Properties

Label 2175.2.a.u.1.2
Level $2175$
Weight $2$
Character 2175.1
Self dual yes
Analytic conductor $17.367$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.469.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.772866\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.772866 q^{2} +1.00000 q^{3} -1.40268 q^{4} -0.772866 q^{6} -2.17554 q^{7} +2.62981 q^{8} +1.00000 q^{9} +3.00000 q^{11} -1.40268 q^{12} +0.629813 q^{13} +1.68140 q^{14} +0.772866 q^{16} -4.17554 q^{17} -0.772866 q^{18} +4.80536 q^{19} -2.17554 q^{21} -2.31860 q^{22} -2.08408 q^{23} +2.62981 q^{24} -0.486761 q^{26} +1.00000 q^{27} +3.05159 q^{28} -1.00000 q^{29} -5.85695 q^{32} +3.00000 q^{33} +3.22713 q^{34} -1.40268 q^{36} -6.08408 q^{37} -3.71390 q^{38} +0.629813 q^{39} +0.824456 q^{41} +1.68140 q^{42} +8.72128 q^{43} -4.20804 q^{44} +1.61072 q^{46} +8.98090 q^{47} +0.772866 q^{48} -2.26701 q^{49} -4.17554 q^{51} -0.883426 q^{52} -6.88944 q^{53} -0.772866 q^{54} -5.72128 q^{56} +4.80536 q^{57} +0.772866 q^{58} +6.45427 q^{59} -2.80536 q^{61} -2.17554 q^{63} +2.98090 q^{64} -2.31860 q^{66} +11.0841 q^{67} +5.85695 q^{68} -2.08408 q^{69} +2.63719 q^{71} +2.62981 q^{72} +14.7863 q^{73} +4.70218 q^{74} -6.74037 q^{76} -6.52663 q^{77} -0.486761 q^{78} -12.0650 q^{79} +1.00000 q^{81} -0.637193 q^{82} +7.62981 q^{83} +3.05159 q^{84} -6.74037 q^{86} -1.00000 q^{87} +7.88944 q^{88} +17.8894 q^{89} -1.37019 q^{91} +2.92330 q^{92} -6.94103 q^{94} -5.85695 q^{96} -0.538351 q^{97} +1.75209 q^{98} +3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 3 q^{3} + 5 q^{4} - q^{6} + 4 q^{7} + 3 q^{9} + 9 q^{11} + 5 q^{12} - 6 q^{13} + 9 q^{14} + q^{16} - 2 q^{17} - q^{18} - 4 q^{19} + 4 q^{21} - 3 q^{22} - q^{23} + 13 q^{26} + 3 q^{27}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.772866 −0.546498 −0.273249 0.961943i \(-0.588098\pi\)
−0.273249 + 0.961943i \(0.588098\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.40268 −0.701339
\(5\) 0 0
\(6\) −0.772866 −0.315521
\(7\) −2.17554 −0.822278 −0.411139 0.911573i \(-0.634869\pi\)
−0.411139 + 0.911573i \(0.634869\pi\)
\(8\) 2.62981 0.929779
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) −1.40268 −0.404918
\(13\) 0.629813 0.174679 0.0873394 0.996179i \(-0.472164\pi\)
0.0873394 + 0.996179i \(0.472164\pi\)
\(14\) 1.68140 0.449374
\(15\) 0 0
\(16\) 0.772866 0.193216
\(17\) −4.17554 −1.01272 −0.506359 0.862323i \(-0.669009\pi\)
−0.506359 + 0.862323i \(0.669009\pi\)
\(18\) −0.772866 −0.182166
\(19\) 4.80536 1.10242 0.551212 0.834365i \(-0.314165\pi\)
0.551212 + 0.834365i \(0.314165\pi\)
\(20\) 0 0
\(21\) −2.17554 −0.474743
\(22\) −2.31860 −0.494326
\(23\) −2.08408 −0.434561 −0.217281 0.976109i \(-0.569719\pi\)
−0.217281 + 0.976109i \(0.569719\pi\)
\(24\) 2.62981 0.536808
\(25\) 0 0
\(26\) −0.486761 −0.0954617
\(27\) 1.00000 0.192450
\(28\) 3.05159 0.576696
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −5.85695 −1.03537
\(33\) 3.00000 0.522233
\(34\) 3.22713 0.553449
\(35\) 0 0
\(36\) −1.40268 −0.233780
\(37\) −6.08408 −1.00022 −0.500108 0.865963i \(-0.666707\pi\)
−0.500108 + 0.865963i \(0.666707\pi\)
\(38\) −3.71390 −0.602473
\(39\) 0.629813 0.100851
\(40\) 0 0
\(41\) 0.824456 0.128758 0.0643792 0.997926i \(-0.479493\pi\)
0.0643792 + 0.997926i \(0.479493\pi\)
\(42\) 1.68140 0.259446
\(43\) 8.72128 1.32998 0.664991 0.746851i \(-0.268435\pi\)
0.664991 + 0.746851i \(0.268435\pi\)
\(44\) −4.20804 −0.634385
\(45\) 0 0
\(46\) 1.61072 0.237487
\(47\) 8.98090 1.31000 0.655000 0.755629i \(-0.272669\pi\)
0.655000 + 0.755629i \(0.272669\pi\)
\(48\) 0.772866 0.111554
\(49\) −2.26701 −0.323858
\(50\) 0 0
\(51\) −4.17554 −0.584693
\(52\) −0.883426 −0.122509
\(53\) −6.88944 −0.946337 −0.473169 0.880972i \(-0.656890\pi\)
−0.473169 + 0.880972i \(0.656890\pi\)
\(54\) −0.772866 −0.105174
\(55\) 0 0
\(56\) −5.72128 −0.764538
\(57\) 4.80536 0.636485
\(58\) 0.772866 0.101482
\(59\) 6.45427 0.840274 0.420137 0.907461i \(-0.361982\pi\)
0.420137 + 0.907461i \(0.361982\pi\)
\(60\) 0 0
\(61\) −2.80536 −0.359189 −0.179595 0.983741i \(-0.557479\pi\)
−0.179595 + 0.983741i \(0.557479\pi\)
\(62\) 0 0
\(63\) −2.17554 −0.274093
\(64\) 2.98090 0.372613
\(65\) 0 0
\(66\) −2.31860 −0.285400
\(67\) 11.0841 1.35414 0.677068 0.735920i \(-0.263250\pi\)
0.677068 + 0.735920i \(0.263250\pi\)
\(68\) 5.85695 0.710259
\(69\) −2.08408 −0.250894
\(70\) 0 0
\(71\) 2.63719 0.312977 0.156489 0.987680i \(-0.449983\pi\)
0.156489 + 0.987680i \(0.449983\pi\)
\(72\) 2.62981 0.309926
\(73\) 14.7863 1.73060 0.865300 0.501254i \(-0.167128\pi\)
0.865300 + 0.501254i \(0.167128\pi\)
\(74\) 4.70218 0.546617
\(75\) 0 0
\(76\) −6.74037 −0.773174
\(77\) −6.52663 −0.743779
\(78\) −0.486761 −0.0551148
