Properties

Label 196.3.c.a.99.1
Level $196$
Weight $3$
Character 196.99
Self dual yes
Analytic conductor $5.341$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,3,Mod(99,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.99");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 196.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.34061318146\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 7 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 99.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 196.99

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} -9.89949 q^{5} -8.00000 q^{8} +9.00000 q^{9} +19.7990 q^{10} +9.89949 q^{13} +16.0000 q^{16} +9.89949 q^{17} -18.0000 q^{18} -39.5980 q^{20} +73.0000 q^{25} -19.7990 q^{26} +40.0000 q^{29} -32.0000 q^{32} -19.7990 q^{34} +36.0000 q^{36} +24.0000 q^{37} +79.1960 q^{40} +69.2965 q^{41} -89.0955 q^{45} -146.000 q^{50} +39.5980 q^{52} -90.0000 q^{53} -80.0000 q^{58} -69.2965 q^{61} +64.0000 q^{64} -98.0000 q^{65} +39.5980 q^{68} -72.0000 q^{72} -9.89949 q^{73} -48.0000 q^{74} -158.392 q^{80} +81.0000 q^{81} -138.593 q^{82} -98.0000 q^{85} +168.291 q^{89} +178.191 q^{90} -9.89949 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 8 q^{4} - 16 q^{8} + 18 q^{9} + 32 q^{16} - 36 q^{18} + 146 q^{25} + 80 q^{29} - 64 q^{32} + 72 q^{36} + 48 q^{37} - 292 q^{50} - 180 q^{53} - 160 q^{58} + 128 q^{64} - 196 q^{65} - 144 q^{72}+ \cdots - 196 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −1.00000
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 4.00000 1.00000
\(5\) −9.89949 −1.97990 −0.989949 0.141421i \(-0.954833\pi\)
−0.989949 + 0.141421i \(0.954833\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −8.00000 −1.00000
\(9\) 9.00000 1.00000
\(10\) 19.7990 1.97990
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 9.89949 0.761500 0.380750 0.924678i \(-0.375666\pi\)
0.380750 + 0.924678i \(0.375666\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 16.0000 1.00000
\(17\) 9.89949 0.582323 0.291162 0.956674i \(-0.405958\pi\)
0.291162 + 0.956674i \(0.405958\pi\)
\(18\) −18.0000 −1.00000
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −39.5980 −1.97990
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 73.0000 2.92000
\(26\) −19.7990 −0.761500
\(27\) 0 0
\(28\) 0 0
\(29\) 40.0000 1.37931 0.689655 0.724138i \(-0.257762\pi\)
0.689655 + 0.724138i \(0.257762\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −32.0000 −1.00000
\(33\) 0 0
\(34\) −19.7990 −0.582323
\(35\) 0 0
\(36\) 36.0000 1.00000
\(37\) 24.0000 0.648649 0.324324 0.945946i \(-0.394863\pi\)
0.324324 + 0.945946i \(0.394863\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 79.1960 1.97990
\(41\) 69.2965 1.69016 0.845079 0.534642i \(-0.179553\pi\)
0.845079 + 0.534642i \(0.179553\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) −89.0955 −1.97990
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −146.000 −2.92000
\(51\) 0 0
\(52\) 39.5980 0.761500
\(53\) −90.0000 −1.69811 −0.849057 0.528302i \(-0.822829\pi\)
−0.849057 + 0.528302i \(0.822829\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −80.0000 −1.37931
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) −69.2965 −1.13601 −0.568004 0.823026i \(-0.692284\pi\)
−0.568004 + 0.823026i \(0.692284\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 64.0000 1.00000
\(65\) −98.0000 −1.50769
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 39.5980 0.582323
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −72.0000 −1.00000
\(73\) −9.89949 −0.135610 −0.0678048 0.997699i \(-0.521599\pi\)
−0.0678048 + 0.997699i \(0.521599\pi\)
\(74\) −48.0000 −0.648649
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) −158.392 −1.97990
\(81\) 81.0000 1.00000
\(82\) −138.593 −1.69016
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) −98.0000 −1.15294
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 168.291 1.89091 0.945457 0.325746i \(-0.105615\pi\)
0.945457 + 0.325746i \(0.105615\pi\)
\(90\) 178.191 1.97990
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −9.89949 −0.102057 −0.0510283 0.998697i \(-0.516250\pi\)
