 \) Copy content Toggle raw display
$53$ \( T + 210 \) Copy content Toggle raw display
$59$ \( T + 240 \) Copy content Toggle raw display
$61$ \( T + 250 \) Copy content Toggle raw display
$67$ \( T - 632 \) Copy content Toggle raw display
$71$ \( T + 168 \) Copy content Toggle raw display
$73$ \( T + 538 \) Copy content Toggle raw display
$79$ \( T + 142 \) Copy content Toggle raw display
$83$ \( T - 126 \) Copy content Toggle raw display
$89$ \( T + 1470 \) Copy content Toggle raw display
$97$ \( T - 434 \) Copy content Toggle raw display
show more
show less