Properties

Label 1872.2.by.f.1297.1
Level $1872$
Weight $2$
Character 1872.1297
Analytic conductor $14.948$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1872,2,Mod(433,1872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1872, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1872.433");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1872.by (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.9479952584\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1297.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1872.1297
Dual form 1872.2.by.f.433.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.46410i q^{5} +(1.50000 + 0.866025i) q^{7} +(-3.00000 + 1.73205i) q^{11} +(3.50000 + 0.866025i) q^{13} +(-3.00000 - 1.73205i) q^{19} +(3.00000 + 5.19615i) q^{23} -7.00000 q^{25} +(3.00000 + 5.19615i) q^{29} +1.73205i q^{31} +(-3.00000 + 5.19615i) q^{35} +(6.00000 - 3.46410i) q^{41} +(-0.500000 + 0.866025i) q^{43} -3.46410i q^{47} +(-2.00000 - 3.46410i) q^{49} -12.0000 q^{53} +(-6.00000 - 10.3923i) q^{55} +(-3.00000 - 1.73205i) q^{59} +(-0.500000 + 0.866025i) q^{61} +(-3.00000 + 12.1244i) q^{65} +(-7.50000 + 4.33013i) q^{67} +(-9.00000 - 5.19615i) q^{71} -1.73205i q^{73} -6.00000 q^{77} +11.0000 q^{79} +13.8564i q^{83} +(-6.00000 + 3.46410i) q^{89} +(4.50000 + 4.33013i) q^{91} +(6.00000 - 10.3923i) q^{95} +(-4.50000 - 2.59808i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{7} - 6 q^{11} + 7 q^{13} - 6 q^{19} + 6 q^{23} - 14 q^{25} + 6 q^{29} - 6 q^{35} + 12 q^{41} - q^{43} - 4 q^{49} - 24 q^{53} - 12 q^{55} - 6 q^{59} - q^{61} - 6 q^{65} - 15 q^{67} - 18 q^{71}+ \cdots - 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1872\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.46410i 1.54919i 0.632456 + 0.774597i \(0.282047\pi\)
−0.632456 + 0.774597i \(0.717953\pi\)
\(6\) 0 0
\(7\) 1.50000 + 0.866025i 0.566947 + 0.327327i 0.755929 0.654654i \(-0.227186\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.00000 + 1.73205i −0.904534 + 0.522233i −0.878668 0.477432i \(-0.841568\pi\)
−0.0258656 + 0.999665i \(0.508234\pi\)
\(12\) 0 0
\(13\) 3.50000 + 0.866025i 0.970725 + 0.240192i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 0 0
\(19\) −3.00000 1.73205i −0.688247 0.397360i 0.114708 0.993399i \(-0.463407\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.00000 + 5.19615i 0.625543 + 1.08347i 0.988436 + 0.151642i \(0.0484560\pi\)
−0.362892 + 0.931831i \(0.618211\pi\)
\(24\) 0 0
\(25\) −7.00000 −1.40000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.00000 + 5.19615i 0.557086 + 0.964901i 0.997738 + 0.0672232i \(0.0214140\pi\)
−0.440652 + 0.897678i \(0.645253\pi\)
\(30\) 0 0
\(31\) 1.73205i 0.311086i 0.987829 + 0.155543i \(0.0497126\pi\)
−0.987829 + 0.155543i \(0.950287\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.00000 + 5.19615i −0.507093 + 0.878310i
\(36\) 0 0
\(37\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.00000 3.46410i 0.937043 0.541002i 0.0480106 0.998847i \(-0.484712\pi\)
0.889032 + 0.457845i \(0.151379\pi\)
\(42\) 0 0
\(43\) −0.500000 + 0.866025i −0.0762493 + 0.132068i −0.901629 0.432511i \(-0.857628\pi\)
0.825380 + 0.564578i \(0.190961\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.46410i 0.505291i −0.967559 0.252646i \(-0.918699\pi\)
0.967559 0.252646i \(-0.0813007\pi\)
\(48\) 0 0
\(49\) −2.00000 3.46410i −0.285714 0.494872i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −12.0000 −1.64833 −0.824163 0.566352i \(-0.808354\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) 0 0
\(55\) −6.00000 10.3923i −0.809040 1.40130i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.00000 1.73205i −0.390567 0.225494i 0.291839 0.956467i \(-0.405733\pi\)
−0.682406 + 0.730974i \(0.739066\pi\)
\(60\) 0 0
\(61\) −0.500000 + 0.866025i −0.0640184 + 0.110883i −0.896258 0.443533i \(-0.853725\pi\)
0.832240 + 0.554416i \(0.187058\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.00000 + 12.1244i −0.372104 + 1.50384i
\(66\) 0 0
\(67\) −7.50000 + 4.33013i −0.916271 + 0.529009i −0.882443 0.470418i \(-0.844103\pi\)
−0.0338274 + 0.999428i \(0.510770\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −9.00000 5.19615i −1.06810 0.616670i −0.140441 0.990089i \(-0.544852\pi\)
−0.927663 + 0.373419i \(0.878185\pi\)
\(72\) 0 0
\(73\) 1.73205i 0.202721i −0.994850 0.101361i \(-0.967680\pi\)
0.994850 0.101361i \(-0.0323196\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.00000 −0.683763