−0.0510283 + 0.998697i \(0.516250\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 292.000 2.92000
\(101\) 168.291 1.66625 0.833126 0.553084i \(-0.186549\pi\)
0.833126 + 0.553084i \(0.186549\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) −79.1960 −0.761500
\(105\) 0 0
\(106\) 180.000 1.69811
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) −120.000 −1.10092 −0.550459 0.834862i \(-0.685547\pi\)
−0.550459 + 0.834862i \(0.685547\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 30.0000 0.265487 0.132743 0.991150i \(-0.457621\pi\)
0.132743 + 0.991150i \(0.457621\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 160.000 1.37931
\(117\) 89.0955 0.761500
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 121.000 1.00000
\(122\) 138.593 1.13601
\(123\) 0 0
\(124\) 0 0
\(125\) −475.176 −3.80141
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −128.000 −1.00000
\(129\) 0 0
\(130\) 196.000 1.50769
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −79.1960 −0.582323
\(137\) −176.000 −1.28467 −0.642336 0.766423i \(-0.722035\pi\)
−0.642336 + 0.766423i \(0.722035\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 144.000 1.00000
\(145\) −395.980 −2.73090
\(146\) 19.7990 0.135610
\(147\) 0 0
\(148\) 96.0000 0.648649
\(149\) 102.000 0.684564 0.342282 0.939597i \(-0.388800\pi\)
0.342282 + 0.939597i \(0.388800\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 89.0955 0.582323
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 306.884 1.95468 0.977339 0.211682i \(-0.0678940\pi\)
0.977339 + 0.211682i \(0.0678940\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 316.784 1.97990
\(161\) 0 0
\(162\) −162.000 −1.00000
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 277.186 1.69016
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −71.0000 −0.420118
\(170\) 196.000 1.15294
\(171\) 0 0
\(172\) 0 0
\(173\) 306.884 1.77390 0.886949 0.461867i \(-0.152820\pi\)
0.886949 + 0.461867i \(0.152820\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −336.583 −1.89091
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) −356.382 −1.97990
\(181\) 227.688 1.25795 0.628973 0.777427i \(-0.283475\pi\)
0.628973 + 0.777427i \(0.283475\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −237.588 −1.28426
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 190.000 0.984456 0.492228 0.870466i \(-0.336183\pi\)
0.492228 + 0.870466i \(0.336183\pi\)
\(194\) 19.7990 0.102057
\(195\) 0 0
\(196\) 0 0
\(197\) −390.000 −1.97970 −0.989848 0.142132i \(-0.954604\pi\)
−0.989848 + 0.142132i \(0.954604\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −584.000 −2.92000
\(201\) 0 0
\(202\) −336.583 −1.66625
\(203\) 0 0
\(204\) 0 0
\(205\) −686.000 −3.34634
\(206\) 0 0
\(207\) 0 0
\(208\) 158.392 0.761500
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) −360.000 −1.69811
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 240.000 1.10092
\(219\) 0 0
\(220\) 0 0
\(221\) 98.0000 0.443439
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 657.000 2.92000
\(226\) −60.0000 −0.265487
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 227.688 0.994272 0.497136 0.867673i \(-0.334385\pi\)
0.497136 + 0.867673i \(0.334385\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −320.000 −1.37931
\(233\) 416.000 1.78541 0.892704 0.450644i \(-0.148806\pi\)
0.892704 + 0.450644i \(0.148806\pi\)
\(234\) −178.191 −0.761500
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −465.276 −1.93061 −0.965303 0.261131i \(-0.915905\pi\)
−0.965303 + 0.261131i \(0.915905\pi\)
\(242\) −242.000 −1.00000
\(243\) 0 0
\(244\) −277.186 −1.13601
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 950.352 3.80141
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 256.000 1.00000
\(257\) −405.879 −1.57930 −0.789648 0.613560i \(-0.789737\pi\)
−0.789648 + 0.613560i \(0.789737\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −392.000 −1.50769
\(261\) 360.000 1.37931
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 890.955 3.36209
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −465.276 −1.72965 −0.864826 0.502072i \(-0.832571\pi\)