\(79\) −12.0650 −1.35742 −0.678708 0.734408i \(-0.737460\pi\)
−0.678708 + 0.734408i \(0.737460\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −0.637193 −0.0703662
\(83\) 7.62981 0.837481 0.418740 0.908106i \(-0.362472\pi\)
0.418740 + 0.908106i \(0.362472\pi\)
\(84\) 3.05159 0.332956
\(85\) 0 0
\(86\) −6.74037 −0.726833
\(87\) −1.00000 −0.107211
\(88\) 7.88944 0.841017
\(89\) 17.8894 1.89628 0.948138 0.317858i \(-0.102963\pi\)
0.948138 + 0.317858i \(0.102963\pi\)
\(90\) 0 0
\(91\) −1.37019 −0.143635
\(92\) 2.92330 0.304775
\(93\) 0 0
\(94\) −6.94103 −0.715913
\(95\) 0 0
\(96\) −5.85695 −0.597772
\(97\) −0.538351 −0.0546613 −0.0273306 0.999626i \(-0.508701\pi\)
−0.0273306 + 0.999626i \(0.508701\pi\)
\(98\) 1.75209 0.176988
\(99\) 3.00000 0.301511
\(100\) 0 0
\(101\) 13.8054 1.37368 0.686842 0.726807i \(-0.258996\pi\)
0.686842 + 0.726807i \(0.258996\pi\)
\(102\) 3.22713 0.319534
\(103\) 13.4426 1.32453 0.662267 0.749268i \(-0.269594\pi\)
0.662267 + 0.749268i \(0.269594\pi\)
\(104\) 1.65629 0.162413
\(105\) 0 0
\(106\) 5.32461 0.517172
\(107\) 9.25963 0.895162 0.447581 0.894243i \(-0.352286\pi\)
0.447581 + 0.894243i \(0.352286\pi\)
\(108\) −1.40268 −0.134973
\(109\) 8.61072 0.824757 0.412378 0.911013i \(-0.364698\pi\)
0.412378 + 0.911013i \(0.364698\pi\)
\(110\) 0 0
\(111\) −6.08408 −0.577476
\(112\) −1.68140 −0.158878
\(113\) −11.2670 −1.05991 −0.529955 0.848026i \(-0.677791\pi\)
−0.529955 + 0.848026i \(0.677791\pi\)
\(114\) −3.71390 −0.347838
\(115\) 0 0
\(116\) 1.40268 0.130235
\(117\) 0.629813 0.0582263
\(118\) −4.98828 −0.459209
\(119\) 9.08408 0.832736
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 2.16816 0.196296
\(123\) 0.824456 0.0743387
\(124\) 0 0
\(125\) 0 0
\(126\) 1.68140 0.149791
\(127\) −16.7863 −1.48954 −0.744770 0.667321i \(-0.767441\pi\)
−0.744770 + 0.667321i \(0.767441\pi\)
\(128\) 9.41006 0.831740
\(129\) 8.72128 0.767865
\(130\) 0 0
\(131\) 11.2670 0.984403 0.492201 0.870481i \(-0.336192\pi\)
0.492201 + 0.870481i \(0.336192\pi\)
\(132\) −4.20804 −0.366263
\(133\) −10.4543 −0.906500
\(134\) −8.56651 −0.740033
\(135\) 0 0
\(136\) −10.9809 −0.941605
\(137\) 18.8703 1.61220 0.806101 0.591778i \(-0.201574\pi\)
0.806101 + 0.591778i \(0.201574\pi\)
\(138\) 1.61072 0.137113
\(139\) 3.80536 0.322766 0.161383 0.986892i \(-0.448405\pi\)
0.161383 + 0.986892i \(0.448405\pi\)
\(140\) 0 0
\(141\) 8.98090 0.756328
\(142\) −2.03820 −0.171042
\(143\) 1.88944 0.158003
\(144\) 0.772866 0.0644055
\(145\) 0 0
\(146\) −11.4278 −0.945771
\(147\) −2.26701 −0.186980
\(148\) 8.53401 0.701492
\(149\) 4.45427 0.364908 0.182454 0.983214i \(-0.441596\pi\)
0.182454 + 0.983214i \(0.441596\pi\)
\(150\) 0 0
\(151\) 1.17554 0.0956644 0.0478322 0.998855i \(-0.484769\pi\)
0.0478322 + 0.998855i \(0.484769\pi\)
\(152\) 12.6372 1.02501
\(153\) −4.17554 −0.337573
\(154\) 5.04421 0.406474
\(155\) 0 0
\(156\) −0.883426 −0.0707307
\(157\) 0.805358 0.0642745 0.0321373 0.999483i \(-0.489769\pi\)
0.0321373 + 0.999483i \(0.489769\pi\)
\(158\) 9.32461 0.741826
\(159\) −6.88944 −0.546368
\(160\) 0 0
\(161\) 4.53401 0.357330
\(162\) −0.772866 −0.0607221
\(163\) 1.11056 0.0869858 0.0434929 0.999054i \(-0.486151\pi\)
0.0434929 + 0.999054i \(0.486151\pi\)
\(164\) −1.15645 −0.0903033
\(165\) 0 0
\(166\) −5.89682 −0.457682
\(167\) 8.70218 0.673395 0.336697 0.941613i \(-0.390690\pi\)
0.336697 + 0.941613i \(0.390690\pi\)
\(168\) −5.72128 −0.441406
\(169\) −12.6033 −0.969487
\(170\) 0 0
\(171\) 4.80536 0.367475
\(172\) −12.2331 −0.932769
\(173\) 7.69480 0.585025 0.292512 0.956262i \(-0.405509\pi\)
0.292512 + 0.956262i \(0.405509\pi\)
\(174\) 0.772866 0.0585908
\(175\) 0 0
\(176\) 2.31860 0.174771
\(177\) 6.45427 0.485133
\(178\) −13.8261 −1.03631
\(179\) −6.06498 −0.453318 −0.226659 0.973974i \(-0.572780\pi\)
−0.226659 + 0.973974i \(0.572780\pi\)
\(180\) 0 0
\(181\) 4.09146 0.304116 0.152058 0.988372i \(-0.451410\pi\)
0.152058 + 0.988372i \(0.451410\pi\)
\(182\) 1.05897 0.0784961
\(183\) −2.80536 −0.207378
\(184\) −5.48075 −0.404046
\(185\) 0 0
\(186\) 0 0
\(187\) −12.5266 −0.916038
\(188\) −12.5973 −0.918754
\(189\) −2.17554 −0.158248
\(190\) 0 0
\(191\) −0.267007 −0.0193199 −0.00965996 0.999953i \(-0.503075\pi\)
−0.00965996 + 0.999953i \(0.503075\pi\)
\(192\) 2.98090 0.215128
\(193\) −10.7022 −0.770360 −0.385180 0.922842i \(-0.625861\pi\)
−0.385180 + 0.922842i \(0.625861\pi\)
\(194\) 0.416073 0.0298723
\(195\) 0 0
\(196\) 3.17988 0.227134
\(197\) −8.08408 −0.575967 −0.287984 0.957635i \(-0.592985\pi\)
−0.287984 + 0.957635i \(0.592985\pi\)
\(198\) −2.31860 −0.164775
\(199\) −15.8054 −1.12041 −0.560206 0.828353i \(-0.689278\pi\)
−0.560206 + 0.828353i \(0.689278\pi\)
\(200\) 0 0