\(78\) 0 0
\(79\) 11.0000 1.23760 0.618798 0.785550i \(-0.287620\pi\)
0.618798 + 0.785550i \(0.287620\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 13.8564i 1.52094i 0.649374 + 0.760469i \(0.275031\pi\)
−0.649374 + 0.760469i \(0.724969\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.00000 + 3.46410i −0.635999 + 0.367194i −0.783072 0.621932i \(-0.786348\pi\)
0.147073 + 0.989126i \(0.453015\pi\)
\(90\) 0 0
\(91\) 4.50000 + 4.33013i 0.471728 + 0.453921i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.00000 10.3923i 0.615587 1.06623i
\(96\) 0 0
\(97\) −4.50000 2.59808i −0.456906 0.263795i 0.253837 0.967247i \(-0.418307\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −9.00000 15.5885i −0.895533 1.55111i −0.833143 0.553058i \(-0.813461\pi\)
−0.0623905 0.998052i \(-0.519872\pi\)
\(102\) 0 0
\(103\) 1.00000 0.0985329 0.0492665 0.998786i \(-0.484312\pi\)
0.0492665 + 0.998786i \(0.484312\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.00000 + 5.19615i 0.290021 + 0.502331i 0.973814 0.227345i \(-0.0730044\pi\)
−0.683793 + 0.729676i \(0.739671\pi\)
\(108\) 0 0
\(109\) 15.5885i 1.49310i 0.665327 + 0.746552i \(0.268292\pi\)
−0.665327 + 0.746552i \(0.731708\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.00000 5.19615i 0.282216 0.488813i −0.689714 0.724082i \(-0.742264\pi\)
0.971930 + 0.235269i \(0.0755971\pi\)
\(114\) 0 0
\(115\) −18.0000 + 10.3923i −1.67851 + 0.969087i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.500000 0.866025i 0.0454545 0.0787296i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.92820i 0.619677i
\(126\) 0 0
\(127\) 6.50000 + 11.2583i 0.576782 + 0.999015i 0.995846 + 0.0910585i \(0.0290250\pi\)
−0.419064 + 0.907957i \(0.637642\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) 0 0
\(133\) −3.00000 5.19615i −0.260133 0.450564i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 0 0
\(139\) 2.50000 4.33013i 0.212047 0.367277i −0.740308 0.672268i \(-0.765320\pi\)
0.952355 + 0.304991i \(0.0986536\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −12.0000 + 3.46410i −1.00349 + 0.289683i
\(144\) 0 0
\(145\) −18.0000 + 10.3923i −1.49482 + 0.863034i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.00000 + 3.46410i 0.491539 + 0.283790i 0.725213 0.688525i \(-0.241741\pi\)
−0.233674 + 0.972315i \(0.575075\pi\)
\(150\) 0 0
\(151\) 3.46410i 0.281905i −0.990016 0.140952i \(-0.954984\pi\)
0.990016 0.140952i \(-0.0450164\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.00000 −0.481932
\(156\) 0 0
\(157\) 11.0000 0.877896 0.438948 0.898513i \(-0.355351\pi\)
0.438948 + 0.898513i \(0.355351\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.3923i 0.819028i
\(162\) 0 0
\(163\) 16.5000 + 9.52628i 1.29238 + 0.746156i 0.979076 0.203497i \(-0.0652307\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.00000 + 3.46410i −0.464294 + 0.268060i −0.713848 0.700301i \(-0.753049\pi\)
0.249554 + 0.968361i \(0.419716\pi\)
\(168\) 0 0
\(169\) 11.5000 + 6.06218i 0.884615 + 0.466321i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.00000 + 5.19615i −0.228086 + 0.395056i −0.957241 0.289292i \(-0.906580\pi\)
0.729155 + 0.684349i \(0.239913\pi\)
\(174\) 0 0
\(175\) −10.5000 6.06218i −0.793725 0.458258i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −6.00000 10.3923i −0.448461 0.776757i 0.549825 0.835280i \(-0.314694\pi\)
−0.998286 + 0.0585225i \(0.981361\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.00000 15.5885i 0.651217 1.12794i −0.331611 0.943416i \(-0.607592\pi\)
0.982828 0.184525i \(-0.0590746\pi\)
\(192\) 0 0
\(193\) −13.5000 + 7.79423i −0.971751 + 0.561041i −0.899770 0.436365i \(-0.856266\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.0000 + 6.92820i −0.854965 + 0.493614i −0.862323 0.506359i \(-0.830991\pi\)
0.00735824 + 0.999973i \(0.497658\pi\)
\(198\) 0 0
\(199\) 3.50000 6.06218i 0.248108 0.429736i −0.714893 0.699234i \(-0.753524\pi\)
0.963001 + 0.269498i \(0.0868577\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 10.3923i 0.729397i
\(204\) 0 0
\(205\) 12.0000 + 20.7846i 0.838116 + 1.45166i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) 6.50000 + 11.2583i 0.447478 + 0.775055i 0.998221 0.0596196i \(-0.0189888\pi\)
−0.550743 + 0.834675i \(0.685655\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.00000 1.73205i −0.204598 0.118125i
\(216\) 0 0