−0.864826 + 0.502072i \(0.832571\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 158.392 0.582323
\(273\) 0 0
\(274\) 352.000 1.28467
\(275\) 0 0
\(276\) 0 0
\(277\) −230.000 −0.830325 −0.415162 0.909747i \(-0.636275\pi\)
−0.415162 + 0.909747i \(0.636275\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 320.000 1.13879 0.569395 0.822064i \(-0.307178\pi\)
0.569395 + 0.822064i \(0.307178\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −288.000 −1.00000
\(289\) −191.000 −0.660900
\(290\) 791.960 2.73090
\(291\) 0 0
\(292\) −39.5980 −0.135610
\(293\) −306.884 −1.04739 −0.523693 0.851907i \(-0.675446\pi\)
−0.523693 + 0.851907i \(0.675446\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −192.000 −0.648649
\(297\) 0 0
\(298\) −204.000 −0.684564
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 686.000 2.24918
\(306\) −178.191 −0.582323
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) −405.879 −1.29674 −0.648369 0.761326i \(-0.724549\pi\)
−0.648369 + 0.761326i \(0.724549\pi\)
\(314\) −613.769 −1.95468
\(315\) 0 0
\(316\) 0 0
\(317\) −150.000 −0.473186 −0.236593 0.971609i \(-0.576031\pi\)
−0.236593 + 0.971609i \(0.576031\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −633.568 −1.97990
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 324.000 1.00000
\(325\) 722.663 2.22358
\(326\) 0 0
\(327\) 0 0
\(328\) −554.372 −1.69016
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 216.000 0.648649
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −576.000 −1.70920 −0.854599 0.519288i \(-0.826197\pi\)
−0.854599 + 0.519288i \(0.826197\pi\)
\(338\) 142.000 0.420118
\(339\) 0 0
\(340\) −392.000 −1.15294
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −613.769 −1.77390
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) −168.291 −0.482210 −0.241105 0.970499i \(-0.577510\pi\)
−0.241105 + 0.970499i \(0.577510\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 702.864 1.99112 0.995558 0.0941474i \(-0.0300125\pi\)
0.995558 + 0.0941474i \(0.0300125\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 673.166 1.89091
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 712.764 1.97990
\(361\) 361.000 1.00000
\(362\) −455.377 −1.25795
\(363\) 0 0
\(364\) 0 0
\(365\) 98.0000 0.268493
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 623.668 1.69016
\(370\) 475.176 1.28426
\(371\) 0 0
\(372\) 0 0
\(373\) 550.000 1.47453 0.737265 0.675603i \(-0.236117\pi\)
0.737265 + 0.675603i \(0.236117\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 395.980 1.05034
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −380.000 −0.984456
\(387\) 0 0
\(388\) −39.5980 −0.102057
\(389\) −680.000 −1.74807 −0.874036 0.485861i \(-0.838506\pi\)
−0.874036 + 0.485861i \(0.838506\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 780.000 1.97970
\(395\) 0 0
\(396\) 0 0
\(397\) −782.060 −1.96992 −0.984962 0.172769i \(-0.944729\pi\)
−0.984962 + 0.172769i \(0.944729\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 1168.00 2.92000
\(401\) 80.0000 0.199501 0.0997506 0.995012i \(-0.468195\pi\)
0.0997506 + 0.995012i \(0.468195\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 673.166 1.66625
\(405\) −801.859 −1.97990
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −722.663 −1.76690 −0.883451 0.468523i \(-0.844786\pi\)
−0.883451 + 0.468523i \(0.844786\pi\)
\(410\) 1372.00 3.34634
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −316.784 −0.761500
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 58.0000 0.137767 0.0688836 0.997625i \(-0.478056\pi\)
0.0688836 + 0.997625i \(0.478056\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 720.000 1.69811
\(425\) 722.663 1.70038
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) −782.060 −1.80614 −0.903072 0.429490i \(-0.858693\pi\)
−0.903072 + 0.429490i \(0.858693\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −480.000 −1.10092
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −196.000 −0.443439
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) −1666.00 −3.74382
