Properties

Label 1740.1.v.a
Level $1740$
Weight $1$
Character orbit 1740.v
Analytic conductor $0.868$
Analytic rank $0$
Dimension $4$
Projective image $D_{4}$
CM discriminant -116
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1740,1,Mod(347,1740)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1740, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 1, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1740.347");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1740 = 2^{2} \cdot 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1740.v (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.868373121981\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.3784500.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{8} q^{2} - \zeta_{8} q^{3} + \zeta_{8}^{2} q^{4} - q^{5} - \zeta_{8}^{2} q^{6} + \zeta_{8}^{3} q^{8} + \zeta_{8}^{2} q^{9} - \zeta_{8} q^{10} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{11} - \zeta_{8}^{3} q^{12} + \cdots + ( - \zeta_{8}^{3} + \zeta_{8}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} - 4 q^{13} - 4 q^{16} + 4 q^{22} + 4 q^{24} + 4 q^{25} - 4 q^{29} - 4 q^{33} - 4 q^{36} + 4 q^{38} + 4 q^{52} - 4 q^{53} + 4 q^{54} - 4 q^{57} + 4 q^{62} + 4 q^{65} - 4 q^{78} + 4 q^{80} - 4 q^{81}+ \cdots - 4 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1740\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(697\) \(871\) \(901\)
\(\chi(n)\) \(-1\) \(-\zeta_{8}^{2}\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
347.1
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 + 0.707107i 0.707107 0.707107i 1.00000i −1.00000 1.00000i 0 0.707107 + 0.707107i 1.00000i 0.707107 0.707107i
347.2 0.707107 0.707107i −0.707107 + 0.707107i 1.00000i −1.00000 1.00000i 0 −0.707107 0.707107i 1.00000i −0.707107 + 0.707107i
1043.1 −0.707107 0.707107i 0.707107 + 0.707107i 1.00000i −1.00000 1.00000i 0 0.707107 0.707107i 1.00000i 0.707107 + 0.707107i
1043.2 0.707107 + 0.707107i −0.707107 0.707107i 1.00000i −1.00000 1.00000i 0 −0.707107 + 0.707107i 1.00000i −0.707107 0.707107i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
116.d odd 2 1 CM by \(\Q(\sqrt{-29}) \)
4.b odd 2 1 inner
15.e even 4 1 inner
29.b even 2 1 inner
60.l odd 4 1 inner
435.p even 4 1 inner
1740.v odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1740.1.v.a 4
3.b odd 2 1 1740.1.v.b yes 4
4.b odd 2 1 inner 1740.1.v.a 4
5.c odd 4 1 1740.1.v.b yes 4
12.b even 2 1 1740.1.v.b yes 4
15.e even 4 1 inner 1740.1.v.a 4
20.e even 4 1 1740.1.v.b yes 4
29.b even 2 1 inner 1740.1.v.a 4
60.l odd 4 1 inner 1740.1.v.a 4
87.d odd 2 1 1740.1.v.b yes 4
116.d odd 2 1 CM 1740.1.v.a 4
145.h odd 4 1 1740.1.v.b yes 4
348.b even 2 1 1740.1.v.b yes 4
435.p even 4 1 inner 1740.1.v.a 4
580.o even 4 1 1740.1.v.b yes 4
1740.v odd 4 1 inner 1740.1.v.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1740.1.v.a 4 1.a even 1 1 trivial
1740.1.v.a 4 4.b odd 2 1 inner
1740.1.v.a 4 15.e even 4 1 inner
1740.1.v.a 4 29.b even 2 1 inner
1740.1.v.a 4 60.l odd 4 1 inner
1740.1.v.a 4 116.d odd 2 1 CM
1740.1.v.a 4 435.p even 4 1 inner
1740.1.v.a 4 1740.v odd 4 1 inner
1740.1.v.b yes 4 3.b odd 2 1
1740.1.v.b yes 4 5.c odd 4 1
1740.1.v.b yes 4 12.b even 2 1
1740.1.v.b yes 4 20.e even 4 1
1740.1.v.b yes 4 87.d odd 2 1
1740.1.v.b yes 4 145.h odd 4 1
1740.1.v.b yes 4 348.b even 2 1
1740.1.v.b yes 4 580.o even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1740, [\chi])\):

\( T_{11}^{2} + 2 \) Copy content Toggle raw display
\( T_{53}^{2} + 2T_{53} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} + 1 \) Copy content Toggle raw display
$5$ \( (T + 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T + 1)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + 16 \) Copy content Toggle raw display
$53$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less