\(217\) −1.50000 + 2.59808i −0.101827 + 0.176369i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −15.0000 + 8.66025i −1.00447 + 0.579934i −0.909569 0.415553i \(-0.863588\pi\)
−0.0949052 + 0.995486i \(0.530255\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.0000 + 10.3923i 1.19470 + 0.689761i 0.959369 0.282153i \(-0.0910487\pi\)
0.235333 + 0.971915i \(0.424382\pi\)
\(228\) 0 0
\(229\) 27.7128i 1.83131i −0.401960 0.915657i \(-0.631671\pi\)
0.401960 0.915657i \(-0.368329\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) 12.0000 0.782794
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 18.0000 + 10.3923i 1.15948 + 0.669427i 0.951180 0.308637i \(-0.0998729\pi\)
0.208302 + 0.978065i \(0.433206\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 12.0000 6.92820i 0.766652 0.442627i
\(246\) 0 0
\(247\) −9.00000 8.66025i −0.572656 0.551039i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6.00000 + 10.3923i −0.378717 + 0.655956i −0.990876 0.134778i \(-0.956968\pi\)
0.612159 + 0.790735i \(0.290301\pi\)
\(252\) 0 0
\(253\) −18.0000 10.3923i −1.13165 0.653359i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.00000 10.3923i −0.369976 0.640817i 0.619586 0.784929i \(-0.287301\pi\)
−0.989561 + 0.144112i \(0.953967\pi\)
\(264\) 0 0
\(265\) 41.5692i 2.55358i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(270\) 0 0
\(271\) 4.50000 2.59808i 0.273356 0.157822i −0.357056 0.934083i \(-0.616219\pi\)
0.630412 + 0.776261i \(0.282886\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 21.0000 12.1244i 1.26635 0.731126i
\(276\) 0 0
\(277\) 5.00000 8.66025i 0.300421 0.520344i −0.675810 0.737075i \(-0.736206\pi\)
0.976231 + 0.216731i \(0.0695395\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 24.2487i 1.44656i −0.690557 0.723278i \(-0.742634\pi\)
0.690557 0.723278i \(-0.257366\pi\)
\(282\) 0 0
\(283\) −5.50000 9.52628i −0.326941 0.566279i 0.654962 0.755662i \(-0.272685\pi\)
−0.981903 + 0.189383i \(0.939351\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12.0000 0.708338
\(288\) 0 0
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 15.0000 + 8.66025i 0.876309 + 0.505937i 0.869440 0.494039i \(-0.164480\pi\)
0.00686959 + 0.999976i \(0.497813\pi\)
\(294\) 0 0
\(295\) 6.00000 10.3923i 0.349334 0.605063i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.00000 + 20.7846i 0.346989 + 1.20201i
\(300\) 0 0
\(301\) −1.50000 + 0.866025i −0.0864586 + 0.0499169i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.00000 1.73205i −0.171780 0.0991769i
\(306\) 0 0
\(307\) 1.73205i 0.0988534i −0.998778 0.0494267i \(-0.984261\pi\)
0.998778 0.0494267i \(-0.0157394\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 13.0000 0.734803 0.367402 0.930062i \(-0.380247\pi\)
0.367402 + 0.930062i \(0.380247\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.92820i 0.389127i 0.980890 + 0.194563i \(0.0623290\pi\)
−0.980890 + 0.194563i \(0.937671\pi\)
\(318\) 0 0
\(319\) −18.0000 10.3923i −1.00781 0.581857i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −24.5000 6.06218i −1.35902 0.336269i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.00000 5.19615i 0.165395 0.286473i
\(330\) 0 0
\(331\) −4.50000 2.59808i −0.247342 0.142803i 0.371204 0.928551i \(-0.378945\pi\)
−0.618547 + 0.785748i \(0.712278\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −15.0000 25.9808i −0.819538 1.41948i
\(336\) 0 0
\(337\) −5.00000 −0.272367 −0.136184 0.990684i \(-0.543484\pi\)
−0.136184 + 0.990684i \(0.543484\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3.00000 5.19615i −0.162459 0.281387i
\(342\) 0 0
\(343\) 19.0526i 1.02874i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.0000 20.7846i 0.644194 1.11578i −0.340293 0.940319i \(-0.610526\pi\)
0.984487 0.175457i \(-0.0561403\pi\)
\(348\) 0 0
\(349\) −16.5000 + 9.52628i −0.883225 + 0.509930i −0.871720 0.490004i \(-0.836995\pi\)
−0.0115044 + 0.999934i \(0.503662\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9.00000 + 5.19615i −0.479022 + 0.276563i −0.720009 0.693965i \(-0.755862\pi\)
0.240987 + 0.970528i \(0.422529\pi\)
\(354\) 0 0
\(355\) 18.0000 31.1769i 0.955341 1.65470i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.92820i 0.365657i −0.983145 0.182828i \(-0.941475\pi\)
0.983145 0.182828i \(-0.0585252\pi\)
\(360\) 0 0
\(361\) −3.50000 6.06218i −0.184211 0.319062i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6.00000 0.314054
\(366\) 0 0
