Properties

Label 1710.2.q.a.179.5
Level $1710$
Weight $2$
Character 1710.179
Analytic conductor $13.654$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1710,2,Mod(179,1710)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1710, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1710.179");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.q (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.6544187456\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.162447943996702457856.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{12} - 15x^{8} - 16x^{4} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 179.5
Root \(-1.40721 + 0.140577i\) of defining polynomial
Character \(\chi\) \(=\) 1710.179
Dual form 1710.2.q.a.449.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(-0.358719 - 2.20711i) q^{5} -4.46512i q^{7} +1.00000i q^{8} +(0.792893 - 2.09077i) q^{10} +4.90538i q^{11} +(-2.12132 - 3.67423i) q^{13} +(2.23256 - 3.86690i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(3.15731 - 5.46863i) q^{17} +(-3.50000 + 2.59808i) q^{19} +(1.73205 - 1.41421i) q^{20} +(-2.45269 + 4.24818i) q^{22} +(2.29129 + 3.96863i) q^{23} +(-4.74264 + 1.58346i) q^{25} -4.24264i q^{26} +(3.86690 - 2.23256i) q^{28} +(-3.67423 - 6.36396i) q^{29} +(-0.866025 + 0.500000i) q^{32} +(5.46863 - 3.15731i) q^{34} +(-9.85499 + 1.60172i) q^{35} -7.73381 q^{37} +(-4.33013 + 0.500000i) q^{38} +(2.20711 - 0.358719i) q^{40} +(5.47293 - 9.47939i) q^{41} +(3.49117 + 2.01563i) q^{43} +(-4.24818 + 2.45269i) q^{44} +4.58258i q^{46} +(-6.31463 - 10.9373i) q^{47} -12.9373 q^{49} +(-4.89898 - 1.00000i) q^{50} +(2.12132 - 3.67423i) q^{52} +(-1.67771 + 0.968627i) q^{53} +(10.8267 - 1.75966i) q^{55} +4.46512 q^{56} -7.34847i q^{58} +(-1.22474 + 2.12132i) q^{59} +(0.468627 + 0.811686i) q^{61} -1.00000 q^{64} +(-7.34847 + 6.00000i) q^{65} +(2.12132 + 3.67423i) q^{67} +6.31463 q^{68} +(-9.33553 - 3.54036i) q^{70} +(3.67423 - 6.36396i) q^{71} +(-9.85513 - 5.68986i) q^{73} +(-6.69767 - 3.86690i) q^{74} +(-4.00000 - 1.73205i) q^{76} +21.9031 q^{77} +(-6.00000 - 3.46410i) q^{79} +(2.09077 + 0.792893i) q^{80} +(9.47939 - 5.47293i) q^{82} +10.3923 q^{83} +(-13.2024 - 5.00682i) q^{85} +(2.01563 + 3.49117i) q^{86} -4.90538 q^{88} +(3.02344 + 5.23675i) q^{89} +(-16.4059 + 9.47194i) q^{91} +(-2.29129 + 3.96863i) q^{92} -12.6293i q^{94} +(6.98975 + 6.79289i) q^{95} +(2.12132 - 3.67423i) q^{97} +(-11.2040 - 6.46863i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 24 q^{10} - 8 q^{16} - 56 q^{19} - 8 q^{25} + 24 q^{34} + 24 q^{40} - 80 q^{49} - 8 q^{55} - 56 q^{61} - 16 q^{64} - 24 q^{70} - 64 q^{76} - 96 q^{79} - 24 q^{85} - 72 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −0.358719 2.20711i −0.160424 0.987048i
\(6\) 0 0
\(7\) 4.46512i 1.68765i −0.536615 0.843827i \(-0.680297\pi\)
0.536615 0.843827i \(-0.319703\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0.792893 2.09077i 0.250735 0.661160i
\(11\) 4.90538i 1.47903i 0.673141 + 0.739514i \(0.264945\pi\)
−0.673141 + 0.739514i \(0.735055\pi\)
\(12\) 0 0
\(13\) −2.12132 3.67423i −0.588348 1.01905i −0.994449 0.105221i \(-0.966445\pi\)
0.406100 0.913828i \(-0.366888\pi\)
\(14\) 2.23256 3.86690i 0.596676 1.03347i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.15731 5.46863i 0.765761 1.32634i −0.174082 0.984731i \(-0.555696\pi\)
0.939843 0.341606i \(-0.110971\pi\)
\(18\) 0 0
\(19\) −3.50000 + 2.59808i −0.802955 + 0.596040i
\(20\) 1.73205 1.41421i 0.387298 0.316228i
\(21\) 0 0
\(22\) −2.45269 + 4.24818i −0.522915 + 0.905716i
\(23\) 2.29129 + 3.96863i 0.477767 + 0.827516i 0.999675 0.0254855i \(-0.00811315\pi\)
−0.521909 + 0.853001i \(0.674780\pi\)
\(24\) 0 0
\(25\) −4.74264 + 1.58346i −0.948528 + 0.316693i
\(26\) 4.24264i 0.832050i
\(27\) 0 0
\(28\) 3.86690 2.23256i 0.730776 0.421914i
\(29\) −3.67423 6.36396i −0.682288 1.18176i −0.974281 0.225337i \(-0.927652\pi\)
0.291993 0.956421i \(-0.405682\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 5.46863 3.15731i 0.937862 0.541475i
\(35\) −9.85499 + 1.60172i −1.66580 + 0.270741i
\(36\) 0 0
\(37\) −7.73381 −1.27143 −0.635715 0.771924i \(-0.719295\pi\)
−0.635715 + 0.771924i \(0.719295\pi\)
\(38\) −4.33013 + 0.500000i −0.702439 + 0.0811107i
\(39\) 0 0
\(40\) 2.20711 0.358719i 0.348974 0.0567185i
\(41\) 5.47293 9.47939i 0.854728 1.48043i −0.0221696 0.999754i \(-0.507057\pi\)
0.876897 0.480678i \(-0.159609\pi\)
\(42\) 0 0
\(43\) 3.49117 + 2.01563i 0.532398 + 0.307380i 0.741992 0.670408i \(-0.233881\pi\)
−0.209595 + 0.977788i \(0.567214\pi\)
\(44\) −4.24818 + 2.45269i −0.640438 + 0.369757i
\(45\) 0 0
\(46\) 4.58258i 0.675664i
\(47\) −6.31463 10.9373i −0.921083 1.59536i −0.797743 0.602998i \(-0.793973\pi\)
−0.123340 0.992364i \(-0.539361\pi\)
\(48\) 0 0
\(49\) −12.9373 −1.84818
\(50\) −4.89898 1.00000i −0.692820 0.141421i
\(51\) 0 0
\(52\) 2.12132 3.67423i 0.294174 0.509525i
\(53\) −1.67771 + 0.968627i −0.230451 + 0.133051i −0.610780 0.791800i \(-0.709144\pi\)
0.380329 + 0.924851i \(0.375811\pi\)
\(54\) 0 0
\(55\) 10.8267 1.75966i 1.45987 0.237272i
\(56\) 4.46512 0.596676
\(57\) 0 0
\(58\) 7.34847i 0.964901i
\(59\) −1.22474 + 2.12132i −0.159448 + 0.276172i −0.934670 0.355517i \(-0.884305\pi\)
0.775222 + 0.631689i \(0.217638\pi\)
\(60\) 0 0
\(61\) 0.468627 + 0.811686i 0.0600015 + 0.103926i 0.894466 0.447136i \(-0.147556\pi\)
−0.834464 + 0.551062i \(0.814223\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −7.34847 + 6.00000i −0.911465 + 0.744208i
\(66\) 0 0
\(67\) 2.12132 + 3.67423i 0.259161 + 0.448879i 0.966017 0.258478i \(-0.0832208\pi\)
−0.706857 + 0.707357i \(0.749887\pi\)
\(68\) 6.31463 0.765761
\(69\) 0 0
\(70\) −9.33553 3.54036i −1.11581 0.423154i
\(71\) 3.67423 6.36396i 0.436051 0.755263i −0.561329 0.827592i \(-0.689710\pi\)
0.997381 + 0.0723293i \(0.0230432\pi\)
\(72\) 0 0
