Properties

Label 180.1.p.b
Level $180$
Weight $1$
Character orbit 180.p
Analytic conductor $0.090$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [180,1,Mod(79,180)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(180, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("180.79");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 180.p (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.0898317022739\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.1620.1
Artin image: $C_6\times S_3$
Artin field: Galois closure of 12.0.419904000000.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{6}^{2} q^{2} + \zeta_{6} q^{3} - \zeta_{6} q^{4} - \zeta_{6} q^{5} + q^{6} + \zeta_{6}^{2} q^{7} - q^{8} + \zeta_{6}^{2} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \zeta_{6}^{2} q^{2} + \zeta_{6} q^{3} - \zeta_{6} q^{4} - \zeta_{6} q^{5} + q^{6} + \zeta_{6}^{2} q^{7} - q^{8} + \zeta_{6}^{2} q^{9} - q^{10} - \zeta_{6}^{2} q^{12} + \zeta_{6} q^{14} - \zeta_{6}^{2} q^{15} + \zeta_{6}^{2} q^{16} + \zeta_{6} q^{18} + \zeta_{6}^{2} q^{20} - q^{21} - \zeta_{6} q^{23} - \zeta_{6} q^{24} + \zeta_{6}^{2} q^{25} - q^{27} + q^{28} - \zeta_{6}^{2} q^{29} - \zeta_{6} q^{30} + \zeta_{6} q^{32} + q^{35} + q^{36} + \zeta_{6} q^{40} + \zeta_{6} q^{41} + \zeta_{6}^{2} q^{42} - 2 \zeta_{6}^{2} q^{43} + q^{45} - q^{46} + \zeta_{6}^{2} q^{47} - q^{48} + \zeta_{6} q^{50} + \zeta_{6}^{2} q^{54} - \zeta_{6}^{2} q^{56} - \zeta_{6} q^{58} - q^{60} - \zeta_{6}^{2} q^{61} - \zeta_{6} q^{63} + q^{64} - \zeta_{6} q^{67} - \zeta_{6}^{2} q^{69} - \zeta_{6}^{2} q^{70} - \zeta_{6}^{2} q^{72} - q^{75} + q^{80} - \zeta_{6} q^{81} + q^{82} + \zeta_{6}^{2} q^{83} + \zeta_{6} q^{84} - 2 \zeta_{6} q^{86} + q^{87} - q^{89} - \zeta_{6}^{2} q^{90} + \zeta_{6}^{2} q^{92} + \zeta_{6} q^{94} + \zeta_{6}^{2} q^{96} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + q^{3} - q^{4} - q^{5} + 2 q^{6} - q^{7} - 2 q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} + q^{3} - q^{4} - q^{5} + 2 q^{6} - q^{7} - 2 q^{8} - q^{9} - 2 q^{10} + q^{12} + q^{14} + q^{15} - q^{16} + q^{18} - q^{20} - 2 q^{21} - q^{23} - q^{24} - q^{25} - 2 q^{27} + 2 q^{28} + q^{29} - q^{30} + q^{32} + 2 q^{35} + 2 q^{36} + q^{40} + q^{41} - q^{42} + 2 q^{43} + 2 q^{45} - 2 q^{46} - q^{47} - 2 q^{48} + q^{50} - q^{54} + q^{56} - q^{58} - 2 q^{60} + q^{61} - q^{63} + 2 q^{64} - q^{67} + q^{69} + q^{70} + q^{72} - 2 q^{75} + 2 q^{80} - q^{81} + 2 q^{82} - q^{83} + q^{84} - 2 q^{86} + 2 q^{87} - 2 q^{89} + q^{90} - q^{92} + q^{94} - q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(-1\) \(-1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
79.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 0.866025i 0.500000 + 0.866025i −0.500000 0.866025i −0.500000 0.866025i 1.00000 −0.500000 + 0.866025i −1.00000 −0.500000 + 0.866025i −1.00000