\(367\) 8.50000 + 14.7224i 0.443696 + 0.768505i 0.997960 0.0638362i \(-0.0203335\pi\)
−0.554264 + 0.832341i \(0.687000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −18.0000 10.3923i −0.934513 0.539542i
\(372\) 0 0
\(373\) 5.50000 9.52628i 0.284779 0.493252i −0.687776 0.725923i \(-0.741413\pi\)
0.972556 + 0.232671i \(0.0747464\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.00000 + 20.7846i 0.309016 + 1.07046i
\(378\) 0 0
\(379\) 19.5000 11.2583i 1.00165 0.578302i 0.0929123 0.995674i \(-0.470382\pi\)
0.908735 + 0.417373i \(0.137049\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 24.0000 + 13.8564i 1.22634 + 0.708029i 0.966263 0.257558i \(-0.0829178\pi\)
0.260080 + 0.965587i \(0.416251\pi\)
\(384\) 0 0
\(385\) 20.7846i 1.05928i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −12.0000 −0.608424 −0.304212 0.952604i \(-0.598393\pi\)
−0.304212 + 0.952604i \(0.598393\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 38.1051i 1.91728i
\(396\) 0 0
\(397\) 13.5000 + 7.79423i 0.677546 + 0.391181i 0.798930 0.601424i \(-0.205400\pi\)
−0.121384 + 0.992606i \(0.538733\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(402\) 0 0
\(403\) −1.50000 + 6.06218i −0.0747203 + 0.301979i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 7.50000 + 4.33013i 0.370851 + 0.214111i 0.673830 0.738886i \(-0.264648\pi\)
−0.302979 + 0.952997i \(0.597981\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3.00000 5.19615i −0.147620 0.255686i
\(414\) 0 0
\(415\) −48.0000 −2.35623
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.00000 + 10.3923i 0.293119 + 0.507697i 0.974546 0.224189i \(-0.0719734\pi\)
−0.681426 + 0.731887i \(0.738640\pi\)
\(420\) 0 0
\(421\) 12.1244i 0.590905i 0.955357 + 0.295452i \(0.0954704\pi\)
−0.955357 + 0.295452i \(0.904530\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.50000 + 0.866025i −0.0725901 + 0.0419099i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 18.0000 10.3923i 0.867029 0.500580i 0.000669521 1.00000i \(-0.499787\pi\)
0.866360 + 0.499420i \(0.166454\pi\)
\(432\) 0 0
\(433\) 11.5000 19.9186i 0.552655 0.957226i −0.445427 0.895318i \(-0.646948\pi\)
0.998082 0.0619079i \(-0.0197185\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 20.7846i 0.994263i
\(438\) 0 0
\(439\) 17.5000 + 30.3109i 0.835229 + 1.44666i 0.893843 + 0.448379i \(0.147999\pi\)
−0.0586141 + 0.998281i \(0.518668\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) 0 0
\(445\) −12.0000 20.7846i −0.568855 0.985285i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −33.0000 19.0526i −1.55737 0.899146i −0.997508 0.0705577i \(-0.977522\pi\)
−0.559859 0.828588i \(-0.689145\pi\)
\(450\) 0 0
\(451\) −12.0000 + 20.7846i −0.565058 + 0.978709i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −15.0000 + 15.5885i −0.703211 + 0.730798i
\(456\) 0 0
\(457\) −31.5000 + 18.1865i −1.47351 + 0.850730i −0.999555 0.0298202i \(-0.990507\pi\)
−0.473953 + 0.880550i \(0.657173\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 36.0000 + 20.7846i 1.67669 + 0.968036i 0.963750 + 0.266808i \(0.0859690\pi\)
0.712938 + 0.701228i \(0.247364\pi\)
\(462\) 0 0
\(463\) 36.3731i 1.69040i −0.534450 0.845200i \(-0.679481\pi\)
0.534450 0.845200i \(-0.320519\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6.00000 0.277647 0.138823 0.990317i \(-0.455668\pi\)
0.138823 + 0.990317i \(0.455668\pi\)
\(468\) 0 0
\(469\) −15.0000 −0.692636
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.46410i 0.159280i
\(474\) 0 0
\(475\) 21.0000 + 12.1244i 0.963546 + 0.556304i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 30.0000 17.3205i 1.37073 0.791394i 0.379714 0.925104i \(-0.376022\pi\)
0.991021 + 0.133710i \(0.0426889\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9.00000 15.5885i 0.408669 0.707835i
\(486\) 0 0
\(487\) 21.0000 + 12.1244i 0.951601 + 0.549407i 0.893578 0.448908i \(-0.148187\pi\)
0.0580230 + 0.998315i \(0.481520\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3.00000 5.19615i −0.135388 0.234499i 0.790358 0.612646i \(-0.209895\pi\)
−0.925746 + 0.378147i \(0.876561\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.00000 15.5885i −0.403705 0.699238i
\(498\) 0 0
\(499\) 31.1769i 1.39567i 0.716258 + 0.697835i \(0.245853\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15.0000 25.9808i 0.668817 1.15842i −0.309418 0.950926i \(-0.600134\pi\)
0.978235 0.207499i \(-0.0665323\pi\)
