Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1881,2,Mod(208,1881)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1881, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1881.208");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1881 = 3^{2} \cdot 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1881.h (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(15.0198606202\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | no (minimal twist has level 627) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
208.1 | −2.41530 | 0 | 3.83365 | −2.83365 | 0 | 0.748883i | −4.42881 | 0 | 6.84411 | ||||||||||||||||||
208.2 | −2.41530 | 0 | 3.83365 | −2.83365 | 0 | − | 0.748883i | −4.42881 | 0 | 6.84411 | |||||||||||||||||
208.3 | −2.29042 | 0 | 3.24604 | −2.24604 | 0 | − | 2.78846i | −2.85397 | 0 | 5.14439 | |||||||||||||||||
208.4 | −2.29042 | 0 | 3.24604 | −2.24604 | 0 | 2.78846i | −2.85397 | 0 | 5.14439 | ||||||||||||||||||
208.5 | −1.89680 | 0 | 1.59785 | −0.597854 | 0 | 2.59222i | 0.762791 | 0 | 1.13401 | ||||||||||||||||||
208.6 | −1.89680 | 0 | 1.59785 | −0.597854 | 0 | − | 2.59222i | 0.762791 | 0 | 1.13401 | |||||||||||||||||
208.7 | −1.38599 | 0 | −0.0790327 | 1.07903 | 0 | 4.79678i | 2.88152 | 0 | −1.49553 | ||||||||||||||||||
208.8 | −1.38599 | 0 | −0.0790327 | 1.07903 | 0 | − | 4.79678i | 2.88152 | 0 | −1.49553 | |||||||||||||||||
208.9 | −1.15985 | 0 | −0.654748 | 1.65475 | 0 | − | 0.0488797i | 3.07911 | 0 | −1.91926 | |||||||||||||||||
208.10 | −1.15985 | 0 | −0.654748 | 1.65475 | 0 | 0.0488797i | 3.07911 | 0 | −1.91926 | ||||||||||||||||||
208.11 | −0.237132 | 0 | −1.94377 | 2.94377 | 0 | 3.15160i | 0.935194 | 0 | −0.698062 | ||||||||||||||||||
208.12 | −0.237132 | 0 | −1.94377 | 2.94377 | 0 | − | 3.15160i | 0.935194 | 0 | −0.698062 | |||||||||||||||||
208.13 | 0.237132 | 0 | −1.94377 | 2.94377 | 0 | − | 3.15160i | −0.935194 | 0 | 0.698062 | |||||||||||||||||
208.14 | 0.237132 | 0 | −1.94377 | 2.94377 | 0 | 3.15160i | −0.935194 | 0 | 0.698062 | ||||||||||||||||||
208.15 | 1.15985 | 0 | −0.654748 | 1.65475 | 0 | − | 0.0488797i | −3.07911 | 0 | 1.91926 | |||||||||||||||||
208.16 | 1.15985 | 0 | −0.654748 | 1.65475 | 0 | 0.0488797i | −3.07911 | 0 | 1.91926 | ||||||||||||||||||
208.17 | 1.38599 | 0 | −0.0790327 | 1.07903 | 0 | 4.79678i | −2.88152 | 0 | 1.49553 | ||||||||||||||||||
208.18 | 1.38599 | 0 | −0.0790327 | 1.07903 | 0 | − | 4.79678i | −2.88152 | 0 | 1.49553 | |||||||||||||||||
208.19 | 1.89680 | 0 | 1.59785 | −0.597854 | 0 | 2.59222i | −0.762791 | 0 | −1.13401 | ||||||||||||||||||
208.20 | 1.89680 | 0 | 1.59785 | −0.597854 | 0 | − | 2.59222i | −0.762791 | 0 | −1.13401 | |||||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.b | odd | 2 | 1 | inner |
19.b | odd | 2 | 1 | inner |
209.d | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1881.2.h.g | 24 | |
3.b | odd | 2 | 1 | 627.2.h.b | ✓ | 24 | |
11.b | odd | 2 | 1 | inner | 1881.2.h.g | 24 | |
19.b | odd | 2 | 1 | inner | 1881.2.h.g | 24 | |
33.d | even | 2 | 1 | 627.2.h.b | ✓ | 24 | |
57.d | even | 2 | 1 | 627.2.h.b | ✓ | 24 | |
209.d | even | 2 | 1 | inner | 1881.2.h.g | 24 | |
627.b | odd | 2 | 1 | 627.2.h.b | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
627.2.h.b | ✓ | 24 | 3.b | odd | 2 | 1 | |
627.2.h.b | ✓ | 24 | 33.d | even | 2 | 1 | |
627.2.h.b | ✓ | 24 | 57.d | even | 2 | 1 | |
627.2.h.b | ✓ | 24 | 627.b | odd | 2 | 1 | |
1881.2.h.g | 24 | 1.a | even | 1 | 1 | trivial | |
1881.2.h.g | 24 | 11.b | odd | 2 | 1 | inner | |
1881.2.h.g | 24 | 19.b | odd | 2 | 1 | inner | |
1881.2.h.g | 24 | 209.d | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1881, [\chi])\):
\( T_{2}^{12} - 18T_{2}^{10} + 122T_{2}^{8} - 385T_{2}^{6} + 563T_{2}^{4} - 315T_{2}^{2} + 16 \) |
\( T_{5}^{6} - 13T_{5}^{4} + T_{5}^{3} + 41T_{5}^{2} - 12T_{5} - 20 \) |