\(201\) 11.0841 0.781811
\(202\) −10.6697 −0.750716
\(203\) 2.17554 0.152693
\(204\) 5.85695 0.410068
\(205\) 0 0
\(206\) −10.3893 −0.723856
\(207\) −2.08408 −0.144854
\(208\) 0.486761 0.0337508
\(209\) 14.4161 0.997181
\(210\) 0 0
\(211\) −25.2214 −1.73631 −0.868157 0.496289i \(-0.834696\pi\)
−0.868157 + 0.496289i \(0.834696\pi\)
\(212\) 9.66367 0.663704
\(213\) 2.63719 0.180698
\(214\) −7.15645 −0.489205
\(215\) 0 0
\(216\) 2.62981 0.178936
\(217\) 0 0
\(218\) −6.65493 −0.450728
\(219\) 14.7863 0.999163
\(220\) 0 0
\(221\) −2.62981 −0.176900
\(222\) 4.70218 0.315589
\(223\) 12.5266 0.838845 0.419423 0.907791i \(-0.362233\pi\)
0.419423 + 0.907791i \(0.362233\pi\)
\(224\) 12.7420 0.851364
\(225\) 0 0
\(226\) 8.70788 0.579240
\(227\) 7.46165 0.495247 0.247624 0.968856i \(-0.420350\pi\)
0.247624 + 0.968856i \(0.420350\pi\)
\(228\) −6.74037 −0.446392
\(229\) 21.7936 1.44016 0.720082 0.693889i \(-0.244104\pi\)
0.720082 + 0.693889i \(0.244104\pi\)
\(230\) 0 0
\(231\) −6.52663 −0.429421
\(232\) −2.62981 −0.172656
\(233\) 9.69480 0.635127 0.317564 0.948237i \(-0.397135\pi\)
0.317564 + 0.948237i \(0.397135\pi\)
\(234\) −0.486761 −0.0318206
\(235\) 0 0
\(236\) −9.05327 −0.589317
\(237\) −12.0650 −0.783705
\(238\) −7.02077 −0.455089
\(239\) −10.7022 −0.692266 −0.346133 0.938185i \(-0.612505\pi\)
−0.346133 + 0.938185i \(0.612505\pi\)
\(240\) 0 0
\(241\) 11.1682 0.719405 0.359702 0.933067i \(-0.382878\pi\)
0.359702 + 0.933067i \(0.382878\pi\)
\(242\) 1.54573 0.0993634
\(243\) 1.00000 0.0641500
\(244\) 3.93502 0.251914
\(245\) 0 0
\(246\) −0.637193 −0.0406260
\(247\) 3.02648 0.192570
\(248\) 0 0
\(249\) 7.62981 0.483520
\(250\) 0 0
\(251\) 14.3585 0.906299 0.453149 0.891435i \(-0.350300\pi\)
0.453149 + 0.891435i \(0.350300\pi\)
\(252\) 3.05159 0.192232
\(253\) −6.25225 −0.393075
\(254\) 12.9735 0.814031
\(255\) 0 0
\(256\) −13.2345 −0.827157
\(257\) 7.11056 0.443545 0.221772 0.975098i \(-0.428816\pi\)
0.221772 + 0.975098i \(0.428816\pi\)
\(258\) −6.74037 −0.419637
\(259\) 13.2362 0.822457
\(260\) 0 0
\(261\) −1.00000 −0.0618984
\(262\) −8.70788 −0.537975
\(263\) −19.2214 −1.18524 −0.592622 0.805481i \(-0.701907\pi\)
−0.592622 + 0.805481i \(0.701907\pi\)
\(264\) 7.88944 0.485561
\(265\) 0 0
\(266\) 8.07974 0.495401
\(267\) 17.8894 1.09482
\(268\) −15.5474 −0.949709
\(269\) −9.88944 −0.602970 −0.301485 0.953471i \(-0.597482\pi\)
−0.301485 + 0.953471i \(0.597482\pi\)
\(270\) 0 0
\(271\) −13.7936 −0.837904 −0.418952 0.908008i \(-0.637602\pi\)
−0.418952 + 0.908008i \(0.637602\pi\)
\(272\) −3.22713 −0.195674
\(273\) −1.37019 −0.0829275
\(274\) −14.5842 −0.881066
\(275\) 0 0
\(276\) 2.92330 0.175962
\(277\) 14.9661 0.899228 0.449614 0.893223i \(-0.351561\pi\)
0.449614 + 0.893223i \(0.351561\pi\)
\(278\) −2.94103 −0.176391
\(279\) 0 0
\(280\) 0 0
\(281\) 11.7287 0.699673 0.349836 0.936811i \(-0.386237\pi\)
0.349836 + 0.936811i \(0.386237\pi\)
\(282\) −6.94103 −0.413332
\(283\) 3.96180 0.235505 0.117752 0.993043i \(-0.462431\pi\)
0.117752 + 0.993043i \(0.462431\pi\)
\(284\) −3.69914 −0.219503
\(285\) 0 0
\(286\) −1.46028 −0.0863483
\(287\) −1.79364 −0.105875
\(288\) −5.85695 −0.345124
\(289\) 0.435171 0.0255983
\(290\) 0 0
\(291\) −0.538351 −0.0315587
\(292\) −20.7404 −1.21374
\(293\) 3.26701 0.190861 0.0954303 0.995436i \(-0.469577\pi\)
0.0954303 + 0.995436i \(0.469577\pi\)
\(294\) 1.75209 0.102184
\(295\) 0 0
\(296\) −16.0000 −0.929981
\(297\) 3.00000 0.174078
\(298\) −3.44255 −0.199422
\(299\) −1.31258 −0.0759086
\(300\) 0 0
\(301\) −18.9735 −1.09362
\(302\) −0.908538 −0.0522805
\(303\) 13.8054 0.793097
\(304\) 3.71390 0.213007
\(305\) 0 0
\(306\) 3.22713 0.184483
\(307\) −20.4352 −1.16630 −0.583148 0.812366i \(-0.698179\pi\)
−0.583148 + 0.812366i \(0.698179\pi\)
\(308\) 9.15477 0.521641
\(309\) 13.4426 0.764720
\(310\) 0 0
\(311\) 11.0000 0.623753 0.311876 0.950123i \(-0.399043\pi\)
0.311876 + 0.950123i \(0.399043\pi\)
\(312\) 1.65629 0.0937690
\(313\) −27.6683 −1.56391 −0.781953 0.623337i \(-0.785776\pi\)
−0.781953 + 0.623337i \(0.785776\pi\)
\(314\) −0.622433 −0.0351259
\(315\) 0 0
\(316\) 16.9233 0.952010
\(317\) 12.8777 0.723285 0.361642 0.932317i \(-0.382216\pi\)
0.361642 + 0.932317i \(0.382216\pi\)
\(318\) 5.32461 0.298589
\(319\) −3.00000 −0.167968
\(320\) 0 0
\(321\) 9.25963 0.516822
\(322\) −3.50418 −0.195280
\(323\) −20.0650 −1.11645
\(324\) −1.40268 −0.0779266
\(325\) 0 0
\(326\) −0.858314 −0.0475376
\(327\) 8.61072 0.476174
\(328\) 2.16816 0.119717
\(329\) −19.5384 −1.07718
\(330\) 0 0
\(331\) 24.6874 1.35694 0.678472 0.734627i \(-0.262643\pi\)
0.678472 + 0.734627i \(0.262643\pi\)
\(332\) −10.7022 −0.587358
\(333\) −6.08408 −0.333406
\(334\) −6.72561 −0.368009
\(335\) 0 0