\(73\) −9.85513 5.68986i −1.15346 0.665948i −0.203728 0.979027i \(-0.565306\pi\)
−0.949727 + 0.313080i \(0.898639\pi\)
\(74\) −6.69767 3.86690i −0.778589 0.449518i
\(75\) 0 0
\(76\) −4.00000 1.73205i −0.458831 0.198680i
\(77\) 21.9031 2.49609
\(78\) 0 0
\(79\) −6.00000 3.46410i −0.675053 0.389742i 0.122936 0.992415i \(-0.460769\pi\)
−0.797988 + 0.602673i \(0.794102\pi\)
\(80\) 2.09077 + 0.792893i 0.233755 + 0.0886482i
\(81\) 0 0
\(82\) 9.47939 5.47293i 1.04682 0.604384i
\(83\) 10.3923 1.14070 0.570352 0.821401i \(-0.306807\pi\)
0.570352 + 0.821401i \(0.306807\pi\)
\(84\) 0 0
\(85\) −13.2024 5.00682i −1.43200 0.543066i
\(86\) 2.01563 + 3.49117i 0.217350 + 0.376462i
\(87\) 0 0
\(88\) −4.90538 −0.522915
\(89\) 3.02344 + 5.23675i 0.320484 + 0.555094i 0.980588 0.196080i \(-0.0628212\pi\)
−0.660104 + 0.751174i \(0.729488\pi\)
\(90\) 0 0
\(91\) −16.4059 + 9.47194i −1.71980 + 0.992929i
\(92\) −2.29129 + 3.96863i −0.238883 + 0.413758i
\(93\) 0 0
\(94\) 12.6293i 1.30261i
\(95\) 6.98975 + 6.79289i 0.717133 + 0.696936i
\(96\) 0 0
\(97\) 2.12132 3.67423i 0.215387 0.373062i −0.738005 0.674795i \(-0.764232\pi\)
0.953392 + 0.301733i \(0.0975652\pi\)
\(98\) −11.2040 6.46863i −1.13177 0.653430i
\(99\) 0 0
\(100\) −3.74264 3.31552i −0.374264 0.331552i
\(101\) −2.44949 + 1.41421i −0.243733 + 0.140720i −0.616891 0.787048i \(-0.711608\pi\)
0.373158 + 0.927768i \(0.378275\pi\)
\(102\) 0 0
\(103\) 0.751475 0.0740450 0.0370225 0.999314i \(-0.488213\pi\)
0.0370225 + 0.999314i \(0.488213\pi\)
\(104\) 3.67423 2.12132i 0.360288 0.208013i
\(105\) 0 0
\(106\) −1.93725 −0.188163
\(107\) 4.93725i 0.477302i 0.971105 + 0.238651i \(0.0767053\pi\)
−0.971105 + 0.238651i \(0.923295\pi\)
\(108\) 0 0
\(109\) 16.4059 + 9.47194i 1.57140 + 0.907247i 0.995998 + 0.0893754i \(0.0284871\pi\)
0.575400 + 0.817872i \(0.304846\pi\)
\(110\) 10.2560 + 3.88944i 0.977873 + 0.370844i
\(111\) 0 0
\(112\) 3.86690 + 2.23256i 0.365388 + 0.210957i
\(113\) 4.93725i 0.464458i −0.972661 0.232229i \(-0.925398\pi\)
0.972661 0.232229i \(-0.0746018\pi\)
\(114\) 0 0
\(115\) 7.93725 6.48074i 0.740153 0.604332i
\(116\) 3.67423 6.36396i 0.341144 0.590879i
\(117\) 0 0
\(118\) −2.12132 + 1.22474i −0.195283 + 0.112747i
\(119\) −24.4180 14.0978i −2.23840 1.29234i
\(120\) 0 0
\(121\) −13.0627 −1.18752
\(122\) 0.937254i 0.0848550i
\(123\) 0 0
\(124\) 0 0
\(125\) 5.19615 + 9.89949i 0.464758 + 0.885438i
\(126\) 0 0
\(127\) 0.375737 + 0.650796i 0.0333413 + 0.0577488i 0.882215 0.470848i \(-0.156052\pi\)
−0.848873 + 0.528596i \(0.822718\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 0 0
\(130\) −9.36396 + 1.52192i −0.821274 + 0.133481i
\(131\) 9.22401 + 5.32548i 0.805906 + 0.465290i 0.845532 0.533925i \(-0.179283\pi\)
−0.0396264 + 0.999215i \(0.512617\pi\)
\(132\) 0 0
\(133\) 11.6007 + 15.6279i 1.00591 + 1.35511i
\(134\) 4.24264i 0.366508i
\(135\) 0 0
\(136\) 5.46863 + 3.15731i 0.468931 + 0.270737i
\(137\) 1.11847 + 1.93725i 0.0955577 + 0.165511i 0.909841 0.414957i \(-0.136203\pi\)
−0.814284 + 0.580467i \(0.802870\pi\)
\(138\) 0 0
\(139\) −2.00000 3.46410i −0.169638 0.293821i 0.768655 0.639664i \(-0.220926\pi\)
−0.938293 + 0.345843i \(0.887593\pi\)
\(140\) −6.31463 7.73381i −0.533683 0.653626i
\(141\) 0 0
\(142\) 6.36396 3.67423i 0.534052 0.308335i
\(143\) 18.0235 10.4059i 1.50720 0.870183i
\(144\) 0 0
\(145\) −12.7279 + 10.3923i −1.05700 + 0.863034i
\(146\) −5.68986 9.85513i −0.470896 0.815616i
\(147\) 0 0
\(148\) −3.86690 6.69767i −0.317857 0.550545i
\(149\) 12.1706 + 7.02670i 0.997054 + 0.575650i 0.907375 0.420321i \(-0.138083\pi\)
0.0896790 + 0.995971i \(0.471416\pi\)
\(150\) 0 0
\(151\) 18.9439i 1.54163i −0.637058 0.770816i \(-0.719849\pi\)
0.637058 0.770816i \(-0.280151\pi\)
\(152\) −2.59808 3.50000i −0.210732 0.283887i
\(153\) 0 0
\(154\) 18.9686 + 10.9515i 1.52854 + 0.882500i
\(155\) 0 0
\(156\) 0 0
\(157\) 17.9647 + 10.3719i 1.43374 + 0.827768i 0.997403 0.0720167i \(-0.0229435\pi\)
0.436333 + 0.899785i \(0.356277\pi\)
\(158\) −3.46410 6.00000i −0.275589 0.477334i
\(159\) 0 0
\(160\) 1.41421 + 1.73205i 0.111803 + 0.136931i
\(161\) 17.7204 10.2309i 1.39656 0.806305i
\(162\) 0 0
\(163\) 12.9615i 1.01522i −0.861586 0.507611i \(-0.830529\pi\)
0.861586 0.507611i \(-0.169471\pi\)
\(164\) 10.9459 0.854728
\(165\) 0 0
\(166\) 9.00000 + 5.19615i 0.698535 + 0.403300i
\(167\) 17.2662 9.96863i 1.33610 0.771396i 0.349870 0.936798i \(-0.386226\pi\)
0.986226 + 0.165403i \(0.0528924\pi\)
\(168\) 0 0
\(169\) −2.50000 + 4.33013i −0.192308 + 0.333087i
\(170\) −8.93023 10.9373i −0.684917 0.838849i
\(171\) 0 0
\(172\) 4.03125i 0.307380i
\(173\) −6.87386 3.96863i −0.522610 0.301729i 0.215392 0.976528i \(-0.430897\pi\)
−0.738002 + 0.674799i \(0.764230\pi\)
\(174\) 0 0
\(175\) 7.07035 + 21.1764i 0.534468 + 1.60079i
\(176\) −4.24818 2.45269i −0.320219 0.184878i
\(177\) 0 0
\(178\) 6.04688i 0.453233i
\(179\) 6.04688 0.451965 0.225982 0.974131i \(-0.427441\pi\)
0.225982 + 0.974131i \(0.427441\pi\)
\(180\) 0 0
\(181\) 13.4059 7.73989i 0.996451 0.575301i 0.0892549 0.996009i \(-0.471551\pi\)
0.907196 + 0.420707i \(0.138218\pi\)
\(182\) −18.9439 −1.40421
\(183\) 0 0
\(184\) −3.96863 + 2.29129i −0.292571 + 0.168916i
\(185\) 2.77427 + 17.0693i 0.203968 + 1.25496i
\(186\) 0 0
\(187\) 26.8257 + 15.4878i 1.96169 + 1.13258i
\(188\) 6.31463 10.9373i 0.460541 0.797681i
\(189\) 0 0
\(190\) 2.65685 + 9.37769i 0.192748 + 0.680329i
\(191\) 9.81076i 0.709882i 0.934889 + 0.354941i \(0.115499\pi\)
−0.934889 + 0.354941i \(0.884501\pi\)
\(192\) 0 0
\(193\) −6.36396 + 11.0227i −0.458088 + 0.793432i −0.998860 0.0477376i \(-0.984799\pi\)
0.540772 + 0.841169i \(0.318132\pi\)
\(194\) 3.67423 2.12132i 0.263795 0.152302i
\(195\) 0 0
\(196\) −6.46863 11.2040i −0.462045 0.800285i
\(197\) 15.5885 1.11063 0.555316 0.831640i \(-0.312597\pi\)
0.555316 + 0.831640i \(0.312597\pi\)
\(198\) 0 0
\(199\) 2.53137 + 4.38447i 0.179444 + 0.310807i 0.941690 0.336481i \(-0.109237\pi\)
