Properties

Label 1815.1.o.g.1334.1
Level $1815$
Weight $1$
Character 1815.1334
Analytic conductor $0.906$
Analytic rank $0$
Dimension $8$
Projective image $D_{6}$
CM discriminant -15
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1815,1,Mod(269,1815)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1815, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1815.269");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1815 = 3 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1815.o (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.905802997929\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.324000000.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 9x^{4} + 27x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.0.36236475.1

Embedding invariants

Embedding label 1334.1
Root \(-0.535233 - 1.64728i\) of defining polynomial
Character \(\chi\) \(=\) 1815.1334
Dual form 1815.1.o.g.1049.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40126 + 1.01807i) q^{2} +(0.309017 + 0.951057i) q^{3} +(0.618034 - 1.90211i) q^{4} +(0.809017 + 0.587785i) q^{5} +(-1.40126 - 1.01807i) q^{6} +(0.535233 + 1.64728i) q^{8} +(-0.809017 + 0.587785i) q^{9} -1.73205 q^{10} +2.00000 q^{12} +(-0.309017 + 0.951057i) q^{15} +(-0.809017 - 0.587785i) q^{16} +(1.40126 + 1.01807i) q^{17} +(0.535233 - 1.64728i) q^{18} +(1.61803 - 1.17557i) q^{20} -1.00000 q^{23} +(-1.40126 + 1.01807i) q^{24} +(0.309017 + 0.951057i) q^{25} +(-0.809017 - 0.587785i) q^{27} +(-0.535233 - 1.64728i) q^{30} +(0.809017 - 0.587785i) q^{31} -3.00000 q^{34} +(0.618034 + 1.90211i) q^{36} +(-0.535233 + 1.64728i) q^{40} -1.00000 q^{45} +(1.40126 - 1.01807i) q^{46} +(0.309017 + 0.951057i) q^{47} +(0.309017 - 0.951057i) q^{48} +(-0.809017 - 0.587785i) q^{49} +(-1.40126 - 1.01807i) q^{50} +(-0.535233 + 1.64728i) q^{51} +(-0.809017 + 0.587785i) q^{53} +1.73205 q^{54} +(1.61803 + 1.17557i) q^{60} +(1.40126 + 1.01807i) q^{61} +(-0.535233 + 1.64728i) q^{62} +(0.809017 - 0.587785i) q^{64} +(2.80252 - 2.03615i) q^{68} +(-0.309017 - 0.951057i) q^{69} +(-1.40126 - 1.01807i) q^{72} +(-0.809017 + 0.587785i) q^{75} +(-1.40126 + 1.01807i) q^{79} +(-0.309017 - 0.951057i) q^{80} +(0.309017 - 0.951057i) q^{81} +(0.535233 + 1.64728i) q^{85} +(1.40126 - 1.01807i) q^{90} +(-0.618034 + 1.90211i) q^{92} +(0.809017 + 0.587785i) q^{93} +(-1.40126 - 1.01807i) q^{94} +1.73205 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} - 4 q^{4} + 2 q^{5} - 2 q^{9} + 16 q^{12} + 2 q^{15} - 2 q^{16} + 4 q^{20} - 8 q^{23} - 2 q^{25} - 2 q^{27} + 2 q^{31} - 24 q^{34} - 4 q^{36} - 8 q^{45} - 2 q^{47} - 2 q^{48} - 2 q^{49} - 2 q^{53}+ \cdots + 2 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1815\mathbb{Z}\right)^\times\).

