Defining parameters
Level: | \( N \) | \(=\) | \( 216 = 2^{3} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 216.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 12 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(216, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 48 | 0 | 48 |
Cusp forms | 24 | 0 | 24 |
Eisenstein series | 24 | 0 | 24 |
Decomposition of \(S_{2}^{\mathrm{old}}(216, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(216, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 2}\)