−0.762246 + 0.647287i \(0.775903\pi\)
\(200\) −1.58346 4.74264i −0.111968 0.335355i
\(201\) 0 0
\(202\) −2.82843 −0.199007
\(203\) −28.4158 + 16.4059i −1.99440 + 1.15147i
\(204\) 0 0
\(205\) −22.8853 8.67889i −1.59838 0.606160i
\(206\) 0.650796 + 0.375737i 0.0453431 + 0.0261789i
\(207\) 0 0
\(208\) 4.24264 0.294174
\(209\) −12.7445 17.1688i −0.881559 1.18759i
\(210\) 0 0
\(211\) −11.9059 6.87386i −0.819635 0.473216i 0.0306558 0.999530i \(-0.490240\pi\)
−0.850290 + 0.526314i \(0.823574\pi\)
\(212\) −1.67771 0.968627i −0.115226 0.0665256i
\(213\) 0 0
\(214\) −2.46863 + 4.27579i −0.168752 + 0.292287i
\(215\) 3.19635 8.42842i 0.217989 0.574813i
\(216\) 0 0
\(217\) 0 0
\(218\) 9.47194 + 16.4059i 0.641521 + 1.11115i
\(219\) 0 0
\(220\) 6.93725 + 8.49637i 0.467710 + 0.572825i
\(221\) −26.7907 −1.80214
\(222\) 0 0
\(223\) 4.61838 7.99927i 0.309269 0.535670i −0.668933 0.743322i \(-0.733249\pi\)
0.978203 + 0.207652i \(0.0665822\pi\)
\(224\) 2.23256 + 3.86690i 0.149169 + 0.258368i
\(225\) 0 0
\(226\) 2.46863 4.27579i 0.164211 0.284421i
\(227\) 7.06275i 0.468771i −0.972144 0.234385i \(-0.924692\pi\)
0.972144 0.234385i \(-0.0753078\pi\)
\(228\) 0 0
\(229\) −23.8745 −1.57767 −0.788836 0.614604i \(-0.789316\pi\)
−0.788836 + 0.614604i \(0.789316\pi\)
\(230\) 10.1142 1.64386i 0.666913 0.108393i
\(231\) 0 0
\(232\) 6.36396 3.67423i 0.417815 0.241225i
\(233\) −10.8972 + 18.8745i −0.713899 + 1.23651i 0.249483 + 0.968379i \(0.419739\pi\)
−0.963382 + 0.268131i \(0.913594\pi\)
\(234\) 0 0
\(235\) −21.8745 + 17.8605i −1.42694 + 1.16509i
\(236\) −2.44949 −0.159448
\(237\) 0 0
\(238\) −14.0978 24.4180i −0.913823 1.58279i
\(239\) 26.7813i 1.73234i 0.499750 + 0.866170i \(0.333425\pi\)
−0.499750 + 0.866170i \(0.666575\pi\)
\(240\) 0 0
\(241\) 6.00000 3.46410i 0.386494 0.223142i −0.294146 0.955761i \(-0.595035\pi\)
0.680640 + 0.732618i \(0.261702\pi\)
\(242\) −11.3127 6.53137i −0.727206 0.419853i
\(243\) 0 0
\(244\) −0.468627 + 0.811686i −0.0300008 + 0.0519629i
\(245\) 4.64084 + 28.5539i 0.296493 + 1.82424i
\(246\) 0 0
\(247\) 16.9706 + 7.34847i 1.07981 + 0.467572i
\(248\) 0 0
\(249\) 0 0
\(250\) −0.449747 + 11.1713i −0.0284445 + 0.706534i
\(251\) 6.12372 3.53553i 0.386526 0.223161i −0.294128 0.955766i \(-0.595029\pi\)
0.680654 + 0.732605i \(0.261696\pi\)
\(252\) 0 0
\(253\) −19.4676 + 11.2396i −1.22392 + 0.706630i
\(254\) 0.751475i 0.0471517i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −8.55157 + 4.93725i −0.533433 + 0.307977i −0.742413 0.669942i \(-0.766319\pi\)
0.208981 + 0.977920i \(0.432985\pi\)
\(258\) 0 0
\(259\) 34.5323i 2.14574i
\(260\) −8.87039 3.36396i −0.550118 0.208624i
\(261\) 0 0
\(262\) 5.32548 + 9.22401i 0.329010 + 0.569861i
\(263\) 3.40976 5.90588i 0.210255 0.364172i −0.741539 0.670909i \(-0.765904\pi\)
0.951794 + 0.306737i \(0.0992373\pi\)
\(264\) 0 0
\(265\) 2.73969 + 3.35542i 0.168298 + 0.206122i
\(266\) 2.23256 + 19.3345i 0.136887 + 1.18548i
\(267\) 0 0
\(268\) −2.12132 + 3.67423i −0.129580 + 0.224440i
\(269\) −1.22474 + 2.12132i −0.0746740 + 0.129339i −0.900944 0.433934i \(-0.857125\pi\)
0.826270 + 0.563274i \(0.190458\pi\)
\(270\) 0 0
\(271\) 1.00000 1.73205i 0.0607457 0.105215i −0.834053 0.551684i \(-0.813985\pi\)
0.894799 + 0.446469i \(0.147319\pi\)
\(272\) 3.15731 + 5.46863i 0.191440 + 0.331584i
\(273\) 0 0
\(274\) 2.23695i 0.135139i
\(275\) −7.76749 23.2645i −0.468397 1.40290i
\(276\) 0 0
\(277\) 1.58176i 0.0950388i −0.998870 0.0475194i \(-0.984868\pi\)
0.998870 0.0475194i \(-0.0151316\pi\)
\(278\) 4.00000i 0.239904i
\(279\) 0 0
\(280\) −1.60172 9.85499i −0.0957213 0.588948i
\(281\) 10.3719 + 17.9647i 0.618736 + 1.07168i 0.989717 + 0.143042i \(0.0456883\pi\)
−0.370981 + 0.928641i \(0.620978\pi\)
\(282\) 0 0
\(283\) −15.4676 8.93023i −0.919454 0.530847i −0.0359933 0.999352i \(-0.511459\pi\)
−0.883461 + 0.468505i \(0.844793\pi\)
\(284\) 7.34847 0.436051
\(285\) 0 0
\(286\) 20.8118 1.23063
\(287\) −42.3266 24.4373i −2.49846 1.44249i
\(288\) 0 0
\(289\) −11.4373 19.8099i −0.672780 1.16529i
\(290\) −16.2189 + 2.63604i −0.952404 + 0.154794i
\(291\) 0 0
\(292\) 11.3797i 0.665948i
\(293\) 12.8745i 0.752137i −0.926592 0.376068i \(-0.877276\pi\)
0.926592 0.376068i \(-0.122724\pi\)
\(294\) 0 0
\(295\) 5.12132 + 1.94218i 0.298175 + 0.113078i
\(296\) 7.73381i 0.449518i
\(297\) 0 0
\(298\) 7.02670 + 12.1706i 0.407046 + 0.705024i
\(299\) 9.72111 16.8375i 0.562186 0.973735i
\(300\) 0 0
\(301\) 9.00000 15.5885i 0.518751 0.898504i
\(302\) 9.47194 16.4059i 0.545049 0.944052i
\(303\) 0 0
\(304\) −0.500000 4.33013i −0.0286770 0.248350i
\(305\) 1.62337 1.32548i 0.0929540 0.0758966i
\(306\) 0 0
\(307\) −5.61249 + 9.72111i −0.320321 + 0.554813i −0.980554 0.196248i \(-0.937124\pi\)
0.660233 + 0.751061i \(0.270458\pi\)
\(308\) 10.9515 + 18.9686i 0.624022 + 1.08084i
\(309\) 0 0
\(310\) 0 0
\(311\) 14.1421i 0.801927i 0.916094 + 0.400963i \(0.131325\pi\)
−0.916094 + 0.400963i \(0.868675\pi\)
\(312\) 0 0
\(313\) −0.751475 + 0.433864i −0.0424759 + 0.0245235i −0.521088 0.853503i \(-0.674474\pi\)
0.478612 + 0.878027i \(0.341140\pi\)
\(314\) 10.3719 + 17.9647i 0.585321 + 1.01381i
\(315\) 0 0
\(316\) 6.92820i 0.389742i
\(317\) 30.0935 17.3745i 1.69022 0.975850i 0.735889 0.677102i \(-0.236765\pi\)
0.954332 0.298747i \(-0.0965687\pi\)
\(318\) 0 0
\(319\) 31.2176 18.0235i 1.74785 1.00912i
\(320\) 0.358719 + 2.20711i 0.0200530 + 0.123381i
\(321\) 0 0
\(322\) 20.4617 1.14029
\(323\) 3.15731 + 27.3431i 0.175678 + 1.52141i
\(324\) 0 0
\(325\) 15.8787 + 14.0665i 0.880791 + 0.780271i
\(326\) 6.48074 11.2250i 0.358935 0.621694i
\(327\) 0 0
\(328\) 9.47939 + 5.47293i 0.523412 + 0.302192i
\(329\) −48.8361 + 28.1955i −2.69242 + 1.55447i
\(330\) 0 0
\(331\) 22.5167i 1.23763i −0.785538 0.618814i \(-0.787614\pi\)
0.785538 0.618814i \(-0.212386\pi\)
\(332\) 5.19615 + 9.00000i 0.285176 + 0.493939i
\(333\) 0 0