\(n\) \(727\) \(1211\) \(1696\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40126 + 1.01807i −1.40126 + 1.01807i −0.406737 + 0.913545i \(0.633333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(3\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(4\) 0.618034 1.90211i 0.618034 1.90211i
\(5\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(6\) −1.40126 1.01807i −1.40126 1.01807i
\(7\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(8\) 0.535233 + 1.64728i 0.535233 + 1.64728i
\(9\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(10\) −1.73205 −1.73205
\(11\) 0 0
\(12\) 2.00000 2.00000
\(13\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(14\) 0 0
\(15\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(16\) −0.809017 0.587785i −0.809017 0.587785i
\(17\) 1.40126 + 1.01807i 1.40126 + 1.01807i 0.994522 + 0.104528i \(0.0333333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(18\) 0.535233 1.64728i 0.535233 1.64728i
\(19\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(20\) 1.61803 1.17557i 1.61803 1.17557i
\(21\) 0 0
\(22\) 0 0
\(23\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(24\) −1.40126 + 1.01807i −1.40126 + 1.01807i
\(25\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(26\) 0 0
\(27\) −0.809017 0.587785i −0.809017 0.587785i
\(28\) 0 0
\(29\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(30\) −0.535233 1.64728i −0.535233 1.64728i
\(31\) 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) −3.00000 −3.00000
\(35\) 0 0
\(36\) 0.618034 + 1.90211i 0.618034 + 1.90211i
\(37\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −0.535233 + 1.64728i −0.535233 + 1.64728i
\(41\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) −1.00000 −1.00000
\(46\) 1.40126 1.01807i 1.40126 1.01807i
\(47\) 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i \(0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(48\) 0.309017 0.951057i 0.309017 0.951057i
\(49\) −0.809017 0.587785i −0.809017 0.587785i
\(50\) −1.40126 1.01807i −1.40126 1.01807i
\(51\) −0.535233 + 1.64728i −0.535233 + 1.64728i
\(52\) 0 0
\(53\) −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i \(-0.866667\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(54\) 1.73205 1.73205
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(60\) 1.61803 + 1.17557i 1.61803 + 1.17557i
\(61\) 1.40126 + 1.01807i 1.40126 + 1.01807i 0.994522 + 0.104528i \(0.0333333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(62\) −0.535233 + 1.64728i −0.535233 + 1.64728i
\(63\) 0 0
\(64\) 0.809017 0.587785i 0.809017 0.587785i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 2.80252 2.03615i 2.80252 2.03615i
\(69\) −0.309017 0.951057i −0.309017 0.951057i
\(70\) 0 0
\(71\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(72\) −1.40126 1.01807i −1.40126 1.01807i
\(73\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(74\) 0 0
\(75\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.40126 + 1.01807i −1.40126 + 1.01807i −0.406737 + 0.913545i \(0.633333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(80\) −0.309017 0.951057i −0.309017 0.951057i
\(81\) 0.309017 0.951057i 0.309017 0.951057i
\(82\) 0 0
\(83\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(84\) 0 0
\(85\) 0.535233 + 1.64728i 0.535233 + 1.64728i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 1.40126 1.01807i 1.40126 1.01807i
\(91\) 0 0
\(92\) −0.618034 + 1.90211i −0.618034 + 1.90211i
\(93\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(94\) −1.40126 1.01807i −1.40126 1.01807i
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(98\) 1.73205 1.73205
\(99\) 0 0
\(100\) 2.00000 2.00000
\(101\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(102\) −0.927051 2.85317i −0.927051 2.85317i
\(103\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0.535233 1.64728i 0.535233 1.64728i
\(107\) −0.535233 1.64728i −0.535233 1.64728i −0.743145 0.669131i \(-0.766667\pi\)
0.207912 0.978148i \(-0.433333\pi\)
\(108\) −1.61803 + 1.17557i −1.61803 + 1.17557i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(114\) 0 0
\(115\) −0.809017 0.587785i −0.809017 0.587785i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) −1.73205 −1.73205