\(336\) −1.68140 −0.0917281
\(337\) 21.0915 1.14893 0.574463 0.818531i \(-0.305211\pi\)
0.574463 + 0.818531i \(0.305211\pi\)
\(338\) 9.74068 0.529823
\(339\) −11.2670 −0.611940
\(340\) 0 0
\(341\) 0 0
\(342\) −3.71390 −0.200824
\(343\) 20.1608 1.08858
\(344\) 22.9353 1.23659
\(345\) 0 0
\(346\) −5.94704 −0.319715
\(347\) 18.8245 1.01055 0.505275 0.862958i \(-0.331391\pi\)
0.505275 + 0.862958i \(0.331391\pi\)
\(348\) 1.40268 0.0751915
\(349\) 17.4884 0.936135 0.468067 0.883693i \(-0.344950\pi\)
0.468067 + 0.883693i \(0.344950\pi\)
\(350\) 0 0
\(351\) 0.629813 0.0336169
\(352\) −17.5708 −0.936529
\(353\) 8.38928 0.446517 0.223258 0.974759i \(-0.428331\pi\)
0.223258 + 0.974759i \(0.428331\pi\)
\(354\) −4.98828 −0.265124
\(355\) 0 0
\(356\) −25.0931 −1.32993
\(357\) 9.08408 0.480781
\(358\) 4.68742 0.247738
\(359\) −27.6948 −1.46168 −0.730838 0.682551i \(-0.760870\pi\)
−0.730838 + 0.682551i \(0.760870\pi\)
\(360\) 0 0
\(361\) 4.09146 0.215340
\(362\) −3.16215 −0.166199
\(363\) −2.00000 −0.104973
\(364\) 1.92193 0.100737
\(365\) 0 0
\(366\) 2.16816 0.113332
\(367\) −9.00738 −0.470181 −0.235091 0.971973i \(-0.575539\pi\)
−0.235091 + 0.971973i \(0.575539\pi\)
\(368\) −1.61072 −0.0839643
\(369\) 0.824456 0.0429194
\(370\) 0 0
\(371\) 14.9883 0.778153
\(372\) 0 0
\(373\) 25.0533 1.29721 0.648604 0.761126i \(-0.275353\pi\)
0.648604 + 0.761126i \(0.275353\pi\)
\(374\) 9.68140 0.500613
\(375\) 0 0
\(376\) 23.6181 1.21801
\(377\) −0.629813 −0.0324370
\(378\) 1.68140 0.0864821
\(379\) −27.5725 −1.41631 −0.708153 0.706059i \(-0.750471\pi\)
−0.708153 + 0.706059i \(0.750471\pi\)
\(380\) 0 0
\(381\) −16.7863 −0.859986
\(382\) 0.206360 0.0105583
\(383\) 13.0724 0.667967 0.333983 0.942579i \(-0.391607\pi\)
0.333983 + 0.942579i \(0.391607\pi\)
\(384\) 9.41006 0.480205
\(385\) 0 0
\(386\) 8.27134 0.421000
\(387\) 8.72128 0.443327
\(388\) 0.755134 0.0383361
\(389\) −23.0797 −1.17019 −0.585095 0.810965i \(-0.698943\pi\)
−0.585095 + 0.810965i \(0.698943\pi\)
\(390\) 0 0
\(391\) 8.70218 0.440088
\(392\) −5.96180 −0.301117
\(393\) 11.2670 0.568345
\(394\) 6.24791 0.314765
\(395\) 0 0
\(396\) −4.20804 −0.211462
\(397\) 12.3129 0.617966 0.308983 0.951067i \(-0.400011\pi\)
0.308983 + 0.951067i \(0.400011\pi\)
\(398\) 12.2154 0.612304
\(399\) −10.4543 −0.523368
\(400\) 0 0
\(401\) −36.4308 −1.81927 −0.909634 0.415410i \(-0.863638\pi\)
−0.909634 + 0.415410i \(0.863638\pi\)
\(402\) −8.56651 −0.427258
\(403\) 0 0
\(404\) −19.3645 −0.963419
\(405\) 0 0
\(406\) −1.68140 −0.0834466
\(407\) −18.2522 −0.904730
\(408\) −10.9809 −0.543636
\(409\) −22.5842 −1.11672 −0.558359 0.829599i \(-0.688569\pi\)
−0.558359 + 0.829599i \(0.688569\pi\)
\(410\) 0 0
\(411\) 18.8703 0.930805
\(412\) −18.8556 −0.928948
\(413\) −14.0415 −0.690939
\(414\) 1.61072 0.0791623
\(415\) 0 0
\(416\) −3.68878 −0.180857
\(417\) 3.80536 0.186349
\(418\) −11.1417 −0.544958
\(419\) −2.90854 −0.142091 −0.0710457 0.997473i \(-0.522634\pi\)
−0.0710457 + 0.997473i \(0.522634\pi\)
\(420\) 0 0
\(421\) 27.1183 1.32166 0.660831 0.750534i \(-0.270204\pi\)
0.660831 + 0.750534i \(0.270204\pi\)
\(422\) 19.4928 0.948893
\(423\) 8.98090 0.436666
\(424\) −18.1179 −0.879885
\(425\) 0 0
\(426\) −2.03820 −0.0987509
\(427\) 6.10318 0.295354
\(428\) −12.9883 −0.627812
\(429\) 1.88944 0.0912230
\(430\) 0 0
\(431\) 19.5960 0.943904 0.471952 0.881624i \(-0.343550\pi\)
0.471952 + 0.881624i \(0.343550\pi\)
\(432\) 0.772866 0.0371845
\(433\) −24.1638 −1.16124 −0.580620 0.814175i \(-0.697190\pi\)
−0.580620 + 0.814175i \(0.697190\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −12.0781 −0.578435
\(437\) −10.0148 −0.479071
\(438\) −11.4278 −0.546041
\(439\) −30.4235 −1.45203 −0.726016 0.687678i \(-0.758630\pi\)
−0.726016 + 0.687678i \(0.758630\pi\)
\(440\) 0 0
\(441\) −2.26701 −0.107953
\(442\) 2.03249 0.0966758
\(443\) 32.3853 1.53867 0.769335 0.638846i \(-0.220588\pi\)
0.769335 + 0.638846i \(0.220588\pi\)
\(444\) 8.53401 0.405006
\(445\) 0 0
\(446\) −9.68140 −0.458428
\(447\) 4.45427 0.210680
\(448\) −6.48508 −0.306391
\(449\) −5.62243 −0.265339 −0.132670 0.991160i \(-0.542355\pi\)
−0.132670 + 0.991160i \(0.542355\pi\)
\(450\) 0 0
\(451\) 2.47337 0.116466
\(452\) 15.8040 0.743357
\(453\) 1.17554 0.0552319
\(454\) −5.76685 −0.270652
\(455\) 0 0
\(456\) 12.6372 0.591791
\(457\) −3.33199 −0.155864 −0.0779320 0.996959i \(-0.524832\pi\)
−0.0779320 + 0.996959i \(0.524832\pi\)
\(458\) −16.8436 −0.787048
\(459\) −4.17554 −0.194898
\(460\) 0 0
\(461\) 23.3437 1.08722 0.543612 0.839336i \(-0.317056\pi\)
0.543612 + 0.839336i \(0.317056\pi\)
\(462\) 5.04421 0.234678
\(463\) −4.13735 −0.192279 −0.0961394 0.995368i \(-0.530649\pi\)
−0.0961394 + 0.995368i \(0.530649\pi\)
