Properties

Label 171.6.a.k
Level $171$
Weight $6$
Character orbit 171.a
Self dual yes
Analytic conductor $27.426$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,6,Mod(1,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 171.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.4256331880\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 117x^{4} + 2916x^{2} - 1216 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 7) q^{4} + ( - \beta_{3} - 3 \beta_1) q^{5} + (\beta_{4} - \beta_{2} - 2) q^{7} + (\beta_{5} + 3 \beta_{3} + 2 \beta_1) q^{8} + ( - 4 \beta_{4} - 10 \beta_{2} - 130) q^{10}+ \cdots + ( - 136 \beta_{5} - 428 \beta_{3} - 14003 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 42 q^{4} - 10 q^{7} - 788 q^{10} - 1256 q^{13} - 606 q^{16} - 2166 q^{19} - 2524 q^{22} - 3944 q^{25} - 9632 q^{28} - 18136 q^{31} - 14072 q^{34} - 23764 q^{37} - 34284 q^{40} - 24606 q^{43} - 45640 q^{46}+ \cdots - 16492 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 117x^{4} + 2916x^{2} - 1216 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 39 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} - 101\nu^{3} + 1828\nu ) / 48 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} - 89\nu^{2} + 856 ) / 12 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} + 117\nu^{3} - 2884\nu ) / 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 39 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + 3\beta_{3} + 66\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 12\beta_{4} + 89\beta_{2} + 2615 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 101\beta_{5} + 351\beta_{3} + 4838\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−9.01831
−5.93683
−0.651309
0.651309
5.93683
9.01831
−9.01831 0 49.3298 69.9349 0 −24.9809 −156.286 0 −630.694
1.2 −5.93683 0 3.24596 −42.7408 0 −84.7970 170.708 0 253.745
1.3 −0.651309 0 −31.5758 26.1790 0 104.778 41.4075 0 −17.0506
1.4 0.651309 0 −31.5758 −26.1790 0 104.778 −41.4075 0 −17.0506
1.5 5.93683 0 3.24596 42.7408 0 −84.7970 −170.708 0 253.745
1.6 9.01831 0 49.3298 −69.9349 0 −24.9809 156.286 0 −630.694
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(19\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 171.6.a.k 6
3.b odd 2 1 inner 171.6.a.k 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
171.6.a.k 6 1.a even 1 1 trivial
171.6.a.k 6 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(171))\):

\( T_{2}^{6} - 117T_{2}^{4} + 2916T_{2}^{2} - 1216 \) Copy content Toggle raw display
\( T_{5}^{6} - 7403T_{5}^{4} + 13538428T_{5}^{2} - 6123211776 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 117 T^{4} + \cdots - 1216 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots - 6123211776 \) Copy content Toggle raw display
$7$ \( (T^{3} + 5 T^{2} + \cdots - 221952)^{2} \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 9842050087344 \) Copy content Toggle raw display
$13$ \( (T^{3} + 628 T^{2} + \cdots + 9924240)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 46\!\cdots\!56 \) Copy content Toggle raw display
$19$ \( (T + 361)^{6} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 38\!\cdots\!84 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 64\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( (T^{3} + 9068 T^{2} + \cdots - 144356694192)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} + 11882 T^{2} + \cdots - 1352836224)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 29\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( (T^{3} + 12303 T^{2} + \cdots - 99808040816)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 74\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 17\!\cdots\!64 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 21\!\cdots\!64 \) Copy content Toggle raw display
$61$ \( (T^{3} + \cdots + 8793063342100)^{2} \) Copy content Toggle raw display
$67$ \( (T^{3} + \cdots - 7401693606656)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 22\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( (T^{3} + \cdots - 36640554081100)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} + \cdots - 114153498391680)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 17\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 54\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( (T^{3} + \cdots - 297555192322328)^{2} \) Copy content Toggle raw display
show more
show less