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 702.000 1.56347 0.781737 0.623608i \(-0.214334\pi\)
0.781737 + 0.623608i \(0.214334\pi\)
\(450\) −1314.00 −2.92000
\(451\) 0 0
\(452\) 120.000 0.265487
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −850.000 −1.85996 −0.929978 0.367615i \(-0.880174\pi\)
−0.929978 + 0.367615i \(0.880174\pi\)
\(458\) −455.377 −0.994272
\(459\) 0 0
\(460\) 0 0
\(461\) −168.291 −0.365057 −0.182529 0.983201i \(-0.558428\pi\)
−0.182529 + 0.983201i \(0.558428\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 640.000 1.37931
\(465\) 0 0
\(466\) −832.000 −1.78541
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 356.382 0.761500
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −810.000 −1.69811
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 237.588 0.493946
\(482\) 930.553 1.93061
\(483\) 0 0
\(484\) 484.000 1.00000
\(485\) 98.0000 0.202062
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 554.372 1.13601
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 395.980 0.803204
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) −1900.70 −3.80141
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) −1666.00 −3.29901
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 960.251 1.88654 0.943272 0.332021i \(-0.107730\pi\)
0.943272 + 0.332021i \(0.107730\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −512.000 −1.00000
\(513\) 0 0
\(514\) 811.759 1.57930
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 784.000 1.50769
\(521\) 227.688 0.437022 0.218511 0.975835i \(-0.429880\pi\)
0.218511 + 0.975835i \(0.429880\pi\)
\(522\) −720.000 −1.37931
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 529.000 1.00000
\(530\) −1781.91 −3.36209
\(531\) 0 0
\(532\) 0 0
\(533\) 686.000 1.28705
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 930.553 1.72965
\(539\) 0 0
\(540\) 0 0
\(541\) −682.000 −1.26063 −0.630314 0.776340i \(-0.717074\pi\)
−0.630314 + 0.776340i \(0.717074\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −316.784 −0.582323
\(545\) 1187.94 2.17971
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) −704.000 −1.28467
\(549\) −623.668 −1.13601
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 460.000 0.830325
\(555\) 0 0
\(556\) 0 0
\(557\) 330.000 0.592460 0.296230 0.955117i \(-0.404271\pi\)
0.296230 + 0.955117i \(0.404271\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −640.000 −1.13879
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) −296.985 −0.525637
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1040.00 −1.82777 −0.913884 0.405975i \(-0.866932\pi\)
−0.913884 + 0.405975i \(0.866932\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 576.000 1.00000
\(577\) 881.055 1.52696 0.763479 0.645832i \(-0.223490\pi\)
0.763479 + 0.645832i \(0.223490\pi\)
\(578\) 382.000 0.660900
\(579\) 0 0
\(580\) −1583.92 −2.73090
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 79.1960 0.135610
\(585\) −882.000 −1.50769
\(586\) 613.769 1.04739
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 384.000 0.648649
\(593\) −1178.04 −1.98658 −0.993288 0.115665i \(-0.963100\pi\)
−0.993288 + 0.115665i \(0.963100\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 408.000 0.684564
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) −1118.64 −1.86130 −0.930651 0.365907i \(-0.880759\pi\)
−0.930651 + 0.365907i \(0.880759\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1197.84 −1.97990
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −1372.00 −2.24918
\(611\) 0 0
\(612\) 356.382 0.582323
\(613\) 1224.00 1.99674 0.998369 0.0570962i \(-0.0181842\pi\)
0.998369 + 0.0570962i \(0.0181842\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1216.00 1.97083 0.985413 0.170178i \(-0.0544344\pi\)
0.985413 + 0.170178i \(0.0544344\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 2879.00 4.60640
\(626\) 811.759 1.29674
\(627\) 0 0
\(628\) 1227.54 1.95468
\(629\) 237.588 0.377723
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 300.000 0.473186
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 1267.14 1.97990