\(464\) −0.772866 −0.0358794
\(465\) 0 0
\(466\) −7.49278 −0.347096
\(467\) −35.7554 −1.65456 −0.827282 0.561786i \(-0.810114\pi\)
−0.827282 + 0.561786i \(0.810114\pi\)
\(468\) −0.883426 −0.0408364
\(469\) −24.1139 −1.11348
\(470\) 0 0
\(471\) 0.805358 0.0371089
\(472\) 16.9735 0.781270
\(473\) 26.1638 1.20301
\(474\) 9.32461 0.428294
\(475\) 0 0
\(476\) −12.7420 −0.584031
\(477\) −6.88944 −0.315446
\(478\) 8.27134 0.378322
\(479\) −29.6107 −1.35295 −0.676474 0.736466i \(-0.736493\pi\)
−0.676474 + 0.736466i \(0.736493\pi\)
\(480\) 0 0
\(481\) −3.83184 −0.174717
\(482\) −8.63149 −0.393154
\(483\) 4.53401 0.206305
\(484\) 2.80536 0.127516
\(485\) 0 0
\(486\) −0.772866 −0.0350579
\(487\) 4.33633 0.196498 0.0982489 0.995162i \(-0.468676\pi\)
0.0982489 + 0.995162i \(0.468676\pi\)
\(488\) −7.37757 −0.333967
\(489\) 1.11056 0.0502213
\(490\) 0 0
\(491\) 22.5193 1.01628 0.508140 0.861275i \(-0.330333\pi\)
0.508140 + 0.861275i \(0.330333\pi\)
\(492\) −1.15645 −0.0521366
\(493\) 4.17554 0.188057
\(494\) −2.33906 −0.105239
\(495\) 0 0
\(496\) 0 0
\(497\) −5.73733 −0.257354
\(498\) −5.89682 −0.264243
\(499\) −41.1638 −1.84275 −0.921373 0.388680i \(-0.872931\pi\)
−0.921373 + 0.388680i \(0.872931\pi\)
\(500\) 0 0
\(501\) 8.70218 0.388785
\(502\) −11.0972 −0.495291
\(503\) −31.5149 −1.40518 −0.702590 0.711595i \(-0.747973\pi\)
−0.702590 + 0.711595i \(0.747973\pi\)
\(504\) −5.72128 −0.254846
\(505\) 0 0
\(506\) 4.83215 0.214815
\(507\) −12.6033 −0.559734
\(508\) 23.5457 1.04467
\(509\) 22.6224 1.00272 0.501361 0.865238i \(-0.332833\pi\)
0.501361 + 0.865238i \(0.332833\pi\)
\(510\) 0 0
\(511\) −32.1682 −1.42304
\(512\) −8.59162 −0.379699
\(513\) 4.80536 0.212162
\(514\) −5.49551 −0.242396
\(515\) 0 0
\(516\) −12.2331 −0.538534
\(517\) 26.9427 1.18494
\(518\) −10.2298 −0.449471
\(519\) 7.69480 0.337764
\(520\) 0 0
\(521\) −2.06498 −0.0904686 −0.0452343 0.998976i \(-0.514403\pi\)
−0.0452343 + 0.998976i \(0.514403\pi\)
\(522\) 0.772866 0.0338274
\(523\) −24.5266 −1.07247 −0.536237 0.844067i \(-0.680155\pi\)
−0.536237 + 0.844067i \(0.680155\pi\)
\(524\) −15.8040 −0.690401
\(525\) 0 0
\(526\) 14.8556 0.647734
\(527\) 0 0
\(528\) 2.31860 0.100904
\(529\) −18.6566 −0.811157
\(530\) 0 0
\(531\) 6.45427 0.280091
\(532\) 14.6640 0.635764
\(533\) 0.519253 0.0224913
\(534\) −13.8261 −0.598315
\(535\) 0 0
\(536\) 29.1491 1.25905
\(537\) −6.06498 −0.261723
\(538\) 7.64321 0.329522
\(539\) −6.80102 −0.292941
\(540\) 0 0
\(541\) 0.389285 0.0167367 0.00836833 0.999965i \(-0.497336\pi\)
0.00836833 + 0.999965i \(0.497336\pi\)
\(542\) 10.6606 0.457913
\(543\) 4.09146 0.175581
\(544\) 24.4559 1.04854
\(545\) 0 0
\(546\) 1.05897 0.0453197
\(547\) −21.4352 −0.916502 −0.458251 0.888823i \(-0.651524\pi\)
−0.458251 + 0.888823i \(0.651524\pi\)
\(548\) −26.4690 −1.13070
\(549\) −2.80536 −0.119730
\(550\) 0 0
\(551\) −4.80536 −0.204715
\(552\) −5.48075 −0.233276
\(553\) 26.2479 1.11617
\(554\) −11.5668 −0.491427
\(555\) 0 0
\(556\) −5.33769 −0.226369
\(557\) 19.7598 0.837249 0.418624 0.908159i \(-0.362512\pi\)
0.418624 + 0.908159i \(0.362512\pi\)
\(558\) 0 0
\(559\) 5.49278 0.232320
\(560\) 0 0
\(561\) −12.5266 −0.528875
\(562\) −9.06467 −0.382370
\(563\) −6.46165 −0.272326 −0.136163 0.990686i \(-0.543477\pi\)
−0.136163 + 0.990686i \(0.543477\pi\)
\(564\) −12.5973 −0.530443
\(565\) 0 0
\(566\) −3.06194 −0.128703
\(567\) −2.17554 −0.0913643
\(568\) 6.93533 0.291000
\(569\) −14.9427 −0.626431 −0.313215 0.949682i \(-0.601406\pi\)
−0.313215 + 0.949682i \(0.601406\pi\)
\(570\) 0 0
\(571\) 35.1521 1.47107 0.735535 0.677487i \(-0.236931\pi\)
0.735535 + 0.677487i \(0.236931\pi\)
\(572\) −2.65028 −0.110814
\(573\) −0.267007 −0.0111544
\(574\) 1.38624 0.0578606
\(575\) 0 0
\(576\) 2.98090 0.124204
\(577\) 0.740373 0.0308222 0.0154111 0.999881i \(-0.495094\pi\)
0.0154111 + 0.999881i \(0.495094\pi\)
\(578\) −0.336329 −0.0139894
\(579\) −10.7022 −0.444767
\(580\) 0 0
\(581\) −16.5990 −0.688642
\(582\) 0.416073 0.0172468
\(583\) −20.6683 −0.855994
\(584\) 38.8851 1.60908
\(585\) 0 0
\(586\) −2.52496 −0.104305
\(587\) 18.5842 0.767054 0.383527 0.923530i \(-0.374709\pi\)
0.383527 + 0.923530i \(0.374709\pi\)
\(588\) 3.17988 0.131136
\(589\) 0 0
\(590\) 0 0
\(591\) −8.08408 −0.332535
\(592\) −4.70218 −0.193258
\(593\) −24.0268 −0.986662 −0.493331 0.869842i \(-0.664221\pi\)
−0.493331 + 0.869842i \(0.664221\pi\)
\(594\) −2.31860 −0.0951332
\(595\) 0 0
\(596\) −6.24791 −0.255924
\(597\) −15.8054 −0.646870
\(598\) 1.01445 0.0414839
\(599\) 22.3585 0.913542 0.456771 0.889584i \(-0.349006\pi\)
0.456771 + 0.889584i \(0.349006\pi\)
\(600\) 0 0
\(601\) −20.3511 −0.830138 −0.415069 0.909790i \(-0.636243\pi\)
−0.415069 + 0.909790i \(0.636243\pi\)