\(504\) 0 0
\(505\) 54.0000 31.1769i 2.40297 1.38735i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 15.0000 8.66025i 0.664863 0.383859i −0.129264 0.991610i \(-0.541262\pi\)
0.794128 + 0.607751i \(0.207928\pi\)
\(510\) 0 0
\(511\) 1.50000 2.59808i 0.0663561 0.114932i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.46410i 0.152647i
\(516\) 0 0
\(517\) 6.00000 + 10.3923i 0.263880 + 0.457053i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 24.0000 1.05146 0.525730 0.850652i \(-0.323792\pi\)
0.525730 + 0.850652i \(0.323792\pi\)
\(522\) 0 0
\(523\) −14.0000 24.2487i −0.612177 1.06032i −0.990873 0.134801i \(-0.956961\pi\)
0.378695 0.925521i \(-0.376373\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 24.0000 6.92820i 1.03956 0.300094i
\(534\) 0 0
\(535\) −18.0000 + 10.3923i −0.778208 + 0.449299i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 12.0000 + 6.92820i 0.516877 + 0.298419i
\(540\) 0 0
\(541\) 29.4449i 1.26593i 0.774179 + 0.632967i \(0.218163\pi\)
−0.774179 + 0.632967i \(0.781837\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −54.0000 −2.31311
\(546\) 0 0
\(547\) 19.0000 0.812381 0.406191 0.913788i \(-0.366857\pi\)
0.406191 + 0.913788i \(0.366857\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 20.7846i 0.885454i
\(552\) 0 0
\(553\) 16.5000 + 9.52628i 0.701651 + 0.405099i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24.0000 13.8564i 1.01691 0.587115i 0.103704 0.994608i \(-0.466930\pi\)
0.913208 + 0.407493i \(0.133597\pi\)
\(558\) 0 0
\(559\) −2.50000 + 2.59808i −0.105739 + 0.109887i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 21.0000 36.3731i 0.885044 1.53294i 0.0393818 0.999224i \(-0.487461\pi\)
0.845663 0.533718i \(-0.179206\pi\)
\(564\) 0 0
\(565\) 18.0000 + 10.3923i 0.757266 + 0.437208i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.00000 5.19615i −0.125767 0.217834i 0.796266 0.604947i \(-0.206806\pi\)
−0.922032 + 0.387113i \(0.873472\pi\)
\(570\) 0 0
\(571\) 44.0000 1.84134 0.920671 0.390339i \(-0.127642\pi\)
0.920671 + 0.390339i \(0.127642\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −21.0000 36.3731i −0.875761 1.51686i
\(576\) 0 0
\(577\) 34.6410i 1.44212i 0.692870 + 0.721062i \(0.256346\pi\)
−0.692870 + 0.721062i \(0.743654\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −12.0000 + 20.7846i −0.497844 + 0.862291i
\(582\) 0 0
\(583\) 36.0000 20.7846i 1.49097 0.860811i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −27.0000 + 15.5885i −1.11441 + 0.643404i −0.939968 0.341263i \(-0.889145\pi\)
−0.174441 + 0.984668i \(0.555812\pi\)
\(588\) 0 0
\(589\) 3.00000 5.19615i 0.123613 0.214104i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 3.46410i 0.142254i 0.997467 + 0.0711268i \(0.0226595\pi\)
−0.997467 + 0.0711268i \(0.977341\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −30.0000 −1.22577 −0.612883 0.790173i \(-0.709990\pi\)
−0.612883 + 0.790173i \(0.709990\pi\)
\(600\) 0 0
\(601\) 13.0000 + 22.5167i 0.530281 + 0.918474i 0.999376 + 0.0353259i \(0.0112469\pi\)
−0.469095 + 0.883148i \(0.655420\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.00000 + 1.73205i 0.121967 + 0.0704179i
\(606\) 0 0
\(607\) 4.00000 6.92820i 0.162355 0.281207i −0.773358 0.633970i \(-0.781424\pi\)
0.935713 + 0.352763i \(0.114758\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.00000 12.1244i 0.121367 0.490499i
\(612\) 0 0
\(613\) 7.50000 4.33013i 0.302922 0.174892i −0.340833 0.940124i \(-0.610709\pi\)
0.643755 + 0.765232i \(0.277376\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.00000 + 5.19615i 0.362326 + 0.209189i 0.670101 0.742270i \(-0.266251\pi\)
−0.307774 + 0.951459i \(0.599584\pi\)
\(618\) 0 0
\(619\) 25.9808i 1.04425i 0.852867 + 0.522127i \(0.174861\pi\)
−0.852867 + 0.522127i \(0.825139\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12.0000 −0.480770
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −1.50000 0.866025i −0.0597141 0.0344759i 0.469846 0.882749i \(-0.344310\pi\)
−0.529560 + 0.848273i \(0.677643\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −39.0000 + 22.5167i −1.54767 + 0.893546i
\(636\) 0 0
\(637\) −4.00000 13.8564i −0.158486 0.549011i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9.00000 15.5885i 0.355479 0.615707i −0.631721 0.775196i \(-0.717651\pi\)
0.987200 + 0.159489i \(0.0509845\pi\)
\(642\) 0 0
\(643\) −16.5000 9.52628i −0.650696 0.375680i 0.138027 0.990429i \(-0.455924\pi\)