139.1 0.500000 + 0.866025i 0.500000 0.866025i −0.500000 + 0.866025i −0.500000 + 0.866025i 1.00000 −0.500000 0.866025i −1.00000 −0.500000 0.866025i −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)
9.c even 3 1 inner
180.p odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 180.1.p.b yes 2
3.b odd 2 1 540.1.p.a 2
4.b odd 2 1 180.1.p.a 2
5.b even 2 1 180.1.p.a 2
5.c odd 4 2 900.1.t.a 4
8.b even 2 1 2880.1.bu.a 2
8.d odd 2 1 2880.1.bu.b 2
9.c even 3 1 inner 180.1.p.b yes 2
9.c even 3 1 1620.1.f.b 1
9.d odd 6 1 540.1.p.a 2
9.d odd 6 1 1620.1.f.c 1
12.b even 2 1 540.1.p.b 2
15.d odd 2 1 540.1.p.b 2
15.e even 4 2 2700.1.t.a 4
20.d odd 2 1 CM 180.1.p.b yes 2
20.e even 4 2 900.1.t.a 4
36.f odd 6 1 180.1.p.a 2
36.f odd 6 1 1620.1.f.d 1
36.h even 6 1 540.1.p.b 2
36.h even 6 1 1620.1.f.a 1
40.e odd 2 1 2880.1.bu.a 2
40.f even 2 1 2880.1.bu.b 2
45.h odd 6 1 540.1.p.b 2
45.h odd 6 1 1620.1.f.a 1
45.j even 6 1 180.1.p.a 2
45.j even 6 1 1620.1.f.d 1
45.k odd 12 2 900.1.t.a 4
45.l even 12 2 2700.1.t.a 4
60.h even 2 1 540.1.p.a 2
60.l odd 4 2 2700.1.t.a 4
72.n even 6 1 2880.1.bu.a 2
72.p odd 6 1 2880.1.bu.b 2
180.n even 6 1 540.1.p.a 2
180.n even 6 1 1620.1.f.c 1
180.p odd 6 1 inner 180.1.p.b yes 2
180.p odd 6 1 1620.1.f.b 1
180.v odd 12 2 2700.1.t.a 4
180.x even 12 2 900.1.t.a 4
360.z odd 6 1 2880.1.bu.a 2
360.bk even 6 1 2880.1.bu.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
180.1.p.a 2 4.b odd 2 1
180.1.p.a 2 5.b even 2 1
180.1.p.a 2 36.f odd 6 1
180.1.p.a 2 45.j even 6 1
180.1.p.b yes 2 1.a even 1 1 trivial
180.1.p.b yes 2 9.c even 3 1 inner
180.1.p.b yes 2 20.d odd 2 1 CM
180.1.p.b yes 2 180.p odd 6 1 inner
540.1.p.a 2 3.b odd 2 1
540.1.p.a 2 9.d odd 6 1
540.1.p.a 2 60.h even 2 1
540.1.p.a 2 180.n even 6 1
540.1.p.b 2 12.b even 2 1
540.1.p.b 2 15.d odd 2 1
540.1.p.b 2 36.h even 6 1
540.1.p.b 2 45.h odd 6 1
900.1.t.a 4 5.c odd 4 2
900.1.t.a 4 20.e even 4 2
900.1.t.a 4 45.k odd 12 2
900.1.t.a 4 180.x even 12 2
1620.1.f.a 1 36.h even 6 1
1620.1.f.a 1 45.h odd 6 1
1620.1.f.b 1 9.c even 3 1
1620.1.f.b 1 180.p odd 6 1
1620.1.f.c 1 9.d odd 6 1
1620.1.f.c 1 180.n even 6 1
1620.1.f.d 1 36.f odd 6 1
1620.1.f.d 1 45.j even 6 1
2700.1.t.a 4 15.e even 4 2
2700.1.t.a 4 45.l even 12 2
2700.1.t.a 4 60.l odd 4 2
2700.1.t.a 4 180.v odd 12 2
2880.1.bu.a 2 8.b even 2 1
2880.1.bu.a 2 40.e odd 2 1
2880.1.bu.a 2 72.n even 6 1
2880.1.bu.a 2 360.z odd 6 1
2880.1.bu.b 2 8.d odd 2 1
2880.1.bu.b 2 40.f even 2 1
2880.1.bu.b 2 72.p odd 6 1
2880.1.bu.b 2 360.bk even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} + T_{7} + 1 \) acting on \(S_{1}^{\mathrm{new}}(180, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$29$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$43$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$47$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$67$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$89$ \( (T + 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less