Properties

Label 2156.1.m.b
Level $2156$
Weight $1$
Character orbit 2156.m
Analytic conductor $1.076$
Analytic rank $0$
Dimension $2$
Projective image $D_{2}$
CM/RM discs -7, -308, 44
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,1,Mod(1011,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 1, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.1011");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2156.m (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.07598416724\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 308)
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(\sqrt{-7}, \sqrt{11})\)
Artin image: $C_3\times D_4$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{6}^{2} q^{2} - \zeta_{6} q^{4} - q^{8} - \zeta_{6}^{2} q^{9} - \zeta_{6} q^{11} + \zeta_{6}^{2} q^{16} - \zeta_{6} q^{18} - q^{22} - \zeta_{6} q^{25} + \zeta_{6} q^{32} - q^{36} - 2 \zeta_{6}^{2} q^{37} + \cdots - q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - 2 q^{8} + q^{9} - q^{11} - q^{16} - q^{18} - 2 q^{22} - q^{25} + q^{32} - 2 q^{36} + 2 q^{37} - 4 q^{43} - q^{44} - 2 q^{50} + 2 q^{53} + 2 q^{64} - q^{72} - 2 q^{74} + 2 q^{79}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2156\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1079\) \(1277\)
\(\chi(n)\) \(-1\) \(-1\) \(-\zeta_{6}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1011.1
0.500000 0.866025i
0.500000 + 0.866025i
0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0 0 0 −1.00000 0.500000 + 0.866025i 0
1979.1 0.500000 0.866025i 0 −0.500000 0.866025i 0 0 0 −1.00000 0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
44.c even 2 1 RM by \(\Q(\sqrt{11}) \)
308.g odd 2 1 CM by \(\Q(\sqrt{-77}) \)
7.c even 3 1 inner
7.d odd 6 1 inner
308.m odd 6 1 inner
308.n even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2156.1.m.b 2
4.b odd 2 1 2156.1.m.a 2
7.b odd 2 1 CM 2156.1.m.b 2
7.c even 3 1 308.1.g.a 1
7.c even 3 1 inner 2156.1.m.b 2
7.d odd 6 1 308.1.g.a 1
7.d odd 6 1 inner 2156.1.m.b 2
11.b odd 2 1 2156.1.m.a 2
21.g even 6 1 2772.1.h.b 1
21.h odd 6 1 2772.1.h.b 1
28.d even 2 1 2156.1.m.a 2
28.f even 6 1 308.1.g.b yes 1
28.f even 6 1 2156.1.m.a 2
28.g odd 6 1 308.1.g.b yes 1
28.g odd 6 1 2156.1.m.a 2
44.c even 2 1 RM 2156.1.m.b 2
77.b even 2 1 2156.1.m.a 2
77.h odd 6 1 308.1.g.b yes 1
77.h odd 6 1 2156.1.m.a 2
77.i even 6 1 308.1.g.b yes 1
77.i even 6 1 2156.1.m.a 2
77.m even 15 4 3388.1.s.f 4
77.n even 30 4 3388.1.s.c 4
77.o odd 30 4 3388.1.s.c 4
77.p odd 30 4 3388.1.s.f 4
84.j odd 6 1 2772.1.h.a 1
84.n even 6 1 2772.1.h.a 1
231.k odd 6 1 2772.1.h.a 1
231.l even 6 1 2772.1.h.a 1
308.g odd 2 1 CM 2156.1.m.b 2
308.m odd 6 1 308.1.g.a 1
308.m odd 6 1 inner 2156.1.m.b 2
308.n even 6 1 308.1.g.a 1
308.n even 6 1 inner 2156.1.m.b 2
308.bb odd 30 4 3388.1.s.c 4
308.bc even 30 4 3388.1.s.f 4
308.bd odd 30 4 3388.1.s.f 4
308.be even 30 4 3388.1.s.c 4
924.y even 6 1 2772.1.h.b 1
924.z odd 6 1 2772.1.h.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
308.1.g.a 1 7.c even 3 1
308.1.g.a 1 7.d odd 6 1
308.1.g.a 1 308.m odd 6 1
308.1.g.a 1 308.n even 6 1
308.1.g.b yes 1 28.f even 6 1
308.1.g.b yes 1 28.g odd 6 1
308.1.g.b yes 1 77.h odd 6 1
308.1.g.b yes 1 77.i even 6 1
2156.1.m.a 2 4.b odd 2 1
2156.1.m.a 2 11.b odd 2 1
2156.1.m.a 2 28.d even 2 1
2156.1.m.a 2 28.f even 6 1
2156.1.m.a 2 28.g odd 6 1
2156.1.m.a 2 77.b even 2 1
2156.1.m.a 2 77.h odd 6 1
2156.1.m.a 2 77.i even 6 1
2156.1.m.b 2 1.a even 1 1 trivial
2156.1.m.b 2 7.b odd 2 1 CM
2156.1.m.b 2 7.c even 3 1 inner
2156.1.m.b 2 7.d odd 6 1 inner
2156.1.m.b 2 44.c even 2 1 RM
2156.1.m.b 2 308.g odd 2 1 CM
2156.1.m.b 2 308.m odd 6 1 inner
2156.1.m.b 2 308.n even 6 1 inner
2772.1.h.a 1 84.j odd 6 1
2772.1.h.a 1 84.n even 6 1
2772.1.h.a 1 231.k odd 6 1
2772.1.h.a 1 231.l even 6 1
2772.1.h.b 1 21.g even 6 1
2772.1.h.b 1 21.h odd 6 1
2772.1.h.b 1 924.y even 6 1
2772.1.h.b 1 924.z odd 6 1
3388.1.s.c 4 77.n even 30 4
3388.1.s.c 4 77.o odd 30 4
3388.1.s.c 4 308.bb odd 30 4
3388.1.s.c 4 308.be even 30 4
3388.1.s.f 4 77.m even 15 4
3388.1.s.f 4 77.p odd 30 4
3388.1.s.f 4 308.bc even 30 4
3388.1.s.f 4 308.bd odd 30 4

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{43} + 2 \) acting on \(S_{1}^{\mathrm{new}}(2156, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T + 2)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less