\(121\) 0 0
\(122\) −3.00000 −3.00000
\(123\) 0 0
\(124\) −0.618034 1.90211i −0.618034 1.90211i
\(125\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(126\) 0 0
\(127\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(128\) −0.535233 + 1.64728i −0.535233 + 1.64728i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −0.309017 0.951057i −0.309017 0.951057i
\(136\) −0.927051 + 2.85317i −0.927051 + 2.85317i
\(137\) −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i \(-0.466667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(138\) 1.40126 + 1.01807i 1.40126 + 1.01807i
\(139\) 0.535233 1.64728i 0.535233 1.64728i −0.207912 0.978148i \(-0.566667\pi\)
0.743145 0.669131i \(-0.233333\pi\)
\(140\) 0 0
\(141\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(142\) 0 0
\(143\) 0 0
\(144\) 1.00000 1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) 0.309017 0.951057i 0.309017 0.951057i
\(148\) 0 0
\(149\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(150\) 0.535233 1.64728i 0.535233 1.64728i
\(151\) −0.535233 1.64728i −0.535233 1.64728i −0.743145 0.669131i \(-0.766667\pi\)
0.207912 0.978148i \(-0.433333\pi\)
\(152\) 0 0
\(153\) −1.73205 −1.73205
\(154\) 0 0
\(155\) 1.00000 1.00000
\(156\) 0 0
\(157\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(158\) 0.927051 2.85317i 0.927051 2.85317i
\(159\) −0.809017 0.587785i −0.809017 0.587785i
\(160\) 0 0
\(161\) 0 0
\(162\) 0.535233 + 1.64728i 0.535233 + 1.64728i
\(163\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.40126 1.01807i 1.40126 1.01807i 0.406737 0.913545i \(-0.366667\pi\)
0.994522 0.104528i \(-0.0333333\pi\)
\(168\) 0 0
\(169\) 0.309017 0.951057i 0.309017 0.951057i
\(170\) −2.42705 1.76336i −2.42705 1.76336i
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(180\) −0.618034 + 1.90211i −0.618034 + 1.90211i
\(181\) 1.61803 + 1.17557i 1.61803 + 1.17557i 0.809017 + 0.587785i \(0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(182\) 0 0
\(183\) −0.535233 + 1.64728i −0.535233 + 1.64728i
\(184\) −0.535233 1.64728i −0.535233 1.64728i
\(185\) 0 0
\(186\) −1.73205 −1.73205
\(187\) 0 0
\(188\) 2.00000 2.00000
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(192\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(193\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −1.61803 + 1.17557i −1.61803 + 1.17557i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(200\) −1.40126 + 1.01807i −1.40126 + 1.01807i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 2.80252 + 2.03615i 2.80252 + 2.03615i
\(205\) 0 0
\(206\) 0 0
\(207\) 0.809017 0.587785i 0.809017 0.587785i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.40126 + 1.01807i −1.40126 + 1.01807i −0.406737 + 0.913545i \(0.633333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(212\) 0.618034 + 1.90211i 0.618034 + 1.90211i
\(213\) 0 0
\(214\) 2.42705 + 1.76336i 2.42705 + 1.76336i
\(215\) 0 0
\(216\) 0.535233 1.64728i 0.535233 1.64728i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(224\) 0 0
\(225\) −0.809017 0.587785i −0.809017 0.587785i
\(226\) 1.40126 + 1.01807i 1.40126 + 1.01807i
\(227\) 0.535233 1.64728i 0.535233 1.64728i −0.207912 0.978148i \(-0.566667\pi\)
0.743145 0.669131i \(-0.233333\pi\)
\(228\) 0 0
\(229\) −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i \(-0.866667\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(230\) 1.73205 1.73205
\(231\) 0 0
\(232\) 0 0
\(233\) −1.40126 + 1.01807i −1.40126 + 1.01807i −0.406737 + 0.913545i \(0.633333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(234\) 0 0
\(235\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(236\) 0 0
\(237\) −1.40126 1.01807i −1.40126 1.01807i
\(238\) 0 0
\(239\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(240\) 0.809017 0.587785i 0.809017 0.587785i
\(241\) 1.73205 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(242\) 0 0
\(243\) 1.00000 1.00000
\(244\) 2.80252 2.03615i 2.80252 2.03615i
\(245\) −0.309017 0.951057i −0.309017 0.951057i
\(246\) 0 0
\(247\) 0 0
\(248\) 1.40126 + 1.01807i 1.40126 + 1.01807i
\(249\) 0 0
\(250\) −0.535233 1.64728i −0.535233 1.64728i
