Properties

Label 1881.2.j
Level $1881$
Weight $2$
Character orbit 1881.j
Rep. character $\chi_{1881}(1090,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $164$
Sturm bound $480$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1881 = 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1881.j (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(480\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1881, [\chi])\).

Total New Old
Modular forms 496 164 332
Cusp forms 464 164 300
Eisenstein series 32 0 32

Trace form

\( 164 q - 82 q^{4} + 4 q^{7} - 12 q^{8} + 2 q^{10} - 6 q^{13} + 14 q^{14} - 82 q^{16} - 4 q^{17} - 6 q^{19} + 16 q^{20} - 2 q^{22} - 6 q^{23} - 70 q^{25} - 24 q^{26} - 18 q^{28} + 48 q^{31} + 22 q^{32} + 4 q^{34}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1881, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1881, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1881, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(209, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(627, [\chi])\)\(^{\oplus 2}\)