−0.788723 + 0.614749i \(0.789257\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.00000 + 15.5885i 0.353827 + 0.612845i 0.986916 0.161233i \(-0.0515470\pi\)
−0.633090 + 0.774078i \(0.718214\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 18.0000 + 31.1769i 0.704394 + 1.22005i 0.966910 + 0.255119i \(0.0821147\pi\)
−0.262515 + 0.964928i \(0.584552\pi\)
\(654\) 0 0
\(655\) 20.7846i 0.812122i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −24.0000 + 41.5692i −0.934907 + 1.61931i −0.160108 + 0.987099i \(0.551184\pi\)
−0.774799 + 0.632207i \(0.782149\pi\)
\(660\) 0 0
\(661\) −22.5000 + 12.9904i −0.875149 + 0.505267i −0.869056 0.494714i \(-0.835273\pi\)
−0.00609283 + 0.999981i \(0.501939\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 18.0000 10.3923i 0.698010 0.402996i
\(666\) 0 0
\(667\) −18.0000 + 31.1769i −0.696963 + 1.20717i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.46410i 0.133730i
\(672\) 0 0
\(673\) 0.500000 + 0.866025i 0.0192736 + 0.0333828i 0.875501 0.483216i \(-0.160531\pi\)
−0.856228 + 0.516599i \(0.827198\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −48.0000 −1.84479 −0.922395 0.386248i \(-0.873771\pi\)
−0.922395 + 0.386248i \(0.873771\pi\)
\(678\) 0 0
\(679\) −4.50000 7.79423i −0.172694 0.299115i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 21.0000 + 12.1244i 0.803543 + 0.463926i 0.844708 0.535227i \(-0.179774\pi\)
−0.0411658 + 0.999152i \(0.513107\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −42.0000 10.3923i −1.60007 0.395915i
\(690\) 0 0
\(691\) −37.5000 + 21.6506i −1.42657 + 0.823629i −0.996848 0.0793336i \(-0.974721\pi\)
−0.429719 + 0.902963i \(0.641387\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 15.0000 + 8.66025i 0.568982 + 0.328502i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12.0000 0.453234 0.226617 0.973984i \(-0.427233\pi\)
0.226617 + 0.973984i \(0.427233\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 31.1769i 1.17253i
\(708\) 0 0
\(709\) −16.5000 9.52628i −0.619671 0.357767i 0.157070 0.987587i \(-0.449795\pi\)
−0.776741 + 0.629821i \(0.783128\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −9.00000 + 5.19615i −0.337053 + 0.194597i
\(714\) 0 0
\(715\) −12.0000 41.5692i −0.448775 1.55460i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3.00000 5.19615i 0.111881 0.193784i −0.804648 0.593753i \(-0.797646\pi\)
0.916529 + 0.399969i \(0.130979\pi\)
\(720\) 0 0
\(721\) 1.50000 + 0.866025i 0.0558629 + 0.0322525i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −21.0000 36.3731i −0.779920 1.35086i
\(726\) 0 0
\(727\) 35.0000 1.29808 0.649039 0.760755i \(-0.275171\pi\)
0.649039 + 0.760755i \(0.275171\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 39.8372i 1.47142i −0.677297 0.735710i \(-0.736849\pi\)
0.677297 0.735710i \(-0.263151\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 15.0000 25.9808i 0.552532 0.957014i
\(738\) 0 0
\(739\) −39.0000 + 22.5167i −1.43464 + 0.828289i −0.997470 0.0710909i \(-0.977352\pi\)
−0.437168 + 0.899380i \(0.644019\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −9.00000 + 5.19615i −0.330178 + 0.190628i −0.655920 0.754830i \(-0.727719\pi\)
0.325742 + 0.945459i \(0.394386\pi\)
\(744\) 0 0
\(745\) −12.0000 + 20.7846i −0.439646 + 0.761489i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 10.3923i 0.379727i
\(750\) 0 0
\(751\) 4.00000 + 6.92820i 0.145962 + 0.252814i 0.929731 0.368238i \(-0.120039\pi\)
−0.783769 + 0.621052i \(0.786706\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 12.0000 0.436725
\(756\) 0 0
\(757\) −17.0000 29.4449i −0.617876 1.07019i −0.989873 0.141958i \(-0.954660\pi\)
0.371997 0.928234i \(-0.378673\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18.0000 + 10.3923i 0.652499 + 0.376721i 0.789413 0.613862i \(-0.210385\pi\)
−0.136914 + 0.990583i \(0.543718\pi\)
\(762\) 0 0
\(763\) −13.5000 + 23.3827i −0.488733 + 0.846510i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.00000 8.66025i −0.324971 0.312704i
\(768\) 0 0
\(769\) −6.00000 + 3.46410i −0.216366 + 0.124919i −0.604266 0.796782i \(-0.706534\pi\)
0.387901 + 0.921701i \(0.373200\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 45.0000 + 25.9808i 1.61854 + 0.934463i 0.987299 + 0.158874i \(0.0507865\pi\)
0.631239 + 0.775589i \(0.282547\pi\)
\(774\) 0 0
\(775\) 12.1244i 0.435520i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −24.0000 −0.859889