\(251\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −1.40126 + 1.01807i −1.40126 + 1.01807i
\(256\) −0.618034 1.90211i −0.618034 1.90211i
\(257\) −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i \(0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.73205 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(264\) 0 0
\(265\) −1.00000 −1.00000
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(270\) 1.40126 + 1.01807i 1.40126 + 1.01807i
\(271\) −0.535233 + 1.64728i −0.535233 + 1.64728i 0.207912 + 0.978148i \(0.433333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(272\) −0.535233 1.64728i −0.535233 1.64728i
\(273\) 0 0
\(274\) 1.73205 1.73205
\(275\) 0 0
\(276\) −2.00000 −2.00000
\(277\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(278\) 0.927051 + 2.85317i 0.927051 + 2.85317i
\(279\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(280\) 0 0
\(281\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(282\) 0.535233 1.64728i 0.535233 1.64728i
\(283\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.618034 + 1.90211i 0.618034 + 1.90211i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.535233 1.64728i 0.535233 1.64728i −0.207912 0.978148i \(-0.566667\pi\)
0.743145 0.669131i \(-0.233333\pi\)
\(294\) 0.535233 + 1.64728i 0.535233 + 1.64728i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0.618034 + 1.90211i 0.618034 + 1.90211i
\(301\) 0 0
\(302\) 2.42705 + 1.76336i 2.42705 + 1.76336i
\(303\) 0 0
\(304\) 0 0
\(305\) 0.535233 + 1.64728i 0.535233 + 1.64728i
\(306\) 2.42705 1.76336i 2.42705 1.76336i
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −1.40126 + 1.01807i −1.40126 + 1.01807i
\(311\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(312\) 0 0
\(313\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 1.07047 + 3.29456i 1.07047 + 3.29456i
\(317\) 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(318\) 1.73205 1.73205
\(319\) 0 0
\(320\) 1.00000 1.00000
\(321\) 1.40126 1.01807i 1.40126 1.01807i
\(322\) 0 0
\(323\) 0 0
\(324\) −1.61803 1.17557i −1.61803 1.17557i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −0.927051 + 2.85317i −0.927051 + 2.85317i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(338\) 0.535233 + 1.64728i 0.535233 + 1.64728i
\(339\) 0.809017 0.587785i 0.809017 0.587785i
\(340\) 3.46410 3.46410
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0.309017 0.951057i 0.309017 0.951057i
\(346\) 0 0
\(347\) −1.40126 1.01807i −1.40126 1.01807i −0.994522 0.104528i \(-0.966667\pi\)
−0.406737 0.913545i \(-0.633333\pi\)
\(348\) 0 0
\(349\) 0.535233 + 1.64728i 0.535233 + 1.64728i 0.743145 + 0.669131i \(0.233333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(360\) −0.535233 1.64728i −0.535233 1.64728i
\(361\) 0.809017 0.587785i 0.809017 0.587785i
\(362\) −3.46410 −3.46410
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) −0.927051 2.85317i −0.927051 2.85317i
\(367\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(368\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 1.61803 1.17557i 1.61803 1.17557i
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) −1.00000 −1.00000
\(376\) −1.40126 + 1.01807i −1.40126 + 1.01807i
\(377\) 0 0
\(378\) 0 0
\(379\) 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i \(-0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.61803 1.17557i 1.61803 1.17557i 0.809017 0.587785i \(-0.200000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(384\) −1.73205 −1.73205
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(390\) 0 0
\(391\) −1.40126 1.01807i −1.40126 1.01807i
\(392\) 0.535233 1.64728i 0.535233 1.64728i
\(393\) 0 0
\(394\) 0 0
\(395\) −1.73205 −1.73205
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) −1.40126 + 1.01807i −1.40126 + 1.01807i
\(399\) 0 0
\(400\) 0.309017 0.951057i 0.309017 0.951057i
\(401\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.809017 0.587785i 0.809017 0.587785i
\(406\) 0 0
\(407\) 0 0
\(408\) −3.00000 −3.00000
\(409\) 1.40126 1.01807i 1.40126 1.01807i 0.406737 0.913545i \(-0.366667\pi\)
0.994522 0.104528i \(-0.0333333\pi\)
\(410\) 0 0
\(411\) 0.309017 0.951057i 0.309017 0.951057i