\(641\) −400.000 −0.624025 −0.312012 0.950078i \(-0.601003\pi\)
−0.312012 + 0.950078i \(0.601003\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −648.000 −1.00000
\(649\) 0 0
\(650\) −1445.33 −2.22358
\(651\) 0 0
\(652\) 0 0
\(653\) 1144.00 1.75191 0.875957 0.482389i \(-0.160231\pi\)
0.875957 + 0.482389i \(0.160231\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1108.74 1.69016
\(657\) −89.0955 −0.135610
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 1257.24 1.90202 0.951010 0.309159i \(-0.100047\pi\)
0.951010 + 0.309159i \(0.100047\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −432.000 −0.648649
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1104.00 1.64042 0.820208 0.572065i \(-0.193858\pi\)
0.820208 + 0.572065i \(0.193858\pi\)
\(674\) 1152.00 1.70920
\(675\) 0 0
\(676\) −284.000 −0.420118
\(677\) −881.055 −1.30141 −0.650705 0.759330i \(-0.725527\pi\)
−0.650705 + 0.759330i \(0.725527\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 784.000 1.15294
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 1742.31 2.54352
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −890.955 −1.29311
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 1227.54 1.77390
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 686.000 0.984218
\(698\) 336.583 0.482210
\(699\) 0 0
\(700\) 0 0
\(701\) −520.000 −0.741797 −0.370899 0.928673i \(-0.620950\pi\)
−0.370899 + 0.928673i \(0.620950\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −1405.73 −1.99112
\(707\) 0 0
\(708\) 0 0
\(709\) −1320.00 −1.86178 −0.930889 0.365303i \(-0.880965\pi\)
−0.930889 + 0.365303i \(0.880965\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1346.33 −1.89091
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) −1425.53 −1.97990
\(721\) 0 0
\(722\) −722.000 −1.00000
\(723\) 0 0
\(724\) 910.754 1.25795
\(725\) 2920.00 4.02759
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 729.000 1.00000
\(730\) −196.000 −0.268493
\(731\) 0 0
\(732\) 0 0
\(733\) 1178.04 1.60715 0.803574 0.595204i \(-0.202929\pi\)
0.803574 + 0.595204i \(0.202929\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −1247.34 −1.69016
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) −950.352 −1.28426
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) −1009.75 −1.35537
\(746\) −1100.00 −1.47453
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −791.960 −1.05034
\(755\) 0 0
\(756\) 0 0
\(757\) 936.000 1.23646 0.618230 0.785997i \(-0.287850\pi\)
0.618230 + 0.785997i \(0.287850\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1019.65 −1.33988 −0.669940 0.742416i \(-0.733680\pi\)
−0.669940 + 0.742416i \(0.733680\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −882.000 −1.15294
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 168.291 0.218844 0.109422 0.993995i \(-0.465100\pi\)
0.109422 + 0.993995i \(0.465100\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 760.000 0.984456
\(773\) 782.060 1.01172 0.505860 0.862615i \(-0.331175\pi\)
0.505860 + 0.862615i \(0.331175\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 79.1960 0.102057
\(777\) 0 0
\(778\) 1360.00 1.74807
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −3038.00 −3.87006
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) −1560.00 −1.97970
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −686.000 −0.865069
\(794\) 1564.12 1.96992
\(795\) 0 0
\(796\) 0 0
\(797\) 1593.82 1.99977 0.999886 0.0150826i \(-0.00480112\pi\)
0.999886 + 0.0150826i \(0.00480112\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −2336.00 −2.92000
\(801\) 1514.62 1.89091
\(802\) −160.000 −0.199501
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −1346.33 −1.66625
\(809\) −1518.00 −1.87639 −0.938195 0.346106i \(-0.887504\pi\)
−0.938195 + 0.346106i \(0.887504\pi\)
\(810\) 1603.72 1.97990
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 1445.33 1.76690
\(819\) 0 0
\(820\) −2744.00 −3.34634
\(821\) 858.000 1.04507 0.522533 0.852619i \(-0.324987\pi\)
0.522533 + 0.852619i \(0.324987\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) −1653.22 −1.99423 −0.997114 0.0759138i \(-0.975813\pi\)