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 38.1051i 1.36003i
\(786\) 0 0
\(787\) −28.5000 16.4545i −1.01592 0.586539i −0.102997 0.994682i \(-0.532843\pi\)
−0.912918 + 0.408143i \(0.866177\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9.00000 5.19615i 0.320003 0.184754i
\(792\) 0 0
\(793\) −2.50000 + 2.59808i −0.0887776 + 0.0922604i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.00000 10.3923i 0.212531 0.368114i −0.739975 0.672634i \(-0.765163\pi\)
0.952506 + 0.304520i \(0.0984960\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.00000 + 5.19615i 0.105868 + 0.183368i
\(804\) 0 0
\(805\) −36.0000 −1.26883
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 6.00000 + 10.3923i 0.210949 + 0.365374i 0.952012 0.306062i \(-0.0990113\pi\)
−0.741063 + 0.671436i \(0.765678\pi\)
\(810\) 0 0
\(811\) 25.9808i 0.912308i −0.889901 0.456154i \(-0.849227\pi\)
0.889901 0.456154i \(-0.150773\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −33.0000 + 57.1577i −1.15594 + 2.00215i
\(816\) 0 0
\(817\) 3.00000 1.73205i 0.104957 0.0605968i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −21.0000 + 12.1244i −0.732905 + 0.423143i −0.819484 0.573102i \(-0.805740\pi\)
0.0865789 + 0.996245i \(0.472407\pi\)
\(822\) 0 0
\(823\) 16.0000 27.7128i 0.557725 0.966008i −0.439961 0.898017i \(-0.645008\pi\)
0.997686 0.0679910i \(-0.0216589\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 48.4974i 1.68642i −0.537584 0.843210i \(-0.680663\pi\)
0.537584 0.843210i \(-0.319337\pi\)
\(828\) 0 0
\(829\) −15.5000 26.8468i −0.538337 0.932427i −0.998994 0.0448490i \(-0.985719\pi\)
0.460657 0.887578i \(-0.347614\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −12.0000 20.7846i −0.415277 0.719281i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 27.0000 + 15.5885i 0.932144 + 0.538173i 0.887489 0.460829i \(-0.152448\pi\)
0.0446547 + 0.999002i \(0.485781\pi\)
\(840\) 0 0
\(841\) −3.50000 + 6.06218i −0.120690 + 0.209041i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −21.0000 + 39.8372i −0.722422 + 1.37044i
\(846\) 0 0
\(847\) 1.50000 0.866025i 0.0515406 0.0297570i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 25.9808i 0.889564i 0.895639 + 0.444782i \(0.146719\pi\)
−0.895639 + 0.444782i \(0.853281\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −18.0000 −0.614868 −0.307434 0.951569i \(-0.599470\pi\)
−0.307434 + 0.951569i \(0.599470\pi\)
\(858\) 0 0
\(859\) −13.0000 −0.443554 −0.221777 0.975097i \(-0.571186\pi\)
−0.221777 + 0.975097i \(0.571186\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 17.3205i 0.589597i 0.955559 + 0.294798i \(0.0952525\pi\)
−0.955559 + 0.294798i \(0.904747\pi\)
\(864\) 0 0
\(865\) −18.0000 10.3923i −0.612018 0.353349i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −33.0000 + 19.0526i −1.11945 + 0.646314i
\(870\) 0 0
\(871\) −30.0000 + 8.66025i −1.01651 + 0.293442i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 6.00000 10.3923i 0.202837 0.351324i
\(876\) 0 0
\(877\) 36.0000 + 20.7846i 1.21563 + 0.701846i 0.963981 0.265971i \(-0.0856926\pi\)
0.251653 + 0.967818i \(0.419026\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −6.00000 10.3923i −0.202145 0.350126i 0.747074 0.664741i \(-0.231458\pi\)
−0.949219 + 0.314615i \(0.898125\pi\)
\(882\) 0 0
\(883\) 5.00000 0.168263 0.0841317 0.996455i \(-0.473188\pi\)
0.0841317 + 0.996455i \(0.473188\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 21.0000 + 36.3731i 0.705111 + 1.22129i 0.966651 + 0.256096i \(0.0824362\pi\)
−0.261540 + 0.965193i \(0.584230\pi\)
\(888\) 0 0
\(889\) 22.5167i 0.755185i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −6.00000 + 10.3923i −0.200782 + 0.347765i
\(894\) 0 0
\(895\) 36.0000 20.7846i 1.20335 0.694753i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −9.00000 + 5.19615i −0.300167 + 0.173301i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 48.4974i 1.61211i
\(906\) 0 0
\(907\) −22.0000 38.1051i −0.730498 1.26526i −0.956671 0.291172i \(-0.905955\pi\)
0.226173 0.974087i \(-0.427379\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) −24.0000 41.5692i −0.794284 1.37574i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 9.00000 + 5.19615i 0.297206 + 0.171592i
\(918\) 0 0
\(919\) −16.0000 + 27.7128i −0.527791 + 0.914161i 0.471684 + 0.881768i \(0.343646\pi\)