\(412\) 0 0
\(413\) 0 0
\(414\) −0.535233 + 1.64728i −0.535233 + 1.64728i
\(415\) 0 0
\(416\) 0 0
\(417\) 1.73205 1.73205
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(422\) 0.927051 2.85317i 0.927051 2.85317i
\(423\) −0.809017 0.587785i −0.809017 0.587785i
\(424\) −1.40126 1.01807i −1.40126 1.01807i
\(425\) −0.535233 + 1.64728i −0.535233 + 1.64728i
\(426\) 0 0
\(427\) 0 0
\(428\) −3.46410 −3.46410
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(432\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(433\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 1.00000 1.00000
\(442\) 0 0
\(443\) −0.618034 1.90211i −0.618034 1.90211i −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 0.951057i \(-0.600000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(450\) 1.73205 1.73205
\(451\) 0 0
\(452\) −2.00000 −2.00000
\(453\) 1.40126 1.01807i 1.40126 1.01807i
\(454\) 0.927051 + 2.85317i 0.927051 + 2.85317i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(458\) 0.535233 1.64728i 0.535233 1.64728i
\(459\) −0.535233 1.64728i −0.535233 1.64728i
\(460\) −1.61803 + 1.17557i −1.61803 + 1.17557i
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(466\) 0.927051 2.85317i 0.927051 2.85317i
\(467\) 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i \(-0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −0.535233 1.64728i −0.535233 1.64728i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 3.00000 3.00000
\(475\) 0 0
\(476\) 0 0
\(477\) 0.309017 0.951057i 0.309017 0.951057i
\(478\) 0 0
\(479\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −2.42705 + 1.76336i −2.42705 + 1.76336i
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) −1.40126 + 1.01807i −1.40126 + 1.01807i
\(487\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(488\) −0.927051 + 2.85317i −0.927051 + 2.85317i
\(489\) 0 0
\(490\) 1.40126 + 1.01807i 1.40126 + 1.01807i
\(491\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −1.00000 −1.00000
\(497\) 0 0
\(498\) 0 0
\(499\) −0.618034 + 1.90211i −0.618034 + 1.90211i −0.309017 + 0.951057i \(0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(500\) 1.61803 + 1.17557i 1.61803 + 1.17557i
\(501\) 1.40126 + 1.01807i 1.40126 + 1.01807i
\(502\) 0 0
\(503\) 0.535233 + 1.64728i 0.535233 + 1.64728i 0.743145 + 0.669131i \(0.233333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.00000 1.00000
\(508\) 0 0
\(509\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(510\) 0.927051 2.85317i 0.927051 2.85317i
\(511\) 0 0
\(512\) 1.40126 + 1.01807i 1.40126 + 1.01807i
\(513\) 0 0
\(514\) −0.535233 1.64728i −0.535233 1.64728i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(522\) 0 0
\(523\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −2.42705 + 1.76336i −2.42705 + 1.76336i
\(527\) 1.73205 1.73205
\(528\) 0 0
\(529\) 0 0
\(530\) 1.40126 1.01807i 1.40126 1.01807i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0.535233 1.64728i 0.535233 1.64728i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) −2.00000 −2.00000
\(541\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(542\) −0.927051 2.85317i −0.927051 2.85317i
\(543\) −0.618034 + 1.90211i −0.618034 + 1.90211i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(548\) −1.61803 + 1.17557i −1.61803 + 1.17557i
\(549\) −1.73205 −1.73205
\(550\) 0 0
\(551\) 0 0
\(552\) 1.40126 1.01807i 1.40126 1.01807i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −2.80252 2.03615i −2.80252 2.03615i
\(557\) −0.535233 + 1.64728i −0.535233 + 1.64728i 0.207912 + 0.978148i \(0.433333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(558\) −0.535233 1.64728i −0.535233 1.64728i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(564\) 0.618034 + 1.90211i 0.618034 + 1.90211i
\(565\) 0.309017 0.951057i 0.309017 0.951057i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(570\) 0 0
\(571\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.309017 0.951057i −0.309017 0.951057i
\(576\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(577\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(578\) −2.80252 2.03615i −2.80252 2.03615i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0.927051 + 2.85317i 0.927051 + 2.85317i