\(602\) 14.6640 0.597659
\(603\) 11.0841 0.451379
\(604\) −1.64891 −0.0670932
\(605\) 0 0
\(606\) −10.6697 −0.433426
\(607\) −19.4928 −0.791187 −0.395594 0.918426i \(-0.629461\pi\)
−0.395594 + 0.918426i \(0.629461\pi\)
\(608\) −28.1447 −1.14142
\(609\) 2.17554 0.0881575
\(610\) 0 0
\(611\) 5.65629 0.228829
\(612\) 5.85695 0.236753
\(613\) −39.1638 −1.58181 −0.790906 0.611938i \(-0.790390\pi\)
−0.790906 + 0.611938i \(0.790390\pi\)
\(614\) 15.7936 0.637379
\(615\) 0 0
\(616\) −17.1638 −0.691550
\(617\) −26.8321 −1.08022 −0.540111 0.841594i \(-0.681618\pi\)
−0.540111 + 0.841594i \(0.681618\pi\)
\(618\) −10.3893 −0.417918
\(619\) −33.4278 −1.34358 −0.671788 0.740743i \(-0.734473\pi\)
−0.671788 + 0.740743i \(0.734473\pi\)
\(620\) 0 0
\(621\) −2.08408 −0.0836313
\(622\) −8.50152 −0.340880
\(623\) −38.9193 −1.55927
\(624\) 0.486761 0.0194860
\(625\) 0 0
\(626\) 21.3839 0.854672
\(627\) 14.4161 0.575722
\(628\) −1.12966 −0.0450783
\(629\) 25.4044 1.01294
\(630\) 0 0
\(631\) −32.3705 −1.28865 −0.644325 0.764752i \(-0.722861\pi\)
−0.644325 + 0.764752i \(0.722861\pi\)
\(632\) −31.7287 −1.26210
\(633\) −25.2214 −1.00246
\(634\) −9.95275 −0.395274
\(635\) 0 0
\(636\) 9.66367 0.383189
\(637\) −1.42779 −0.0565711
\(638\) 2.31860 0.0917941
\(639\) 2.63719 0.104326
\(640\) 0 0
\(641\) 33.0415 1.30506 0.652531 0.757762i \(-0.273707\pi\)
0.652531 + 0.757762i \(0.273707\pi\)
\(642\) −7.15645 −0.282442
\(643\) −27.4734 −1.08344 −0.541722 0.840558i \(-0.682227\pi\)
−0.541722 + 0.840558i \(0.682227\pi\)
\(644\) −6.35976 −0.250610
\(645\) 0 0
\(646\) 15.5075 0.610136
\(647\) 23.2023 0.912178 0.456089 0.889934i \(-0.349250\pi\)
0.456089 + 0.889934i \(0.349250\pi\)
\(648\) 2.62981 0.103309
\(649\) 19.3628 0.760057
\(650\) 0 0
\(651\) 0 0
\(652\) −1.55776 −0.0610066
\(653\) 28.9159 1.13157 0.565784 0.824554i \(-0.308574\pi\)
0.565784 + 0.824554i \(0.308574\pi\)
\(654\) −6.65493 −0.260228
\(655\) 0 0
\(656\) 0.637193 0.0248782
\(657\) 14.7863 0.576867
\(658\) 15.1005 0.588680
\(659\) 36.1832 1.40950 0.704749 0.709456i \(-0.251059\pi\)
0.704749 + 0.709456i \(0.251059\pi\)
\(660\) 0 0
\(661\) 45.0918 1.75387 0.876933 0.480612i \(-0.159585\pi\)
0.876933 + 0.480612i \(0.159585\pi\)
\(662\) −19.0801 −0.741567
\(663\) −2.62981 −0.102133
\(664\) 20.0650 0.778672
\(665\) 0 0
\(666\) 4.70218 0.182206
\(667\) 2.08408 0.0806960
\(668\) −12.2064 −0.472278
\(669\) 12.5266 0.484308
\(670\) 0 0
\(671\) −8.41607 −0.324899
\(672\) 12.7420 0.491535
\(673\) 23.1491 0.892331 0.446165 0.894950i \(-0.352789\pi\)
0.446165 + 0.894950i \(0.352789\pi\)
\(674\) −16.3009 −0.627886
\(675\) 0 0
\(676\) 17.6784 0.679940
\(677\) −38.1521 −1.46630 −0.733152 0.680064i \(-0.761952\pi\)
−0.733152 + 0.680064i \(0.761952\pi\)
\(678\) 8.70788 0.334424
\(679\) 1.17121 0.0449468
\(680\) 0 0
\(681\) 7.46165 0.285931
\(682\) 0 0
\(683\) 0.228811 0.00875520 0.00437760 0.999990i \(-0.498607\pi\)
0.00437760 + 0.999990i \(0.498607\pi\)
\(684\) −6.74037 −0.257725
\(685\) 0 0
\(686\) −15.5816 −0.594907
\(687\) 21.7936 0.831479
\(688\) 6.74037 0.256974
\(689\) −4.33906 −0.165305
\(690\) 0 0
\(691\) 16.2258 0.617257 0.308629 0.951183i \(-0.400130\pi\)
0.308629 + 0.951183i \(0.400130\pi\)
\(692\) −10.7933 −0.410301
\(693\) −6.52663 −0.247926
\(694\) −14.5488 −0.552264
\(695\) 0 0
\(696\) −2.62981 −0.0996828
\(697\) −3.44255 −0.130396
\(698\) −13.5162 −0.511596
\(699\) 9.69480 0.366691
\(700\) 0 0
\(701\) 9.69914 0.366331 0.183166 0.983082i \(-0.441366\pi\)
0.183166 + 0.983082i \(0.441366\pi\)
\(702\) −0.486761 −0.0183716
\(703\) −29.2362 −1.10266
\(704\) 8.94271 0.337041
\(705\) 0 0
\(706\) −6.48379 −0.244021
\(707\) −30.0342 −1.12955
\(708\) −9.05327 −0.340243
\(709\) 49.4884 1.85858 0.929289 0.369354i \(-0.120421\pi\)
0.929289 + 0.369354i \(0.120421\pi\)
\(710\) 0 0
\(711\) −12.0650 −0.452472
\(712\) 47.0459 1.76312
\(713\) 0 0
\(714\) −7.02077 −0.262746
\(715\) 0 0
\(716\) 8.50722 0.317930
\(717\) −10.7022 −0.399680
\(718\) 21.4044 0.798803
\(719\) 15.7139 0.586029 0.293015 0.956108i \(-0.405342\pi\)
0.293015 + 0.956108i \(0.405342\pi\)
\(720\) 0 0
\(721\) −29.2449 −1.08914
\(722\) −3.16215 −0.117683
\(723\) 11.1682 0.415348
\(724\) −5.73901 −0.213289
\(725\) 0 0
\(726\) 1.54573 0.0573675
\(727\) −6.51925 −0.241786 −0.120893 0.992666i \(-0.538576\pi\)
−0.120893 + 0.992666i \(0.538576\pi\)
\(728\) −3.60334 −0.133548
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −36.4161 −1.34690
\(732\) 3.93502 0.145442
\(733\) 6.76716 0.249951 0.124975 0.992160i \(-0.460115\pi\)
0.124975 + 0.992160i \(0.460115\pi\)
\(734\) 6.96149 0.256953
\(735\) 0 0
\(736\) 12.2064 0.449932
\(737\) 33.2522 1.22486
\(738\) −0.637193 −0.0234554
