Properties

Label 1911.2.c.h
Level $1911$
Weight $2$
Character orbit 1911.c
Analytic conductor $15.259$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1911,2,Mod(883,1911)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1911, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1911.883");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1911 = 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1911.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.2594118263\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 273)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{2} - q^{3} + \beta_{2} q^{4} + ( - \beta_{5} - \beta_{4} + \cdots - \beta_1) q^{5} + \beta_{4} q^{6} + ( - \beta_{5} - \beta_{3} - \beta_1) q^{8} + q^{9} + ( - \beta_{5} + \beta_{2} + \beta_1 - 3) q^{10}+ \cdots + (2 \beta_{5} - \beta_{4} + \cdots + 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} - 2 q^{4} + 6 q^{9} - 16 q^{10} + 2 q^{12} + 2 q^{13} - 6 q^{16} - 16 q^{22} + 4 q^{23} - 10 q^{25} + 20 q^{26} - 6 q^{27} - 4 q^{29} + 16 q^{30} - 2 q^{36} - 24 q^{38} - 2 q^{39} - 24 q^{40}+ \cdots + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -2\nu^{5} - 7\nu^{4} + 15\nu^{3} - 25\nu^{2} - 42\nu - 16 ) / 23 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -4\nu^{5} + 9\nu^{4} - 16\nu^{3} - 4\nu^{2} + 8\nu - 9 ) / 23 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -7\nu^{5} + 10\nu^{4} - 5\nu^{3} - 7\nu^{2} - 32\nu + 13 ) / 23 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -11\nu^{5} + 19\nu^{4} - 21\nu^{3} - 11\nu^{2} - 70\nu + 27 ) / 23 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -12\nu^{5} + 27\nu^{4} - 25\nu^{3} - 35\nu^{2} - 22\nu + 42 ) / 23 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{4} + \beta_{3} + \beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{5} + 2\beta_{3} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{5} - 2\beta_{4} + 4\beta_{3} - 4\beta_{2} - \beta _1 - 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{5} - 5\beta_{2} - 2\beta _1 - 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 3\beta_{5} + 3\beta_{4} - 8\beta_{3} - 8\beta_{2} - 2\beta _1 - 9 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1911\mathbb{Z}\right)^\times\).

\(n\) \(638\) \(1471\) \(1522\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
883.1
−0.854638 0.854638i
0.403032 0.403032i
1.45161 + 1.45161i
1.45161 1.45161i
0.403032 + 0.403032i
−0.854638 + 0.854638i
2.17009i −1.00000 −2.70928 0.630898i 2.17009i 0 1.53919i 1.00000 −1.36910
883.2 1.48119i −1.00000 −0.193937 4.15633i 1.48119i 0 2.67513i 1.00000 −6.15633
883.3 0.311108i −1.00000 1.90321 1.52543i 0.311108i 0 1.21432i 1.00000 −0.474572
883.4 0.311108i −1.00000 1.90321 1.52543i 0.311108i 0 1.21432i 1.00000 −0.474572
883.5 1.48119i −1.00000 −0.193937 4.15633i 1.48119i 0 2.67513i 1.00000 −6.15633
883.6 2.17009i −1.00000 −2.70928 0.630898i 2.17009i 0 1.53919i 1.00000 −1.36910
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 883.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1911.2.c.h 6
7.b odd 2 1 273.2.c.b 6
13.b even 2 1 inner 1911.2.c.h 6
21.c even 2 1 819.2.c.c 6
28.d even 2 1 4368.2.h.o 6
91.b odd 2 1 273.2.c.b 6
91.i even 4 1 3549.2.a.k 3
91.i even 4 1 3549.2.a.q 3
273.g even 2 1 819.2.c.c 6
364.h even 2 1 4368.2.h.o 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
273.2.c.b 6 7.b odd 2 1
273.2.c.b 6 91.b odd 2 1
819.2.c.c 6 21.c even 2 1
819.2.c.c 6 273.g even 2 1
1911.2.c.h 6 1.a even 1 1 trivial
1911.2.c.h 6 13.b even 2 1 inner
3549.2.a.k 3 91.i even 4 1
3549.2.a.q 3 91.i even 4 1
4368.2.h.o 6 28.d even 2 1
4368.2.h.o 6 364.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1911, [\chi])\):

\( T_{2}^{6} + 7T_{2}^{4} + 11T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{6} + 20T_{5}^{4} + 48T_{5}^{2} + 16 \) Copy content Toggle raw display
\( T_{17}^{3} - 16T_{17} - 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 7 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( (T + 1)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 20 T^{4} + \cdots + 16 \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + 44 T^{4} + \cdots + 400 \) Copy content Toggle raw display
$13$ \( T^{6} - 2 T^{5} + \cdots + 2197 \) Copy content Toggle raw display
$17$ \( (T^{3} - 16 T - 16)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} + 64 T^{4} + \cdots + 1024 \) Copy content Toggle raw display
$23$ \( (T^{3} - 2 T^{2} - 20 T + 8)^{2} \) Copy content Toggle raw display
$29$ \( (T^{3} + 2 T^{2} - 52 T - 40)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + 176 T^{4} + \cdots + 102400 \) Copy content Toggle raw display
$37$ \( T^{6} + 48 T^{4} + \cdots + 1024 \) Copy content Toggle raw display
$41$ \( T^{6} + 132 T^{4} + \cdots + 400 \) Copy content Toggle raw display
$43$ \( (T^{3} + 16 T^{2} + \cdots - 128)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + 56 T^{4} + \cdots + 2704 \) Copy content Toggle raw display
$53$ \( (T + 6)^{6} \) Copy content Toggle raw display
$59$ \( T^{6} + 40 T^{4} + \cdots + 16 \) Copy content Toggle raw display
$61$ \( (T^{3} + 14 T^{2} + \cdots - 2392)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 128 T^{4} + \cdots + 1024 \) Copy content Toggle raw display
$71$ \( T^{6} + 332 T^{4} + \cdots + 547600 \) Copy content Toggle raw display
$73$ \( T^{6} + 272 T^{4} + \cdots + 43264 \) Copy content Toggle raw display
$79$ \( (T^{3} + 16 T^{2} + \cdots + 80)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 408 T^{4} + \cdots + 1567504 \) Copy content Toggle raw display
$89$ \( T^{6} + 212 T^{4} + \cdots + 5776 \) Copy content Toggle raw display
$97$ \( T^{6} + 32 T^{4} + \cdots + 256 \) Copy content Toggle raw display
show more
show less