\(587\) −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i \(0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(588\) −1.61803 1.17557i −1.61803 1.17557i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(598\) 0 0
\(599\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(600\) −1.40126 1.01807i −1.40126 1.01807i
\(601\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −3.46410 −3.46410
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −2.42705 1.76336i −2.42705 1.76336i
\(611\) 0 0
\(612\) −1.07047 + 3.29456i −1.07047 + 3.29456i
\(613\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(618\) 0 0
\(619\) −0.618034 1.90211i −0.618034 1.90211i −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 0.951057i \(-0.600000\pi\)
\(620\) 0.618034 1.90211i 0.618034 1.90211i
\(621\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i \(-0.733333\pi\)
0.978148 0.207912i \(-0.0666667\pi\)
\(632\) −2.42705 1.76336i −2.42705 1.76336i
\(633\) −1.40126 1.01807i −1.40126 1.01807i
\(634\) −0.535233 + 1.64728i −0.535233 + 1.64728i
\(635\) 0 0
\(636\) −1.61803 + 1.17557i −1.61803 + 1.17557i
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −1.40126 + 1.01807i −1.40126 + 1.01807i
\(641\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(642\) −0.927051 + 2.85317i −0.927051 + 2.85317i
\(643\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i \(-0.866667\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(648\) 1.73205 1.73205
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.618034 1.90211i 0.618034 1.90211i 0.309017 0.951057i \(-0.400000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(662\) −1.40126 + 1.01807i −1.40126 + 1.01807i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −1.07047 3.29456i −1.07047 3.29456i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(674\) 0 0
\(675\) 0.309017 0.951057i 0.309017 0.951057i
\(676\) −1.61803 1.17557i −1.61803 1.17557i
\(677\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(678\) −0.535233 + 1.64728i −0.535233 + 1.64728i
\(679\) 0 0
\(680\) −2.42705 + 1.76336i −2.42705 + 1.76336i
\(681\) 1.73205 1.73205
\(682\) 0 0
\(683\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) −0.309017 0.951057i −0.309017 0.951057i
\(686\) 0 0
\(687\) −0.809017 0.587785i −0.809017 0.587785i
\(688\) 0 0
\(689\) 0 0
\(690\) 0.535233 + 1.64728i 0.535233 + 1.64728i
\(691\) 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 3.00000 3.00000
\(695\) 1.40126 1.01807i 1.40126 1.01807i
\(696\) 0 0
\(697\) 0 0
\(698\) −2.42705 1.76336i −2.42705 1.76336i
\(699\) −1.40126 1.01807i −1.40126 1.01807i
\(700\) 0 0
\(701\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −1.00000 −1.00000
\(706\) −1.40126 + 1.01807i −1.40126 + 1.01807i
\(707\) 0 0
\(708\) 0 0
\(709\) 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i \(-0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(710\) 0 0
\(711\) 0.535233 1.64728i 0.535233 1.64728i
\(712\) 0 0
\(713\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(720\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(721\) 0 0
\(722\) −0.535233 + 1.64728i −0.535233 + 1.64728i
\(723\) 0.535233 + 1.64728i 0.535233 + 1.64728i
\(724\) 3.23607 2.35114i 3.23607 2.35114i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(730\) 0 0
\(731\) 0 0
\(732\) 2.80252 + 2.03615i 2.80252 + 2.03615i
\(733\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(734\) 0 0
\(735\) 0.809017 0.587785i 0.809017 0.587785i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1.40126 1.01807i 1.40126 1.01807i 0.406737 0.913545i \(-0.366667\pi\)
0.994522 0.104528i \(-0.0333333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.40126 + 1.01807i 1.40126 + 1.01807i 0.994522 + 0.104528i \(0.0333333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(744\) −0.535233 + 1.64728i −0.535233 + 1.64728i
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 1.40126 1.01807i 1.40126 1.01807i
\(751\) 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i \(0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(752\) 0.309017 0.951057i 0.309017 0.951057i