\(334\) 19.9373 1.09092
\(335\) 7.34847 6.00000i 0.401490 0.327815i
\(336\) 0 0
\(337\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(338\) −4.33013 + 2.50000i −0.235528 + 0.135982i
\(339\) 0 0
\(340\) −2.26518 13.9371i −0.122847 0.755843i
\(341\) 0 0
\(342\) 0 0
\(343\) 26.5105i 1.43143i
\(344\) −2.01563 + 3.49117i −0.108675 + 0.188231i
\(345\) 0 0
\(346\) −3.96863 6.87386i −0.213355 0.369541i
\(347\) 1.73205 3.00000i 0.0929814 0.161048i −0.815783 0.578358i \(-0.803694\pi\)
0.908764 + 0.417310i \(0.137027\pi\)
\(348\) 0 0
\(349\) −17.0627 −0.913348 −0.456674 0.889634i \(-0.650959\pi\)
−0.456674 + 0.889634i \(0.650959\pi\)
\(350\) −4.46512 + 21.8745i −0.238670 + 1.16924i
\(351\) 0 0
\(352\) −2.45269 4.24818i −0.130729 0.226429i
\(353\) −21.3982 −1.13891 −0.569455 0.822022i \(-0.692846\pi\)
−0.569455 + 0.822022i \(0.692846\pi\)
\(354\) 0 0
\(355\) −15.3640 5.82655i −0.815434 0.309241i
\(356\) −3.02344 + 5.23675i −0.160242 + 0.277547i
\(357\) 0 0
\(358\) 5.23675 + 3.02344i 0.276771 + 0.159794i
\(359\) 6.12372 + 3.53553i 0.323198 + 0.186598i 0.652817 0.757516i \(-0.273587\pi\)
−0.329619 + 0.944114i \(0.606920\pi\)
\(360\) 0 0
\(361\) 5.50000 18.1865i 0.289474 0.957186i
\(362\) 15.4798 0.813599
\(363\) 0 0
\(364\) −16.4059 9.47194i −0.859902 0.496465i
\(365\) −9.02290 + 23.7924i −0.472280 + 1.24535i
\(366\) 0 0
\(367\) −4.86101 + 2.80651i −0.253743 + 0.146498i −0.621477 0.783433i \(-0.713467\pi\)
0.367734 + 0.929931i \(0.380134\pi\)
\(368\) −4.58258 −0.238883
\(369\) 0 0
\(370\) −6.13208 + 16.1696i −0.318792 + 0.840618i
\(371\) 4.32503 + 7.49117i 0.224544 + 0.388922i
\(372\) 0 0
\(373\) 18.9588 0.981648 0.490824 0.871259i \(-0.336696\pi\)
0.490824 + 0.871259i \(0.336696\pi\)
\(374\) 15.4878 + 26.8257i 0.800856 + 1.38712i
\(375\) 0 0
\(376\) 10.9373 6.31463i 0.564046 0.325652i
\(377\) −15.5885 + 27.0000i −0.802846 + 1.39057i
\(378\) 0 0
\(379\) 34.4237i 1.76822i 0.467275 + 0.884112i \(0.345236\pi\)
−0.467275 + 0.884112i \(0.654764\pi\)
\(380\) −2.38794 + 9.44975i −0.122499 + 0.484762i
\(381\) 0 0
\(382\) −4.90538 + 8.49637i −0.250981 + 0.434712i
\(383\) 24.1400 + 13.9373i 1.23350 + 0.712160i 0.967757 0.251884i \(-0.0810502\pi\)
0.265741 + 0.964045i \(0.414384\pi\)
\(384\) 0 0
\(385\) −7.85706 48.3424i −0.400433 2.46376i
\(386\) −11.0227 + 6.36396i −0.561041 + 0.323917i
\(387\) 0 0
\(388\) 4.24264 0.215387
\(389\) 13.4722 7.77817i 0.683067 0.394369i −0.117942 0.993020i \(-0.537630\pi\)
0.801010 + 0.598651i \(0.204296\pi\)
\(390\) 0 0
\(391\) 28.9373 1.46342
\(392\) 12.9373i 0.653430i
\(393\) 0 0
\(394\) 13.5000 + 7.79423i 0.680120 + 0.392668i
\(395\) −5.49333 + 14.4853i −0.276399 + 0.728834i
\(396\) 0 0
\(397\) 5.36985 + 3.10029i 0.269505 + 0.155599i 0.628663 0.777678i \(-0.283603\pi\)
−0.359158 + 0.933277i \(0.616936\pi\)
\(398\) 5.06275i 0.253773i
\(399\) 0 0
\(400\) 1.00000 4.89898i 0.0500000 0.244949i
\(401\) 4.82213 8.35218i 0.240806 0.417088i −0.720138 0.693831i \(-0.755922\pi\)
0.960944 + 0.276743i \(0.0892550\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −2.44949 1.41421i −0.121867 0.0703598i
\(405\) 0 0
\(406\) −32.8118 −1.62842
\(407\) 37.9373i 1.88048i
\(408\) 0 0
\(409\) 25.5000 14.7224i 1.26089 0.727977i 0.287646 0.957737i \(-0.407127\pi\)
0.973247 + 0.229759i \(0.0737939\pi\)
\(410\) −15.4798 18.9588i −0.764492 0.936307i
\(411\) 0 0
\(412\) 0.375737 + 0.650796i 0.0185113 + 0.0320624i
\(413\) 9.47194 + 5.46863i 0.466084 + 0.269094i
\(414\) 0 0
\(415\) −3.72792 22.9369i −0.182996 1.12593i
\(416\) 3.67423 + 2.12132i 0.180144 + 0.104006i
\(417\) 0 0
\(418\) −2.45269 21.2409i −0.119965 1.03893i
\(419\) 21.7872i 1.06437i 0.846627 + 0.532187i \(0.178630\pi\)
−0.846627 + 0.532187i \(0.821370\pi\)
\(420\) 0 0
\(421\) −31.4059 18.1322i −1.53063 0.883709i −0.999333 0.0365229i \(-0.988372\pi\)
−0.531296 0.847186i \(-0.678295\pi\)
\(422\) −6.87386 11.9059i −0.334614 0.579569i
\(423\) 0 0
\(424\) −0.968627 1.67771i −0.0470407 0.0814769i
\(425\) −6.31463 + 30.9352i −0.306304 + 1.50058i
\(426\) 0 0
\(427\) 3.62427 2.09247i 0.175391 0.101262i
\(428\) −4.27579 + 2.46863i −0.206678 + 0.119326i
\(429\) 0 0
\(430\) 6.98233 5.70105i 0.336718 0.274929i
\(431\) −8.57321 14.8492i −0.412957 0.715263i 0.582254 0.813007i \(-0.302171\pi\)
−0.995212 + 0.0977438i \(0.968837\pi\)
\(432\) 0 0
\(433\) 9.10365 + 15.7680i 0.437494 + 0.757761i 0.997495 0.0707302i \(-0.0225329\pi\)
−0.560002 + 0.828491i \(0.689200\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 18.9439i 0.907247i
\(437\) −18.3303 7.93725i −0.876857 0.379690i
\(438\) 0 0
\(439\) 4.59412 + 2.65242i 0.219265 + 0.126593i 0.605610 0.795762i \(-0.292929\pi\)
−0.386345 + 0.922354i \(0.626262\pi\)
\(440\) 1.75966 + 10.8267i 0.0838883 + 0.516142i
\(441\) 0 0
\(442\) −23.2014 13.3953i −1.10358 0.637152i
\(443\) 0.811686 + 1.40588i 0.0385644 + 0.0667954i 0.884663 0.466230i \(-0.154388\pi\)
−0.846099 + 0.533026i \(0.821055\pi\)
\(444\) 0 0
\(445\) 10.4735 8.55157i 0.496491 0.405384i
\(446\) 7.99927 4.61838i 0.378776 0.218687i
\(447\) 0 0
\(448\) 4.46512i 0.210957i
\(449\) −1.30159 −0.0614260 −0.0307130 0.999528i \(-0.509778\pi\)
−0.0307130 + 0.999528i \(0.509778\pi\)
\(450\) 0 0
\(451\) 46.5000 + 26.8468i 2.18960 + 1.26417i
\(452\) 4.27579 2.46863i 0.201116 0.116114i
\(453\) 0 0
\(454\) 3.53137 6.11652i 0.165736 0.287062i
\(455\) 26.7907 + 32.8118i 1.25597 + 1.53824i
\(456\) 0 0
\(457\) 0.153696i 0.00718959i 0.999994 + 0.00359479i \(0.00114426\pi\)
−0.999994 + 0.00359479i \(0.998856\pi\)
\(458\) −20.6759 11.9373i −0.966123 0.557791i
\(459\) 0 0
\(460\) 9.58111 + 3.63349i 0.446722 + 0.169412i
\(461\) 10.9459 + 6.31959i 0.509799 + 0.294333i 0.732751 0.680497i \(-0.238236\pi\)
−0.222952 + 0.974829i \(0.571569\pi\)
\(462\) 0 0
\(463\) 9.21040i 0.428044i −0.976829 0.214022i \(-0.931344\pi\)
0.976829 0.214022i \(-0.0686563\pi\)
\(464\) 7.34847 0.341144