\(739\) −41.1183 −1.51256 −0.756280 0.654248i \(-0.772985\pi\)
−0.756280 + 0.654248i \(0.772985\pi\)
\(740\) 0 0
\(741\) 3.02648 0.111180
\(742\) −11.5839 −0.425259
\(743\) −36.5534 −1.34101 −0.670507 0.741903i \(-0.733924\pi\)
−0.670507 + 0.741903i \(0.733924\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −19.3628 −0.708923
\(747\) 7.62981 0.279160
\(748\) 17.5708 0.642454
\(749\) −20.1447 −0.736072
\(750\) 0 0
\(751\) −45.1980 −1.64930 −0.824649 0.565645i \(-0.808627\pi\)
−0.824649 + 0.565645i \(0.808627\pi\)
\(752\) 6.94103 0.253113
\(753\) 14.3585 0.523252
\(754\) 0.486761 0.0177268
\(755\) 0 0
\(756\) 3.05159 0.110985
\(757\) −53.4737 −1.94353 −0.971767 0.235943i \(-0.924182\pi\)
−0.971767 + 0.235943i \(0.924182\pi\)
\(758\) 21.3099 0.774009
\(759\) −6.25225 −0.226942
\(760\) 0 0
\(761\) −49.4693 −1.79326 −0.896631 0.442778i \(-0.853993\pi\)
−0.896631 + 0.442778i \(0.853993\pi\)
\(762\) 12.9735 0.469981
\(763\) −18.7330 −0.678180
\(764\) 0.374525 0.0135498
\(765\) 0 0
\(766\) −10.1032 −0.365043
\(767\) 4.06498 0.146778
\(768\) −13.2345 −0.477559
\(769\) −14.2331 −0.513260 −0.256630 0.966510i \(-0.582612\pi\)
−0.256630 + 0.966510i \(0.582612\pi\)
\(770\) 0 0
\(771\) 7.11056 0.256081
\(772\) 15.0117 0.540284
\(773\) −21.7936 −0.783863 −0.391931 0.919994i \(-0.628193\pi\)
−0.391931 + 0.919994i \(0.628193\pi\)
\(774\) −6.74037 −0.242278
\(775\) 0 0
\(776\) −1.41576 −0.0508229
\(777\) 13.2362 0.474846
\(778\) 17.8375 0.639507
\(779\) 3.96180 0.141946
\(780\) 0 0
\(781\) 7.91158 0.283099
\(782\) −6.72561 −0.240507
\(783\) −1.00000 −0.0357371
\(784\) −1.75209 −0.0625747
\(785\) 0 0
\(786\) −8.70788 −0.310600
\(787\) 14.1829 0.505567 0.252783 0.967523i \(-0.418654\pi\)
0.252783 + 0.967523i \(0.418654\pi\)
\(788\) 11.3394 0.403948
\(789\) −19.2214 −0.684301
\(790\) 0 0
\(791\) 24.5119 0.871542
\(792\) 7.88944 0.280339
\(793\) −1.76685 −0.0627427
\(794\) −9.51621 −0.337718
\(795\) 0 0
\(796\) 22.1698 0.785789
\(797\) 2.00000 0.0708436 0.0354218 0.999372i \(-0.488723\pi\)
0.0354218 + 0.999372i \(0.488723\pi\)
\(798\) 8.07974 0.286020
\(799\) −37.5002 −1.32666
\(800\) 0 0
\(801\) 17.8894 0.632092
\(802\) 28.1561 0.994228
\(803\) 44.3588 1.56539
\(804\) −15.5474 −0.548315
\(805\) 0 0
\(806\) 0 0
\(807\) −9.88944 −0.348125
\(808\) 36.3055 1.27722
\(809\) 30.6757 1.07850 0.539250 0.842146i \(-0.318708\pi\)
0.539250 + 0.842146i \(0.318708\pi\)
\(810\) 0 0
\(811\) 36.6609 1.28734 0.643670 0.765303i \(-0.277411\pi\)
0.643670 + 0.765303i \(0.277411\pi\)
\(812\) −3.05159 −0.107090
\(813\) −13.7936 −0.483764
\(814\) 14.1065 0.494434
\(815\) 0 0
\(816\) −3.22713 −0.112972
\(817\) 41.9088 1.46620
\(818\) 17.4546 0.610285
\(819\) −1.37019 −0.0478782
\(820\) 0 0
\(821\) −36.1447 −1.26146 −0.630730 0.776002i \(-0.717244\pi\)
−0.630730 + 0.776002i \(0.717244\pi\)
\(822\) −14.5842 −0.508684
\(823\) 10.4395 0.363898 0.181949 0.983308i \(-0.441759\pi\)
0.181949 + 0.983308i \(0.441759\pi\)
\(824\) 35.3514 1.23152
\(825\) 0 0
\(826\) 10.8522 0.377597
\(827\) 34.1447 1.18733 0.593664 0.804713i \(-0.297681\pi\)
0.593664 + 0.804713i \(0.297681\pi\)
\(828\) 2.92330 0.101592
\(829\) 42.6874 1.48260 0.741298 0.671176i \(-0.234211\pi\)
0.741298 + 0.671176i \(0.234211\pi\)
\(830\) 0 0
\(831\) 14.9661 0.519170
\(832\) 1.87741 0.0650875
\(833\) 9.46599 0.327977
\(834\) −2.94103 −0.101840
\(835\) 0 0
\(836\) −20.2211 −0.699362
\(837\) 0 0
\(838\) 2.24791 0.0776527
\(839\) 13.9926 0.483079 0.241539 0.970391i \(-0.422348\pi\)
0.241539 + 0.970391i \(0.422348\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −20.9588 −0.722287
\(843\) 11.7287 0.403956
\(844\) 35.3776 1.21775
\(845\) 0 0
\(846\) −6.94103 −0.238638
\(847\) 4.35109 0.149505
\(848\) −5.32461 −0.182848
\(849\) 3.96180 0.135969
\(850\) 0 0
\(851\) 12.6797 0.434655
\(852\) −3.69914 −0.126730
\(853\) −34.6978 −1.18803 −0.594016 0.804453i \(-0.702458\pi\)
−0.594016 + 0.804453i \(0.702458\pi\)
\(854\) −4.71694 −0.161410
\(855\) 0 0
\(856\) 24.3511 0.832303
\(857\) −48.0077 −1.63991 −0.819956 0.572427i \(-0.806002\pi\)
−0.819956 + 0.572427i \(0.806002\pi\)
\(858\) −1.46028 −0.0498532
\(859\) 16.2627 0.554875 0.277438 0.960744i \(-0.410515\pi\)
0.277438 + 0.960744i \(0.410515\pi\)
\(860\) 0 0
\(861\) −1.79364 −0.0611271
\(862\) −15.1450 −0.515842
\(863\) −13.5605 −0.461604 −0.230802 0.973001i \(-0.574135\pi\)
−0.230802 + 0.973001i \(0.574135\pi\)
\(864\) −5.85695 −0.199257
\(865\) 0 0
\(866\) 18.6754 0.634616
\(867\) 0.435171 0.0147792
\(868\) 0 0
\(869\) −36.1950 −1.22783
\(870\) 0 0
\(871\) 6.98090 0.236539
\(872\) 22.6446 0.766842
\(873\) −0.538351 −0.0182204
\(874\) 7.74006 0.261812
\(875\) 0 0
\(876\) −20.7404 −0.700752