−0.999475 + 0.0323936i \(0.989687\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −27.0000 25.9808i −0.888716 0.855167i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 18.0000 + 10.3923i 0.590561 + 0.340960i 0.765319 0.643651i \(-0.222581\pi\)
−0.174758 + 0.984611i \(0.555914\pi\)
\(930\) 0 0
\(931\) 13.8564i 0.454125i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −14.0000 −0.457360 −0.228680 0.973502i \(-0.573441\pi\)
−0.228680 + 0.973502i \(0.573441\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10.3923i 0.338779i −0.985549 0.169390i \(-0.945820\pi\)
0.985549 0.169390i \(-0.0541797\pi\)
\(942\) 0 0
\(943\) 36.0000 + 20.7846i 1.17232 + 0.676840i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −42.0000 + 24.2487i −1.36482 + 0.787977i −0.990260 0.139227i \(-0.955538\pi\)
−0.374556 + 0.927204i \(0.622205\pi\)
\(948\) 0 0
\(949\) 1.50000 6.06218i 0.0486921 0.196787i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 3.00000 5.19615i 0.0971795 0.168320i −0.813337 0.581793i \(-0.802351\pi\)
0.910516 + 0.413473i \(0.135685\pi\)
\(954\) 0 0
\(955\) 54.0000 + 31.1769i 1.74740 + 1.00886i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 28.0000 0.903226
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −27.0000 46.7654i −0.869161 1.50543i
\(966\) 0 0
\(967\) 24.2487i 0.779786i −0.920860 0.389893i \(-0.872512\pi\)
0.920860 0.389893i \(-0.127488\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −18.0000 + 31.1769i −0.577647 + 1.00051i 0.418101 + 0.908401i \(0.362696\pi\)
−0.995748 + 0.0921142i \(0.970638\pi\)
\(972\) 0 0
\(973\) 7.50000 4.33013i 0.240439 0.138817i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.0000 13.8564i 0.767828 0.443306i −0.0642712 0.997932i \(-0.520472\pi\)
0.832099 + 0.554627i \(0.187139\pi\)
\(978\) 0 0
\(979\) 12.0000 20.7846i 0.383522 0.664279i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 10.3923i 0.331463i 0.986171 + 0.165732i \(0.0529985\pi\)
−0.986171 + 0.165732i \(0.947001\pi\)
\(984\) 0 0
\(985\) −24.0000 41.5692i −0.764704 1.32451i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −6.00000 −0.190789
\(990\) 0 0
\(991\) −8.00000 13.8564i −0.254128 0.440163i 0.710530 0.703667i \(-0.248455\pi\)
−0.964658 + 0.263504i \(0.915122\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 21.0000 + 12.1244i 0.665745 + 0.384368i
\(996\) 0 0
\(997\) −17.5000 + 30.3109i −0.554231 + 0.959955i 0.443732 + 0.896159i \(0.353654\pi\)
−0.997963 + 0.0637961i \(0.979679\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1872.2.by.f.1297.1 2
3.2 odd 2 624.2.bv.b.49.1 2
4.3 odd 2 117.2.q.a.10.1 2
12.11 even 2 39.2.j.a.10.1 yes 2
13.4 even 6 inner 1872.2.by.f.433.1 2
39.2 even 12 8112.2.a.bu.1.1 2
39.11 even 12 8112.2.a.bu.1.2 2
39.17 odd 6 624.2.bv.b.433.1 2
52.3 odd 6 1521.2.b.f.1351.2 2
52.11 even 12 1521.2.a.h.1.1 2
52.15 even 12 1521.2.a.h.1.2 2
52.23 odd 6 1521.2.b.f.1351.1 2
52.43 odd 6 117.2.q.a.82.1 2
60.23 odd 4 975.2.w.d.49.1 4
60.47 odd 4 975.2.w.d.49.2 4
60.59 even 2 975.2.bc.c.751.1 2
156.11 odd 12 507.2.a.e.1.2 2
156.23 even 6 507.2.b.c.337.2 2
156.35 even 6 507.2.j.b.316.1 2
156.47 odd 4 507.2.e.f.484.2 4
156.59 odd 12 507.2.e.f.22.2 4
156.71 odd 12 507.2.e.f.22.1 4
156.83 odd 4 507.2.e.f.484.1 4
156.95 even 6 39.2.j.a.4.1 2
156.107 even 6 507.2.b.c.337.1 2
156.119 odd 12 507.2.a.e.1.1 2
156.155 even 2 507.2.j.b.361.1 2
780.407 odd 12 975.2.w.d.199.1 4
780.563 odd 12 975.2.w.d.199.2 4
780.719 even 6 975.2.bc.c.901.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.2.j.a.4.1 2 156.95 even 6
39.2.j.a.10.1 yes 2 12.11 even 2
117.2.q.a.10.1 2 4.3 odd 2
117.2.q.a.82.1 2 52.43 odd 6
507.2.a.e.1.1 2 156.119 odd 12
507.2.a.e.1.2 2 156.11 odd 12
507.2.b.c.337.1 2 156.107 even 6
507.2.b.c.337.2 2 156.23 even 6
507.2.e.f.22.1 4 156.71 odd 12
507.2.e.f.22.2 4 156.59 odd 12
507.2.e.f.484.1 4 156.83 odd 4
507.2.e.f.484.2 4 156.47 odd 4
507.2.j.b.316.1 2 156.35 even 6
507.2.j.b.361.1 2 156.155 even 2
624.2.bv.b.49.1 2 3.2 odd 2
624.2.bv.b.433.1 2 39.17 odd 6
975.2.w.d.49.1 4 60.23 odd 4
975.2.w.d.49.2 4 60.47 odd 4
975.2.w.d.199.1 4 780.407 odd 12
975.2.w.d.199.2 4 780.563 odd 12
975.2.bc.c.751.1 2 60.59 even 2
975.2.bc.c.901.1 2 780.719 even 6
1521.2.a.h.1.1 2 52.11 even 12
1521.2.a.h.1.2 2 52.15 even 12
1521.2.b.f.1351.1 2 52.23 odd 6
1521.2.b.f.1351.2 2 52.3 odd 6
1872.2.by.f.433.1 2 13.4 even 6 inner
1872.2.by.f.1297.1 2 1.1 even 1 trivial
8112.2.a.bu.1.1 2 39.2 even 12
8112.2.a.bu.1.2 2 39.11 even 12