\(465\) 0 0
\(466\) −18.8745 + 10.8972i −0.874345 + 0.504803i
\(467\) −14.4700 −0.669591 −0.334795 0.942291i \(-0.608667\pi\)
−0.334795 + 0.942291i \(0.608667\pi\)
\(468\) 0 0
\(469\) 16.4059 9.47194i 0.757553 0.437374i
\(470\) −27.8741 + 4.53036i −1.28574 + 0.208970i
\(471\) 0 0
\(472\) −2.12132 1.22474i −0.0976417 0.0563735i
\(473\) −9.88741 + 17.1255i −0.454623 + 0.787431i
\(474\) 0 0
\(475\) 12.4853 17.8639i 0.572864 0.819650i
\(476\) 28.1955i 1.29234i
\(477\) 0 0
\(478\) −13.3907 + 23.1933i −0.612475 + 1.06084i
\(479\) 30.6186 17.6777i 1.39900 0.807713i 0.404713 0.914444i \(-0.367372\pi\)
0.994288 + 0.106731i \(0.0340382\pi\)
\(480\) 0 0
\(481\) 16.4059 + 28.4158i 0.748044 + 1.29565i
\(482\) 6.92820 0.315571
\(483\) 0 0
\(484\) −6.53137 11.3127i −0.296881 0.514212i
\(485\) −8.87039 3.36396i −0.402784 0.152750i
\(486\) 0 0
\(487\) 27.4441 1.24361 0.621805 0.783172i \(-0.286400\pi\)
0.621805 + 0.783172i \(0.286400\pi\)
\(488\) −0.811686 + 0.468627i −0.0367433 + 0.0212137i
\(489\) 0 0
\(490\) −10.2579 + 27.0488i −0.463403 + 1.22194i
\(491\) 24.9920 + 14.4291i 1.12787 + 0.651178i 0.943399 0.331660i \(-0.107609\pi\)
0.184474 + 0.982837i \(0.440942\pi\)
\(492\) 0 0
\(493\) −46.4028 −2.08988
\(494\) 11.0227 + 14.8492i 0.495935 + 0.668099i
\(495\) 0 0
\(496\) 0 0
\(497\) −28.4158 16.4059i −1.27462 0.735904i
\(498\) 0 0
\(499\) −8.43725 + 14.6138i −0.377703 + 0.654201i −0.990728 0.135863i \(-0.956619\pi\)
0.613024 + 0.790064i \(0.289953\pi\)
\(500\) −5.97514 + 9.44975i −0.267216 + 0.422606i
\(501\) 0 0
\(502\) 7.07107 0.315597
\(503\) 11.7632 + 20.3745i 0.524496 + 0.908454i 0.999593 + 0.0285209i \(0.00907971\pi\)
−0.475097 + 0.879934i \(0.657587\pi\)
\(504\) 0 0
\(505\) 4.00000 + 4.89898i 0.177998 + 0.218002i
\(506\) −22.4793 −0.999326
\(507\) 0 0
\(508\) −0.375737 + 0.650796i −0.0166707 + 0.0288744i
\(509\) −20.7438 35.9293i −0.919453 1.59254i −0.800247 0.599671i \(-0.795298\pi\)
−0.119206 0.992869i \(-0.538035\pi\)
\(510\) 0 0
\(511\) −25.4059 + 44.0043i −1.12389 + 1.94663i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −9.87451 −0.435546
\(515\) −0.269569 1.65859i −0.0118786 0.0730860i
\(516\) 0 0
\(517\) 53.6514 30.9756i 2.35958 1.36231i
\(518\) −17.2662 + 29.9059i −0.758632 + 1.31399i
\(519\) 0 0
\(520\) −6.00000 7.34847i −0.263117 0.322252i
\(521\) −14.5432 −0.637151 −0.318576 0.947897i \(-0.603204\pi\)
−0.318576 + 0.947897i \(0.603204\pi\)
\(522\) 0 0
\(523\) −14.0978 24.4180i −0.616452 1.06773i −0.990128 0.140167i \(-0.955236\pi\)
0.373676 0.927559i \(-0.378097\pi\)
\(524\) 10.6510i 0.465290i
\(525\) 0 0
\(526\) 5.90588 3.40976i 0.257509 0.148673i
\(527\) 0 0
\(528\) 0 0
\(529\) 1.00000 1.73205i 0.0434783 0.0753066i
\(530\) 0.694931 + 4.27573i 0.0301859 + 0.185726i
\(531\) 0 0
\(532\) −7.73381 + 17.8605i −0.335303 + 0.774349i
\(533\) −46.4393 −2.01151
\(534\) 0 0
\(535\) 10.8970 1.77109i 0.471120 0.0765709i
\(536\) −3.67423 + 2.12132i −0.158703 + 0.0916271i
\(537\) 0 0
\(538\) −2.12132 + 1.22474i −0.0914566 + 0.0528025i
\(539\) 63.4621i 2.73351i
\(540\) 0 0
\(541\) 1.00000 + 1.73205i 0.0429934 + 0.0744667i 0.886721 0.462304i \(-0.152977\pi\)
−0.843728 + 0.536771i \(0.819644\pi\)
\(542\) 1.73205 1.00000i 0.0743980 0.0429537i
\(543\) 0 0
\(544\) 6.31463i 0.270737i
\(545\) 15.0205 39.6073i 0.643406 1.69659i
\(546\) 0 0
\(547\) −0.751475 1.30159i −0.0321307 0.0556521i 0.849513 0.527568i \(-0.176896\pi\)
−0.881644 + 0.471916i \(0.843563\pi\)
\(548\) −1.11847 + 1.93725i −0.0477788 + 0.0827554i
\(549\) 0 0
\(550\) 4.90538 24.0314i 0.209166 1.02470i
\(551\) 29.3939 + 12.7279i 1.25222 + 0.542228i
\(552\) 0 0
\(553\) −15.4676 + 26.7907i −0.657750 + 1.13926i
\(554\) 0.790881 1.36985i 0.0336013 0.0581992i
\(555\) 0 0
\(556\) 2.00000 3.46410i 0.0848189 0.146911i
\(557\) 14.9205 + 25.8431i 0.632204 + 1.09501i 0.987100 + 0.160103i \(0.0511827\pi\)
−0.354897 + 0.934906i \(0.615484\pi\)
\(558\) 0 0
\(559\) 17.1031i 0.723386i
\(560\) 3.54036 9.33553i 0.149607 0.394498i
\(561\) 0 0
\(562\) 20.7438i 0.875025i
\(563\) 27.8745i 1.17477i −0.809307 0.587385i \(-0.800157\pi\)
0.809307 0.587385i \(-0.199843\pi\)
\(564\) 0 0
\(565\) −10.8970 + 1.77109i −0.458442 + 0.0745103i
\(566\) −8.93023 15.4676i −0.375366 0.650152i
\(567\) 0 0
\(568\) 6.36396 + 3.67423i 0.267026 + 0.154167i
\(569\) −18.4480 −0.773381 −0.386691 0.922209i \(-0.626382\pi\)
−0.386691 + 0.922209i \(0.626382\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) 18.0235 + 10.4059i 0.753601 + 0.435092i
\(573\) 0 0
\(574\) −24.4373 42.3266i −1.01999 1.76668i
\(575\) −17.1509 15.1936i −0.715243 0.633617i
\(576\) 0 0
\(577\) 25.2089i 1.04946i 0.851268 + 0.524731i \(0.175834\pi\)
−0.851268 + 0.524731i \(0.824166\pi\)
\(578\) 22.8745i 0.951454i
\(579\) 0 0
\(580\) −15.3640 5.82655i −0.637954 0.241934i
\(581\) 46.4028i 1.92511i
\(582\) 0 0
\(583\) −4.75148 8.22981i −0.196786 0.340844i
\(584\) 5.68986 9.85513i 0.235448 0.407808i
\(585\) 0 0
\(586\) 6.43725 11.1497i 0.265921 0.460588i
\(587\) −12.0157 + 20.8118i −0.495940 + 0.858993i −0.999989 0.00468172i \(-0.998510\pi\)
0.504049 + 0.863675i \(0.331843\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 3.46410 + 4.24264i 0.142615 + 0.174667i
\(591\) 0 0
\(592\) 3.86690 6.69767i 0.158929 0.275273i
\(593\) −13.4409 23.2804i −0.551953 0.956011i −0.998134 0.0610679i \(-0.980549\pi\)
0.446180 0.894943i \(-0.352784\pi\)
\(594\) 0 0
\(595\) −22.3560 + 58.9504i −0.916509 + 2.41673i
\(596\) 14.0534i 0.575650i
\(597\) 0 0
\(598\) 16.8375 9.72111i 0.688535 0.397526i
\(599\) −13.4722 23.3345i −0.550459 0.953423i −0.998241 0.0592803i \(-0.981119\pi\)
0.447782 0.894143i \(-0.352214\pi\)
\(600\) 0 0
\(601\) 34.5323i 1.40860i −0.709901 0.704302i \(-0.751260\pi\)
0.709901 0.704302i \(-0.248740\pi\)
\(602\) 15.5885 9.00000i 0.635338 0.366813i
\(603\) 0 0
\(604\) 16.4059 9.47194i 0.667546 0.385408i