−0.997114 + 0.0759138i \(0.975813\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 633.568 0.761500
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 759.000 0.902497
\(842\) −116.000 −0.137767
\(843\) 0 0
\(844\) 0 0
\(845\) 702.864 0.831792
\(846\) 0 0
\(847\) 0 0
\(848\) −1440.00 −1.69811
\(849\) 0 0
\(850\) −1445.33 −1.70038
\(851\) 0 0
\(852\) 0 0
\(853\) −881.055 −1.03289 −0.516445 0.856320i \(-0.672745\pi\)
−0.516445 + 0.856320i \(0.672745\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1494.82 −1.74425 −0.872126 0.489282i \(-0.837259\pi\)
−0.872126 + 0.489282i \(0.837259\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) −3038.00 −3.51214
\(866\) 1564.12 1.80614
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 960.000 1.10092
\(873\) −89.0955 −0.102057
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 696.000 0.793615 0.396807 0.917902i \(-0.370118\pi\)
0.396807 + 0.917902i \(0.370118\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1653.22 −1.87652 −0.938261 0.345929i \(-0.887564\pi\)
−0.938261 + 0.345929i \(0.887564\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 392.000 0.443439
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 3332.00 3.74382
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −1404.00 −1.56347
\(899\) 0 0
\(900\) 2628.00 2.92000
\(901\) −890.955 −0.988851
\(902\) 0 0
\(903\) 0 0
\(904\) −240.000 −0.265487
\(905\) −2254.00 −2.49061
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 1514.62 1.66625
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 1700.00 1.85996
\(915\) 0 0
\(916\) 910.754 0.994272
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 336.583 0.365057
\(923\) 0 0
\(924\) 0 0
\(925\) 1752.00 1.89405
\(926\) 0 0
\(927\) 0 0
\(928\) −1280.00 −1.37931
\(929\) 1118.64 1.20414 0.602068 0.798445i \(-0.294343\pi\)
0.602068 + 0.798445i \(0.294343\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 1664.00 1.78541
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −712.764 −0.761500
\(937\) −1593.82 −1.70098 −0.850490 0.525991i \(-0.823695\pi\)
−0.850490 + 0.525991i \(0.823695\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −227.688 −0.241964 −0.120982 0.992655i \(-0.538604\pi\)
−0.120982 + 0.992655i \(0.538604\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) −98.0000 −0.103267
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1230.00 −1.29066 −0.645331 0.763903i \(-0.723280\pi\)
−0.645331 + 0.763903i \(0.723280\pi\)
\(954\) 1620.00 1.69811
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 961.000 1.00000
\(962\) −475.176 −0.493946
\(963\) 0 0
\(964\) −1861.11 −1.93061
\(965\) −1880.90 −1.94912
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) −968.000 −1.00000
\(969\) 0 0
\(970\) −196.000 −0.202062
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −1108.74 −1.13601
\(977\) 496.000 0.507677 0.253838 0.967247i \(-0.418307\pi\)
0.253838 + 0.967247i \(0.418307\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −1080.00 −1.10092
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 3860.80 3.91960
\(986\) −791.960 −0.803204
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 782.060 0.784413 0.392207 0.919877i \(-0.371712\pi\)
0.392207 + 0.919877i \(0.371712\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.3.c.a.99.1 2
4.3 odd 2 CM 196.3.c.a.99.1 2
7.2 even 3 196.3.g.e.67.2 4
7.3 odd 6 196.3.g.e.79.1 4
7.4 even 3 196.3.g.e.79.2 4
7.5 odd 6 196.3.g.e.67.1 4
7.6 odd 2 inner 196.3.c.a.99.2 yes 2
28.3 even 6 196.3.g.e.79.1 4
28.11 odd 6 196.3.g.e.79.2 4
28.19 even 6 196.3.g.e.67.1 4
28.23 odd 6 196.3.g.e.67.2 4
28.27 even 2 inner 196.3.c.a.99.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
196.3.c.a.99.1 2 1.1 even 1 trivial
196.3.c.a.99.1 2 4.3 odd 2 CM
196.3.c.a.99.2 yes 2 7.6 odd 2 inner
196.3.c.a.99.2 yes 2 28.27 even 2 inner
196.3.g.e.67.1 4 7.5 odd 6
196.3.g.e.67.1 4 28.19 even 6
196.3.g.e.67.2 4 7.2 even 3
196.3.g.e.67.2 4 28.23 odd 6
196.3.g.e.79.1 4 7.3 odd 6
196.3.g.e.79.1 4 28.3 even 6
196.3.g.e.79.2 4 7.4 even 3
196.3.g.e.79.2 4 28.11 odd 6