\(753\) 0 0
\(754\) 0 0
\(755\) 0.535233 1.64728i 0.535233 1.64728i
\(756\) 0 0
\(757\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(758\) −1.73205 −1.73205
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −1.40126 1.01807i −1.40126 1.01807i
\(766\) −1.07047 + 3.29456i −1.07047 + 3.29456i
\(767\) 0 0
\(768\) 1.61803 1.17557i 1.61803 1.17557i
\(769\) 1.73205 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(770\) 0 0
\(771\) −1.00000 −1.00000
\(772\) 0 0
\(773\) −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(774\) 0 0
\(775\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 3.00000 3.00000
\(783\) 0 0
\(784\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(788\) 0 0
\(789\) 0.535233 + 1.64728i 0.535233 + 1.64728i
\(790\) 2.42705 1.76336i 2.42705 1.76336i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −0.309017 0.951057i −0.309017 0.951057i
\(796\) 0.618034 1.90211i 0.618034 1.90211i
\(797\) −1.61803 1.17557i −1.61803 1.17557i −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 0.587785i \(-0.800000\pi\)
\(798\) 0 0
\(799\) −0.535233 + 1.64728i −0.535233 + 1.64728i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(810\) −0.535233 + 1.64728i −0.535233 + 1.64728i
\(811\) −0.535233 1.64728i −0.535233 1.64728i −0.743145 0.669131i \(-0.766667\pi\)
0.207912 0.978148i \(-0.433333\pi\)
\(812\) 0 0
\(813\) −1.73205 −1.73205
\(814\) 0 0
\(815\) 0 0
\(816\) 1.40126 1.01807i 1.40126 1.01807i
\(817\) 0 0
\(818\) −0.927051 + 2.85317i −0.927051 + 2.85317i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(822\) 0.535233 + 1.64728i 0.535233 + 1.64728i
\(823\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(828\) −0.618034 1.90211i −0.618034 1.90211i
\(829\) 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i \(-0.733333\pi\)
0.978148 0.207912i \(-0.0666667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.535233 1.64728i −0.535233 1.64728i
\(834\) −2.42705 + 1.76336i −2.42705 + 1.76336i
\(835\) 1.73205 1.73205
\(836\) 0 0
\(837\) −1.00000 −1.00000
\(838\) 0 0
\(839\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(840\) 0 0
\(841\) −0.809017 0.587785i −0.809017 0.587785i
\(842\) 1.40126 + 1.01807i 1.40126 + 1.01807i
\(843\) 0 0
\(844\) 1.07047 + 3.29456i 1.07047 + 3.29456i
\(845\) 0.809017 0.587785i 0.809017 0.587785i
\(846\) 1.73205 1.73205
\(847\) 0 0
\(848\) 1.00000 1.00000
\(849\) 0 0
\(850\) −0.927051 2.85317i −0.927051 2.85317i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 2.42705 1.76336i 2.42705 1.76336i
\(857\) 1.73205 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(858\) 0 0
\(859\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.61803 + 1.17557i 1.61803 + 1.17557i 0.809017 + 0.587785i \(0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1.61803 + 1.17557i −1.61803 + 1.17557i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(878\) 2.42705 1.76336i 2.42705 1.76336i
\(879\) 1.73205 1.73205
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −1.40126 + 1.01807i −1.40126 + 1.01807i
\(883\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 2.80252 + 2.03615i 2.80252 + 2.03615i
\(887\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −1.61803 + 1.17557i −1.61803 + 1.17557i
\(901\) −1.73205 −1.73205
\(902\) 0 0
\(903\) 0 0
\(904\) 1.40126 1.01807i 1.40126 1.01807i
\(905\) 0.618034 + 1.90211i 0.618034 + 1.90211i
\(906\) −0.927051 + 2.85317i −0.927051 + 2.85317i
\(907\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(908\) −2.80252 2.03615i −2.80252 2.03615i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −1.40126 + 1.01807i −1.40126 + 1.01807i
\(916\) 0.618034 + 1.90211i 0.618034 + 1.90211i
\(917\) 0 0
\(918\) 2.42705 + 1.76336i 2.42705 + 1.76336i
\(919\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(920\) 0.535233 1.64728i 0.535233 1.64728i
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(930\) −1.40126 1.01807i −1.40126 1.01807i
\(931\) 0 0
\(932\) 1.07047 + 3.29456i 1.07047 + 3.29456i
\(933\) 0 0
\(934\) −1.73205 −1.73205
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 1.61803 + 1.17557i 1.61803 + 1.17557i