\(877\) 8.01476 0.270639 0.135320 0.990802i \(-0.456794\pi\)
0.135320 + 0.990802i \(0.456794\pi\)
\(878\) 23.5132 0.793533
\(879\) 3.26701 0.110193
\(880\) 0 0
\(881\) −44.1564 −1.48767 −0.743834 0.668364i \(-0.766995\pi\)
−0.743834 + 0.668364i \(0.766995\pi\)
\(882\) 1.75209 0.0589960
\(883\) 20.7022 0.696684 0.348342 0.937368i \(-0.386745\pi\)
0.348342 + 0.937368i \(0.386745\pi\)
\(884\) 3.68878 0.124067
\(885\) 0 0
\(886\) −25.0294 −0.840881
\(887\) −48.5387 −1.62977 −0.814884 0.579624i \(-0.803200\pi\)
−0.814884 + 0.579624i \(0.803200\pi\)
\(888\) −16.0000 −0.536925
\(889\) 36.5193 1.22482
\(890\) 0 0
\(891\) 3.00000 0.100504
\(892\) −17.5708 −0.588315
\(893\) 43.1564 1.44418
\(894\) −3.44255 −0.115136
\(895\) 0 0
\(896\) −20.4720 −0.683922
\(897\) −1.31258 −0.0438259
\(898\) 4.34538 0.145007
\(899\) 0 0
\(900\) 0 0
\(901\) 28.7672 0.958373
\(902\) −1.91158 −0.0636487
\(903\) −18.9735 −0.631399
\(904\) −29.6301 −0.985483
\(905\) 0 0
\(906\) −0.908538 −0.0301841
\(907\) 26.5149 0.880413 0.440207 0.897896i \(-0.354905\pi\)
0.440207 + 0.897896i \(0.354905\pi\)
\(908\) −10.4663 −0.347336
\(909\) 13.8054 0.457895
\(910\) 0 0
\(911\) 53.8469 1.78403 0.892014 0.452008i \(-0.149292\pi\)
0.892014 + 0.452008i \(0.149292\pi\)
\(912\) 3.71390 0.122979
\(913\) 22.8894 0.757530
\(914\) 2.57518 0.0851794
\(915\) 0 0
\(916\) −30.5695 −1.01004
\(917\) −24.5119 −0.809453
\(918\) 3.22713 0.106511
\(919\) −11.4084 −0.376328 −0.188164 0.982138i \(-0.560254\pi\)
−0.188164 + 0.982138i \(0.560254\pi\)
\(920\) 0 0
\(921\) −20.4352 −0.673362
\(922\) −18.0415 −0.594167
\(923\) 1.66094 0.0546705
\(924\) 9.15477 0.301170
\(925\) 0 0
\(926\) 3.19761 0.105080
\(927\) 13.4426 0.441511
\(928\) 5.85695 0.192264
\(929\) 13.7554 0.451301 0.225651 0.974208i \(-0.427549\pi\)
0.225651 + 0.974208i \(0.427549\pi\)
\(930\) 0 0
\(931\) −10.8938 −0.357029
\(932\) −13.5987 −0.445440
\(933\) 11.0000 0.360124
\(934\) 27.6342 0.904217
\(935\) 0 0
\(936\) 1.65629 0.0541376
\(937\) −1.29379 −0.0422664 −0.0211332 0.999777i \(-0.506727\pi\)
−0.0211332 + 0.999777i \(0.506727\pi\)
\(938\) 18.6368 0.608514
\(939\) −27.6683 −0.902921
\(940\) 0 0
\(941\) −49.8586 −1.62534 −0.812672 0.582721i \(-0.801988\pi\)
−0.812672 + 0.582721i \(0.801988\pi\)
\(942\) −0.622433 −0.0202800
\(943\) −1.71823 −0.0559534
\(944\) 4.98828 0.162355
\(945\) 0 0
\(946\) −20.2211 −0.657445
\(947\) 21.1109 0.686011 0.343006 0.939333i \(-0.388555\pi\)
0.343006 + 0.939333i \(0.388555\pi\)
\(948\) 16.9233 0.549643
\(949\) 9.31258 0.302299
\(950\) 0 0
\(951\) 12.8777 0.417589
\(952\) 23.8894 0.774261
\(953\) 42.7672 1.38536 0.692682 0.721243i \(-0.256429\pi\)
0.692682 + 0.721243i \(0.256429\pi\)
\(954\) 5.32461 0.172391
\(955\) 0 0
\(956\) 15.0117 0.485514
\(957\) −3.00000 −0.0969762
\(958\) 22.8851 0.739384
\(959\) −41.0533 −1.32568
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 2.96149 0.0954824
\(963\) 9.25963 0.298387
\(964\) −15.6653 −0.504547
\(965\) 0 0
\(966\) −3.50418 −0.112745
\(967\) 33.0342 1.06231 0.531154 0.847276i \(-0.321759\pi\)
0.531154 + 0.847276i \(0.321759\pi\)
\(968\) −5.25963 −0.169051
\(969\) −20.0650 −0.644580
\(970\) 0 0
\(971\) −26.0841 −0.837078 −0.418539 0.908199i \(-0.637458\pi\)
−0.418539 + 0.908199i \(0.637458\pi\)
\(972\) −1.40268 −0.0449909
\(973\) −8.27872 −0.265404
\(974\) −3.35140 −0.107386
\(975\) 0 0
\(976\) −2.16816 −0.0694012
\(977\) 43.6948 1.39792 0.698960 0.715161i \(-0.253646\pi\)
0.698960 + 0.715161i \(0.253646\pi\)
\(978\) −0.858314 −0.0274458
\(979\) 53.6683 1.71525
\(980\) 0 0
\(981\) 8.61072 0.274919
\(982\) −17.4044 −0.555395
\(983\) −2.55745 −0.0815700 −0.0407850 0.999168i \(-0.512986\pi\)
−0.0407850 + 0.999168i \(0.512986\pi\)
\(984\) 2.16816 0.0691186
\(985\) 0 0
\(986\) −3.22713 −0.102773
\(987\) −19.5384 −0.621913
\(988\) −4.24518 −0.135057
\(989\) −18.1759 −0.577959
\(990\) 0 0
\(991\) 14.7287 0.467871 0.233936 0.972252i \(-0.424840\pi\)
0.233936 + 0.972252i \(0.424840\pi\)
\(992\) 0 0
\(993\) 24.6874 0.783432
\(994\) 4.43419 0.140644
\(995\) 0 0
\(996\) −10.7022 −0.339111
\(997\) −33.0992 −1.04826 −0.524130 0.851638i \(-0.675610\pi\)
−0.524130 + 0.851638i \(0.675610\pi\)
\(998\) 31.8141 1.00706
\(999\) −6.08408 −0.192492
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.a.u.1.2 3
3.2 odd 2 6525.2.a.bf.1.2 3
5.2 odd 4 2175.2.c.m.349.3 6
5.3 odd 4 2175.2.c.m.349.4 6
5.4 even 2 435.2.a.i.1.2 3
15.14 odd 2 1305.2.a.q.1.2 3
20.19 odd 2 6960.2.a.cl.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.a.i.1.2 3 5.4 even 2
1305.2.a.q.1.2 3 15.14 odd 2
2175.2.a.u.1.2 3 1.1 even 1 trivial
2175.2.c.m.349.3 6 5.2 odd 4
2175.2.c.m.349.4 6 5.3 odd 4
6525.2.a.bf.1.2 3 3.2 odd 2
6960.2.a.cl.1.1 3 20.19 odd 2