\(605\) 4.68586 + 28.8309i 0.190507 + 1.17214i
\(606\) 0 0
\(607\) 35.9293 1.45833 0.729163 0.684340i \(-0.239909\pi\)
0.729163 + 0.684340i \(0.239909\pi\)
\(608\) 1.73205 4.00000i 0.0702439 0.162221i
\(609\) 0 0
\(610\) 2.06862 0.336211i 0.0837560 0.0136128i
\(611\) −26.7907 + 46.4028i −1.08384 + 1.87726i
\(612\) 0 0
\(613\) −34.1838 19.7360i −1.38067 0.797130i −0.388430 0.921478i \(-0.626983\pi\)
−0.992239 + 0.124348i \(0.960316\pi\)
\(614\) −9.72111 + 5.61249i −0.392312 + 0.226502i
\(615\) 0 0
\(616\) 21.9031i 0.882500i
\(617\) 0.504897 + 0.874508i 0.0203264 + 0.0352064i 0.876010 0.482294i \(-0.160196\pi\)
−0.855683 + 0.517500i \(0.826863\pi\)
\(618\) 0 0
\(619\) 21.8118 0.876689 0.438344 0.898807i \(-0.355565\pi\)
0.438344 + 0.898807i \(0.355565\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −7.07107 + 12.2474i −0.283524 + 0.491078i
\(623\) 23.3827 13.5000i 0.936808 0.540866i
\(624\) 0 0
\(625\) 19.9853 15.0196i 0.799411 0.600784i
\(626\) −0.867729 −0.0346814
\(627\) 0 0
\(628\) 20.7438i 0.827768i
\(629\) −24.4180 + 42.2933i −0.973611 + 1.68634i
\(630\) 0 0
\(631\) 21.4686 + 37.1848i 0.854653 + 1.48030i 0.876967 + 0.480551i \(0.159563\pi\)
−0.0223144 + 0.999751i \(0.507103\pi\)
\(632\) 3.46410 6.00000i 0.137795 0.238667i
\(633\) 0 0
\(634\) 34.7490 1.38006
\(635\) 1.30159 1.06275i 0.0516521 0.0421738i
\(636\) 0 0
\(637\) 27.4441 + 47.5345i 1.08737 + 1.88339i
\(638\) 36.0470 1.42712
\(639\) 0 0
\(640\) −0.792893 + 2.09077i −0.0313419 + 0.0826450i
\(641\) −7.27162 + 12.5948i −0.287212 + 0.497465i −0.973143 0.230201i \(-0.926062\pi\)
0.685931 + 0.727666i \(0.259395\pi\)
\(642\) 0 0
\(643\) 2.87280 + 1.65861i 0.113292 + 0.0654092i 0.555575 0.831466i \(-0.312498\pi\)
−0.442283 + 0.896875i \(0.645831\pi\)
\(644\) 17.7204 + 10.2309i 0.698281 + 0.403153i
\(645\) 0 0
\(646\) −10.9373 + 25.2585i −0.430321 + 0.993783i
\(647\) −0.504897 −0.0198496 −0.00992478 0.999951i \(-0.503159\pi\)
−0.00992478 + 0.999951i \(0.503159\pi\)
\(648\) 0 0
\(649\) −10.4059 6.00784i −0.408467 0.235828i
\(650\) 6.71807 + 20.1213i 0.263504 + 0.789223i
\(651\) 0 0
\(652\) 11.2250 6.48074i 0.439604 0.253805i
\(653\) 47.7752 1.86959 0.934793 0.355192i \(-0.115585\pi\)
0.934793 + 0.355192i \(0.115585\pi\)
\(654\) 0 0
\(655\) 8.44508 22.2687i 0.329977 0.870111i
\(656\) 5.47293 + 9.47939i 0.213682 + 0.370108i
\(657\) 0 0
\(658\) −56.3911 −2.19835
\(659\) −17.7204 30.6926i −0.690288 1.19561i −0.971743 0.236039i \(-0.924151\pi\)
0.281456 0.959574i \(-0.409183\pi\)
\(660\) 0 0
\(661\) −32.8118 + 18.9439i −1.27623 + 0.736832i −0.976153 0.217084i \(-0.930346\pi\)
−0.300077 + 0.953915i \(0.597012\pi\)
\(662\) 11.2583 19.5000i 0.437567 0.757889i
\(663\) 0 0
\(664\) 10.3923i 0.403300i
\(665\) 30.3311 31.2100i 1.17619 1.21027i
\(666\) 0 0
\(667\) 16.8375 29.1633i 0.651949 1.12921i
\(668\) 17.2662 + 9.96863i 0.668048 + 0.385698i
\(669\) 0 0
\(670\) 9.36396 1.52192i 0.361761 0.0587968i
\(671\) −3.98163 + 2.29879i −0.153709 + 0.0887439i
\(672\) 0 0
\(673\) 1.50295 0.0579345 0.0289672 0.999580i \(-0.490778\pi\)
0.0289672 + 0.999580i \(0.490778\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −5.00000 −0.192308
\(677\) 12.8745i 0.494808i 0.968912 + 0.247404i \(0.0795774\pi\)
−0.968912 + 0.247404i \(0.920423\pi\)
\(678\) 0 0
\(679\) −16.4059 9.47194i −0.629600 0.363500i
\(680\) 5.00682 13.2024i 0.192003 0.506290i
\(681\) 0 0
\(682\) 0 0
\(683\) 30.6863i 1.17418i −0.809523 0.587089i \(-0.800274\pi\)
0.809523 0.587089i \(-0.199726\pi\)
\(684\) 0 0
\(685\) 3.87451 3.16352i 0.148037 0.120872i
\(686\) −13.2553 + 22.9588i −0.506088 + 0.876571i
\(687\) 0 0
\(688\) −3.49117 + 2.01563i −0.133099 + 0.0768450i
\(689\) 7.11793 + 4.10954i 0.271171 + 0.156561i
\(690\) 0 0
\(691\) −17.0000 −0.646710 −0.323355 0.946278i \(-0.604811\pi\)
−0.323355 + 0.946278i \(0.604811\pi\)
\(692\) 7.93725i 0.301729i
\(693\) 0 0
\(694\) 3.00000 1.73205i 0.113878 0.0657477i
\(695\) −6.92820 + 5.65685i −0.262802 + 0.214577i
\(696\) 0 0
\(697\) −34.5595 59.8588i −1.30903 2.26731i
\(698\) −14.7768 8.53137i −0.559309 0.322917i
\(699\) 0 0
\(700\) −14.8042 + 16.7113i −0.559545 + 0.631629i
\(701\) 20.5901 + 11.8877i 0.777678 + 0.448993i 0.835607 0.549328i \(-0.185116\pi\)
−0.0579287 + 0.998321i \(0.518450\pi\)
\(702\) 0 0
\(703\) 27.0683 20.0930i 1.02090 0.757823i
\(704\) 4.90538i 0.184878i
\(705\) 0 0
\(706\) −18.5314 10.6991i −0.697437 0.402666i
\(707\) 6.31463 + 10.9373i 0.237486 + 0.411338i
\(708\) 0 0
\(709\) −20.4059 35.3440i −0.766359 1.32737i −0.939525 0.342480i \(-0.888733\pi\)
0.173166 0.984893i \(-0.444600\pi\)
\(710\) −10.3923 12.7279i −0.390016 0.477670i
\(711\) 0 0
\(712\) −5.23675 + 3.02344i −0.196255 + 0.113308i
\(713\) 0 0
\(714\) 0 0
\(715\) −29.4323 36.0470i −1.10070 1.34808i
\(716\) 3.02344 + 5.23675i 0.112991 + 0.195706i
\(717\) 0 0
\(718\) 3.53553 + 6.12372i 0.131945 + 0.228535i
\(719\) −30.3881 17.5446i −1.13328 0.654302i −0.188525 0.982068i \(-0.560371\pi\)
−0.944759 + 0.327766i \(0.893704\pi\)
\(720\) 0 0
\(721\) 3.35542i 0.124962i
\(722\) 13.8564 13.0000i 0.515682 0.483810i
\(723\) 0 0
\(724\) 13.4059 + 7.73989i 0.498226 + 0.287651i
\(725\) 27.5027 + 24.3640i 1.02142 + 0.904855i
\(726\) 0 0
\(727\) −21.0801 12.1706i −0.781818 0.451383i 0.0552565 0.998472i \(-0.482402\pi\)
−0.837074 + 0.547090i \(0.815736\pi\)
\(728\) −9.47194 16.4059i −0.351053 0.608042i
\(729\) 0 0
\(730\) −19.7103 + 16.0934i −0.729509 + 0.595642i
\(731\) 22.0454 12.7279i 0.815379 0.470759i
\(732\) 0 0
\(733\) 14.2631i 0.526819i −0.964684 0.263409i \(-0.915153\pi\)
0.964684 0.263409i \(-0.0848470\pi\)
\(734\) −5.61301 −0.207180
\(735\) 0 0
\(736\) −3.96863 2.29129i −0.146286 0.0844580i
\(737\) −18.0235 + 10.4059i −0.663905 + 0.383306i
\(738\) 0 0
\(739\) −26.3118 + 45.5733i −0.967894 + 1.67644i −0.266263 + 0.963900i \(0.585789\pi\)
−0.701631 + 0.712541i \(0.747544\pi\)