\(941\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(948\) −2.80252 + 2.03615i −2.80252 + 2.03615i
\(949\) 0 0
\(950\) 0 0
\(951\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(952\) 0 0
\(953\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(954\) 0.535233 + 1.64728i 0.535233 + 1.64728i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(961\) 0 0
\(962\) 0 0
\(963\) 1.40126 + 1.01807i 1.40126 + 1.01807i
\(964\) 1.07047 3.29456i 1.07047 3.29456i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(972\) 0.618034 1.90211i 0.618034 1.90211i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −0.535233 1.64728i −0.535233 1.64728i
\(977\) −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i \(-0.866667\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −2.00000 −2.00000
\(981\) 0 0
\(982\) 0 0
\(983\) 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i \(-0.733333\pi\)
0.978148 0.207912i \(-0.0666667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) 0 0
\(993\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(994\) 0 0
\(995\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(996\) 0 0
\(997\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(998\) −1.07047 3.29456i −1.07047 3.29456i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1815.1.o.g.1334.1 8
3.2 odd 2 1815.1.o.h.1334.2 8
5.4 even 2 1815.1.o.h.1334.2 8
11.2 odd 10 1815.1.g.h.1574.1 yes 2
11.3 even 5 inner 1815.1.o.g.269.2 8
11.4 even 5 inner 1815.1.o.g.1049.1 8
11.5 even 5 inner 1815.1.o.g.614.2 8
11.6 odd 10 inner 1815.1.o.g.614.1 8
11.7 odd 10 inner 1815.1.o.g.1049.2 8
11.8 odd 10 inner 1815.1.o.g.269.1 8
11.9 even 5 1815.1.g.h.1574.2 yes 2
11.10 odd 2 inner 1815.1.o.g.1334.2 8
15.14 odd 2 CM 1815.1.o.g.1334.1 8
33.2 even 10 1815.1.g.g.1574.2 yes 2
33.5 odd 10 1815.1.o.h.614.1 8
33.8 even 10 1815.1.o.h.269.2 8
33.14 odd 10 1815.1.o.h.269.1 8
33.17 even 10 1815.1.o.h.614.2 8
33.20 odd 10 1815.1.g.g.1574.1 2
33.26 odd 10 1815.1.o.h.1049.2 8
33.29 even 10 1815.1.o.h.1049.1 8
33.32 even 2 1815.1.o.h.1334.1 8
55.4 even 10 1815.1.o.h.1049.2 8
55.9 even 10 1815.1.g.g.1574.1 2
55.14 even 10 1815.1.o.h.269.1 8
55.19 odd 10 1815.1.o.h.269.2 8
55.24 odd 10 1815.1.g.g.1574.2 yes 2
55.29 odd 10 1815.1.o.h.1049.1 8
55.39 odd 10 1815.1.o.h.614.2 8
55.49 even 10 1815.1.o.h.614.1 8
55.54 odd 2 1815.1.o.h.1334.1 8
165.14 odd 10 inner 1815.1.o.g.269.2 8
165.29 even 10 inner 1815.1.o.g.1049.2 8
165.59 odd 10 inner 1815.1.o.g.1049.1 8
165.74 even 10 inner 1815.1.o.g.269.1 8
165.104 odd 10 inner 1815.1.o.g.614.2 8
165.119 odd 10 1815.1.g.h.1574.2 yes 2
165.134 even 10 1815.1.g.h.1574.1 yes 2
165.149 even 10 inner 1815.1.o.g.614.1 8
165.164 even 2 inner 1815.1.o.g.1334.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1815.1.g.g.1574.1 2 33.20 odd 10
1815.1.g.g.1574.1 2 55.9 even 10
1815.1.g.g.1574.2 yes 2 33.2 even 10
1815.1.g.g.1574.2 yes 2 55.24 odd 10
1815.1.g.h.1574.1 yes 2 11.2 odd 10
1815.1.g.h.1574.1 yes 2 165.134 even 10
1815.1.g.h.1574.2 yes 2 11.9 even 5
1815.1.g.h.1574.2 yes 2 165.119 odd 10
1815.1.o.g.269.1 8 11.8 odd 10 inner
1815.1.o.g.269.1 8 165.74 even 10 inner
1815.1.o.g.269.2 8 11.3 even 5 inner
1815.1.o.g.269.2 8 165.14 odd 10 inner
1815.1.o.g.614.1 8 11.6 odd 10 inner
1815.1.o.g.614.1 8 165.149 even 10 inner
1815.1.o.g.614.2 8 11.5 even 5 inner
1815.1.o.g.614.2 8 165.104 odd 10 inner
1815.1.o.g.1049.1 8 11.4 even 5 inner
1815.1.o.g.1049.1 8 165.59 odd 10 inner
1815.1.o.g.1049.2 8 11.7 odd 10 inner
1815.1.o.g.1049.2 8 165.29 even 10 inner
1815.1.o.g.1334.1 8 1.1 even 1 trivial
1815.1.o.g.1334.1 8 15.14 odd 2 CM
1815.1.o.g.1334.2 8 11.10 odd 2 inner
1815.1.o.g.1334.2 8 165.164 even 2 inner
1815.1.o.h.269.1 8 33.14 odd 10
1815.1.o.h.269.1 8 55.14 even 10
1815.1.o.h.269.2 8 33.8 even 10
1815.1.o.h.269.2 8 55.19 odd 10
1815.1.o.h.614.1 8 33.5 odd 10
1815.1.o.h.614.1 8 55.49 even 10
1815.1.o.h.614.2 8 33.17 even 10
1815.1.o.h.614.2 8 55.39 odd 10
1815.1.o.h.1049.1 8 33.29 even 10
1815.1.o.h.1049.1 8 55.29 odd 10
1815.1.o.h.1049.2 8 33.26 odd 10
1815.1.o.h.1049.2 8 55.4 even 10
1815.1.o.h.1334.1 8 33.32 even 2
1815.1.o.h.1334.1 8 55.54 odd 2
1815.1.o.h.1334.2 8 3.2 odd 2
1815.1.o.h.1334.2 8 5.4 even 2