\(740\) −13.3953 + 10.9373i −0.492423 + 0.402061i
\(741\) 0 0
\(742\) 8.65006i 0.317554i
\(743\) 0.757346 + 0.437254i 0.0277843 + 0.0160413i 0.513828 0.857893i \(-0.328227\pi\)
−0.486043 + 0.873935i \(0.661560\pi\)
\(744\) 0 0
\(745\) 11.1428 29.3824i 0.408242 1.07649i
\(746\) 16.4188 + 9.47939i 0.601134 + 0.347065i
\(747\) 0 0
\(748\) 30.9756i 1.13258i
\(749\) 22.0454 0.805522
\(750\) 0 0
\(751\) −21.0000 + 12.1244i −0.766301 + 0.442424i −0.831553 0.555445i \(-0.812548\pi\)
0.0652526 + 0.997869i \(0.479215\pi\)
\(752\) 12.6293 0.460541
\(753\) 0 0
\(754\) −27.0000 + 15.5885i −0.983282 + 0.567698i
\(755\) −41.8112 + 6.79554i −1.52166 + 0.247315i
\(756\) 0 0
\(757\) 3.11543 + 1.79869i 0.113232 + 0.0653746i 0.555546 0.831485i \(-0.312509\pi\)
−0.442314 + 0.896860i \(0.645842\pi\)
\(758\) −17.2118 + 29.8118i −0.625162 + 1.08281i
\(759\) 0 0
\(760\) −6.79289 + 6.98975i −0.246404 + 0.253545i
\(761\) 11.8877i 0.430929i 0.976512 + 0.215465i \(0.0691266\pi\)
−0.976512 + 0.215465i \(0.930873\pi\)
\(762\) 0 0
\(763\) 42.2933 73.2541i 1.53112 2.65198i
\(764\) −8.49637 + 4.90538i −0.307388 + 0.177470i
\(765\) 0 0
\(766\) 13.9373 + 24.1400i 0.503573 + 0.872215i
\(767\) 10.3923 0.375244
\(768\) 0 0
\(769\) −0.0627461 0.108679i −0.00226268 0.00391908i 0.864892 0.501958i \(-0.167387\pi\)
−0.867155 + 0.498039i \(0.834054\pi\)
\(770\) 17.3668 45.7943i 0.625856 1.65031i
\(771\) 0 0
\(772\) −12.7279 −0.458088
\(773\) 4.43881 2.56275i 0.159653 0.0921756i −0.418045 0.908426i \(-0.637285\pi\)
0.577698 + 0.816251i \(0.303951\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 3.67423 + 2.12132i 0.131897 + 0.0761510i
\(777\) 0 0
\(778\) 15.5563 0.557722
\(779\) 5.47293 + 47.3969i 0.196088 + 1.69817i
\(780\) 0 0
\(781\) 31.2176 + 18.0235i 1.11706 + 0.644932i
\(782\) 25.0604 + 14.4686i 0.896158 + 0.517397i
\(783\) 0 0
\(784\) 6.46863 11.2040i 0.231022 0.400143i
\(785\) 16.4476 43.3706i 0.587041 1.54796i
\(786\) 0 0
\(787\) 36.6808 1.30753 0.653765 0.756698i \(-0.273189\pi\)
0.653765 + 0.756698i \(0.273189\pi\)
\(788\) 7.79423 + 13.5000i 0.277658 + 0.480918i
\(789\) 0 0
\(790\) −12.0000 + 9.79796i −0.426941 + 0.348596i
\(791\) −22.0454 −0.783844
\(792\) 0 0
\(793\) 1.98822 3.44369i 0.0706036 0.122289i
\(794\) 3.10029 + 5.36985i 0.110025 + 0.190569i
\(795\) 0 0
\(796\) −2.53137 + 4.38447i −0.0897221 + 0.155403i
\(797\) 10.0627i 0.356441i −0.983991 0.178220i \(-0.942966\pi\)
0.983991 0.178220i \(-0.0570340\pi\)
\(798\) 0 0
\(799\) −79.7490 −2.82132
\(800\) 3.31552 3.74264i 0.117221 0.132322i
\(801\) 0 0
\(802\) 8.35218 4.82213i 0.294926 0.170275i
\(803\) 27.9109 48.3431i 0.984955 1.70599i
\(804\) 0 0
\(805\) −28.9373 35.4408i −1.01990 1.24912i
\(806\) 0 0
\(807\) 0 0
\(808\) −1.41421 2.44949i −0.0497519 0.0861727i
\(809\) 19.5328i 0.686736i 0.939201 + 0.343368i \(0.111568\pi\)
−0.939201 + 0.343368i \(0.888432\pi\)
\(810\) 0 0
\(811\) −11.9059 + 6.87386i −0.418072 + 0.241374i −0.694252 0.719732i \(-0.744265\pi\)
0.276180 + 0.961106i \(0.410931\pi\)
\(812\) −28.4158 16.4059i −0.997200 0.575734i
\(813\) 0 0
\(814\) 18.9686 32.8546i 0.664850 1.15155i
\(815\) −28.6074 + 4.64954i −1.00207 + 0.162866i
\(816\) 0 0
\(817\) −17.4558 + 2.01563i −0.610702 + 0.0705178i
\(818\) 29.4449 1.02952
\(819\) 0 0
\(820\) −3.92649 24.1587i −0.137119 0.843657i
\(821\) 15.8448 9.14802i 0.552989 0.319268i −0.197338 0.980336i \(-0.563230\pi\)
0.750327 + 0.661067i \(0.229896\pi\)
\(822\) 0 0
\(823\) −3.11543 + 1.79869i −0.108597 + 0.0626985i −0.553315 0.832972i \(-0.686637\pi\)
0.444718 + 0.895671i \(0.353304\pi\)
\(824\) 0.751475i 0.0261789i
\(825\) 0 0
\(826\) 5.46863 + 9.47194i 0.190278 + 0.329571i
\(827\) 30.2565 17.4686i 1.05212 0.607444i 0.128880 0.991660i \(-0.458862\pi\)
0.923243 + 0.384216i \(0.125528\pi\)
\(828\) 0 0
\(829\) 51.7442i 1.79715i 0.438821 + 0.898575i \(0.355396\pi\)
−0.438821 + 0.898575i \(0.644604\pi\)
\(830\) 8.23999 21.7279i 0.286014 0.754187i
\(831\) 0 0
\(832\) 2.12132 + 3.67423i 0.0735436 + 0.127381i
\(833\) −40.8470 + 70.7490i −1.41526 + 2.45131i
\(834\) 0 0
\(835\) −28.1955 34.5323i −0.975747 1.19504i
\(836\) 8.49637 19.6215i 0.293853 0.678624i
\(837\) 0 0
\(838\) −10.8936 + 18.8683i −0.376313 + 0.651794i
\(839\) 24.4949 42.4264i 0.845658 1.46472i −0.0393910 0.999224i \(-0.512542\pi\)
0.885049 0.465498i \(-0.154125\pi\)
\(840\) 0 0
\(841\) −12.5000 + 21.6506i −0.431034 + 0.746574i
\(842\) −18.1322 31.4059i −0.624877 1.08232i
\(843\) 0 0
\(844\) 13.7477i 0.473216i
\(845\) 10.4539 + 3.96447i 0.359623 + 0.136382i
\(846\) 0 0
\(847\) 58.3267i 2.00413i
\(848\) 1.93725i 0.0665256i
\(849\) 0 0
\(850\) −20.9362 + 23.6334i −0.718107 + 0.810618i
\(851\) −17.7204 30.6926i −0.607447 1.05213i
\(852\) 0 0
\(853\) −4.86101 2.80651i −0.166438 0.0960929i 0.414467 0.910064i \(-0.363968\pi\)
−0.580905 + 0.813971i \(0.697301\pi\)
\(854\) 4.18495 0.143206
\(855\) 0 0
\(856\) −4.93725 −0.168752
\(857\) −7.03688 4.06275i −0.240375 0.138781i 0.374974 0.927035i \(-0.377652\pi\)
−0.615349 + 0.788255i \(0.710985\pi\)
\(858\) 0 0
\(859\) 4.03137 + 6.98254i 0.137549 + 0.238241i 0.926568 0.376127i \(-0.122744\pi\)
−0.789020 + 0.614368i \(0.789411\pi\)
\(860\) 8.89740 1.44609i 0.303399 0.0493112i
\(861\) 0 0
\(862\) 17.1464i 0.584010i
\(863\) 5.81176i 0.197835i 0.995096 + 0.0989173i \(0.0315379\pi\)
−0.995096 + 0.0989173i \(0.968462\pi\)
\(864\) 0 0
\(865\) −6.29339 + 16.5950i −0.213982 + 0.564246i
\(866\) 18.2073i 0.618709i
\(867\) 0 0
\(868\) 0 0
\(869\) 16.9927 29.4323i 0.576439 0.998422i
\(870\) 0 0
\(871\) 9.00000 15.5885i 0.304953 0.528195i
\(872\) −9.47194 + 16.4059i −0.320760 + 0.555573i
\(873\) 0 0
\(874\) −11.9059 16.0390i −0.402722 0.542528i
\(875\) 44.2024 23.2014i 1.49431 0.784351i
\(876\) 0 0
\(877\) −8.10954 + 14.0461i −0.273840 + 0.474305i −0.969842 0.243735i \(-0.921627\pi\)
0.696002 + 0.718040i \(0.254960\pi\)
\(878\) 2.65242 + 4.59412i 0.0895147 + 0.155044i
\(879\) 0 0
\(880\) −3.88944 + 10.2560i −0.131113 + 0.345730i
\(881\) 27.5328i 0.927603i −0.885939 0.463802i \(-0.846485\pi\)
0.885939 0.463802i \(-0.153515\pi\)
\(882\) 0 0
\(883\) 14.0978 8.13935i 0.474428 0.273911i −0.243664 0.969860i \(-0.578349\pi\)
0.718091 + 0.695949i \(0.245016\pi\)
\(884\) −13.3953 23.2014i −0.450534 0.780348i
\(885\) 0 0
\(886\) 1.62337i 0.0545382i
\(887\) 12.2330 7.06275i 0.410745 0.237144i −0.280365 0.959894i \(-0.590455\pi\)
0.691110 + 0.722750i \(0.257122\pi\)
\(888\) 0 0
\(889\) 2.90588 1.67771i 0.0974601 0.0562686i
\(890\) 13.3461 2.16913i 0.447362 0.0727095i
\(891\) 0 0
\(892\) 9.23676 0.309269
\(893\) 50.5170 + 21.8745i 1.69049 + 0.732002i
\(894\) 0 0
\(895\) −2.16913 13.3461i −0.0725061 0.446111i
\(896\) −2.23256 + 3.86690i −0.0745845 + 0.129184i
\(897\) 0 0
\(898\) −1.12721 0.650796i −0.0376156 0.0217174i
\(899\) 0 0
\(900\) 0 0
\(901\) 12.2330i 0.407541i
\(902\) 26.8468 + 46.5000i 0.893900 + 1.54828i
\(903\) 0 0
\(904\) 4.93725 0.164211
\(905\) −21.8917 26.8118i −0.727705 0.891253i
\(906\) 0 0
\(907\) 28.9470 50.1377i 0.961170 1.66479i 0.241598 0.970376i \(-0.422328\pi\)
0.719572 0.694418i \(-0.244338\pi\)
\(908\) 6.11652 3.53137i 0.202984 0.117193i
\(909\) 0 0
\(910\) 6.79554 + 41.8112i 0.225270 + 1.38603i
\(911\) −43.7834 −1.45061 −0.725305 0.688428i \(-0.758301\pi\)
−0.725305 + 0.688428i \(0.758301\pi\)
\(912\) 0 0
\(913\) 50.9782i 1.68713i
\(914\) −0.0768479 + 0.133105i −0.00254190 + 0.00440271i
\(915\) 0 0
\(916\) −11.9373 20.6759i −0.394418 0.683152i
\(917\) 23.7789 41.1863i 0.785249 1.36009i
\(918\) 0 0
\(919\) 34.8118 1.14833 0.574167 0.818738i \(-0.305326\pi\)
0.574167 + 0.818738i \(0.305326\pi\)
\(920\) 6.48074 + 7.93725i 0.213664 + 0.261684i
\(921\) 0 0
\(922\) 6.31959 + 10.9459i 0.208125 + 0.360483i
\(923\) −31.1769 −1.02620
\(924\) 0 0
\(925\) 36.6787 12.2462i 1.20599 0.402653i
\(926\) 4.60520 7.97644i 0.151336 0.262122i
\(927\) 0 0
\(928\) 6.36396 + 3.67423i 0.208907 + 0.120613i
\(929\) −26.2167 15.1362i −0.860143 0.496604i 0.00391689 0.999992i \(-0.498753\pi\)
−0.864060 + 0.503388i \(0.832087\pi\)
\(930\) 0 0
\(931\) 45.2804 33.6120i 1.48400 1.10159i
\(932\) −21.7944 −0.713899
\(933\) 0 0
\(934\) −12.5314 7.23499i −0.410039 0.236736i
\(935\) 24.5604 64.7629i 0.803210 2.11797i
\(936\) 0 0
\(937\) −36.0624 + 20.8207i −1.17811 + 0.680181i −0.955576 0.294744i \(-0.904766\pi\)
−0.222532 + 0.974925i \(0.571432\pi\)
\(938\) 18.9439 0.618540
\(939\) 0 0
\(940\) −26.4049 10.0136i −0.861232 0.326609i
\(941\) −6.12372 10.6066i −0.199628 0.345765i 0.748780 0.662819i \(-0.230640\pi\)
−0.948408 + 0.317053i \(0.897307\pi\)
\(942\) 0 0
\(943\) 50.1602 1.63344
\(944\) −1.22474 2.12132i −0.0398621 0.0690431i
\(945\) 0 0
\(946\) −17.1255 + 9.88741i −0.556798 + 0.321467i
\(947\) −0.306788 + 0.531373i −0.00996928 + 0.0172673i −0.870967 0.491342i \(-0.836507\pi\)
0.860998 + 0.508609i \(0.169840\pi\)
\(948\) 0 0
\(949\) 48.2801i 1.56724i
\(950\) 19.7445 9.22792i 0.640596 0.299393i
\(951\) 0 0
\(952\) 14.0978 24.4180i 0.456911 0.791394i
\(953\) 1.84073 + 1.06275i 0.0596271 + 0.0344257i 0.529517 0.848299i \(-0.322373\pi\)
−0.469890 + 0.882725i \(0.655706\pi\)
\(954\) 0 0
\(955\) 21.6534 3.51931i 0.700687 0.113882i
\(956\) −23.1933 + 13.3907i −0.750125 + 0.433085i
\(957\) 0 0
\(958\) 35.3553 1.14228
\(959\) 8.65006 4.99412i 0.279325 0.161268i
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 32.8118i 1.05789i
\(963\) 0 0
\(964\) 6.00000 + 3.46410i 0.193247 + 0.111571i
\(965\) 26.6112 + 10.0919i 0.856644 + 0.324869i
\(966\) 0 0
\(967\) −30.3169 17.5034i −0.974924 0.562873i −0.0741904 0.997244i \(-0.523637\pi\)
−0.900734 + 0.434371i \(0.856971\pi\)
\(968\) 13.0627i 0.419853i
\(969\) 0 0
\(970\) −6.00000 7.34847i −0.192648 0.235945i
\(971\) −13.4722 + 23.3345i −0.432343 + 0.748841i −0.997075 0.0764343i \(-0.975646\pi\)
0.564731 + 0.825275i \(0.308980\pi\)
\(972\) 0 0
\(973\) −15.4676 + 8.93023i −0.495869 + 0.286290i
\(974\) 23.7673 + 13.7220i 0.761552 + 0.439682i
\(975\) 0 0
\(976\) −0.937254 −0.0300008
\(977\) 25.0627i 0.801828i 0.916116 + 0.400914i \(0.131307\pi\)
−0.916116 + 0.400914i \(0.868693\pi\)
\(978\) 0 0
\(979\) −25.6882 + 14.8311i −0.821000 + 0.474004i
\(980\) −22.4080 + 18.2960i −0.715797 + 0.584446i
\(981\) 0 0
\(982\) 14.4291 + 24.9920i 0.460452 + 0.797527i
\(983\) −37.1304 21.4373i −1.18428 0.683742i −0.227276 0.973830i \(-0.572982\pi\)
−0.957000 + 0.290088i \(0.906315\pi\)
\(984\) 0 0
\(985\) −5.59188 34.4054i −0.178172 1.09625i
\(986\) −40.1860 23.2014i −1.27978 0.738884i
\(987\) 0 0
\(988\) 2.12132 + 18.3712i 0.0674882 + 0.584465i
\(989\) 18.4735i 0.587424i
\(990\) 0 0
\(991\) 40.4059 + 23.3283i 1.28354 + 0.741049i 0.977493 0.210969i \(-0.0676618\pi\)
0.306042 + 0.952018i \(0.400995\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −16.4059 28.4158i −0.520363 0.901295i
\(995\) 8.76893 7.15980i 0.277994 0.226981i
\(996\) 0 0
\(997\) 47.3969 27.3646i 1.50108 0.866647i 0.501077 0.865403i \(-0.332937\pi\)
0.999999 0.00124421i \(-0.000396044\pi\)
\(998\) −14.6138 + 8.43725i −0.462590 + 0.267077i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1710.2.q.a.179.5 yes 16
3.2 odd 2 inner 1710.2.q.a.179.3 yes 16
5.4 even 2 inner 1710.2.q.a.179.2 16
15.14 odd 2 inner 1710.2.q.a.179.8 yes 16
19.12 odd 6 inner 1710.2.q.a.449.7 yes 16
57.50 even 6 inner 1710.2.q.a.449.1 yes 16
95.69 odd 6 inner 1710.2.q.a.449.4 yes 16
285.164 even 6 inner 1710.2.q.a.449.6 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1710.2.q.a.179.2 16 5.4 even 2 inner
1710.2.q.a.179.3 yes 16 3.2 odd 2 inner
1710.2.q.a.179.5 yes 16 1.1 even 1 trivial
1710.2.q.a.179.8 yes 16 15.14 odd 2 inner
1710.2.q.a.449.1 yes 16 57.50 even 6 inner
1710.2.q.a.449.4 yes 16 95.69 odd 6 inner
1710.2.q.a.449.6 yes 16 285.164 even 6 inner
1710.2.q.a.449.7 yes 16 19.12 odd 6 inner