Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2268,2,Mod(377,2268)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2268, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 5, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2268.377");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2268.x (of order \(6\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(18.1100711784\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\zeta_{6})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} - x + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 756) |
Sato-Tate group: | $\mathrm{U}(1)[D_{6}]$ |
Embedding invariants
Embedding label | 377.1 | ||
Root | \(0.500000 - 0.866025i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 2268.377 |
Dual form | 2268.2.x.d.1889.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).
\(n\) | \(325\) | \(1135\) | \(1541\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0.500000 | + | 2.59808i | 0.188982 | + | 0.981981i | ||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 1.50000 | + | 0.866025i | 0.416025 | + | 0.240192i | 0.693375 | − | 0.720577i | \(-0.256123\pi\) |
−0.277350 | + | 0.960769i | \(0.589456\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | − | 8.66025i | − | 1.98680i | −0.114708 | − | 0.993399i | \(-0.536593\pi\) | ||
0.114708 | − | 0.993399i | \(-0.463407\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 2.50000 | + | 4.33013i | 0.500000 | + | 0.866025i | ||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 9.00000 | + | 5.19615i | 1.61645 | + | 0.933257i | 0.987829 | + | 0.155543i | \(0.0497126\pi\) |
0.628619 | + | 0.777714i | \(0.283621\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 1.00000 | 0.164399 | 0.0821995 | − | 0.996616i | \(-0.473806\pi\) | ||||
0.0821995 | + | 0.996616i | \(0.473806\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 4.00000 | + | 6.92820i | 0.609994 | + | 1.05654i | 0.991241 | + | 0.132068i | \(0.0421616\pi\) |
−0.381246 | + | 0.924473i | \(0.624505\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −6.50000 | + | 2.59808i | −0.928571 | + | 0.371154i | ||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −7.50000 | + | 4.33013i | −0.960277 | + | 0.554416i | −0.896258 | − | 0.443533i | \(-0.853725\pi\) |
−0.0640184 | + | 0.997949i | \(0.520392\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −5.50000 | + | 9.52628i | −0.671932 | + | 1.16382i | 0.305424 | + | 0.952217i | \(0.401202\pi\) |
−0.977356 | + | 0.211604i | \(0.932131\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 1.73205i | 0.202721i | 0.994850 | + | 0.101361i | \(0.0323196\pi\) | ||||
−0.994850 | + | 0.101361i | \(0.967680\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 6.50000 | + | 11.2583i | 0.731307 | + | 1.26666i | 0.956325 | + | 0.292306i | \(0.0944227\pi\) |
−0.225018 | + | 0.974355i | \(0.572244\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −1.50000 | + | 4.33013i | −0.157243 | + | 0.453921i | ||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 16.5000 | − | 9.52628i | 1.67532 | − | 0.967247i | 0.710742 | − | 0.703452i | \(-0.248359\pi\) |
0.964579 | − | 0.263795i | \(-0.0849741\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 16.5000 | + | 9.52628i | 1.62579 | + | 0.938652i | 0.985329 | + | 0.170664i | \(0.0545913\pi\) |
0.640464 | + | 0.767988i | \(0.278742\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −2.00000 | −0.191565 | −0.0957826 | − | 0.995402i | \(-0.530535\pi\) | ||||
−0.0957826 | + | 0.995402i | \(0.530535\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −5.50000 | + | 9.52628i | −0.500000 | + | 0.866025i | ||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 20.0000 | 1.77471 | 0.887357 | − | 0.461084i | \(-0.152539\pi\) | ||||
0.887357 | + | 0.461084i | \(0.152539\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 22.5000 | − | 4.33013i | 1.95100 | − | 0.375470i | ||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −19.5000 | − | 11.2583i | −1.65397 | − | 0.954919i | −0.975417 | − | 0.220366i | \(-0.929275\pi\) |
−0.678551 | − | 0.734553i | \(-0.737392\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 11.5000 | + | 19.9186i | 0.935857 | + | 1.62095i | 0.773099 | + | 0.634285i | \(0.218706\pi\) |
0.162758 | + | 0.986666i | \(0.447961\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −18.0000 | − | 10.3923i | −1.43656 | − | 0.829396i | −0.438948 | − | 0.898513i | \(-0.644649\pi\) |
−0.997609 | + | 0.0691164i | \(0.977982\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 17.0000 | 1.33154 | 0.665771 | − | 0.746156i | \(-0.268103\pi\) | ||||
0.665771 | + | 0.746156i | \(0.268103\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −5.00000 | − | 8.66025i | −0.384615 | − | 0.666173i | ||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | −10.0000 | + | 8.66025i | −0.755929 | + | 0.654654i | ||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 19.0526i | 1.41617i | 0.706129 | + | 0.708083i | \(0.250440\pi\) | ||||
−0.706129 | + | 0.708083i | \(0.749560\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −12.5000 | + | 21.6506i | −0.899770 | + | 1.55845i | −0.0719816 | + | 0.997406i | \(0.522932\pi\) |
−0.827788 | + | 0.561041i | \(0.810401\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | − | 22.5167i | − | 1.59616i | −0.602549 | − | 0.798082i | \(-0.705848\pi\) | ||
0.602549 | − | 0.798082i | \(-0.294152\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 14.5000 | − | 25.1147i | 0.998221 | − | 1.72897i | 0.447478 | − | 0.894295i | \(-0.352322\pi\) |
0.550743 | − | 0.834675i | \(-0.314345\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −9.00000 | + | 25.9808i | −0.610960 | + | 1.76369i | ||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 9.00000 | − | 5.19615i | 0.602685 | − | 0.347960i | −0.167412 | − | 0.985887i | \(-0.553541\pi\) |
0.770097 | + | 0.637927i | \(0.220208\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 18.0000 | + | 10.3923i | 1.18947 | + | 0.686743i | 0.958187 | − | 0.286143i | \(-0.0923732\pi\) |
0.231287 | + | 0.972886i | \(0.425707\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 1.50000 | − | 0.866025i | 0.0966235 | − | 0.0557856i | −0.450910 | − | 0.892570i | \(-0.648900\pi\) |
0.547533 | + | 0.836784i | \(0.315567\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 7.50000 | − | 12.9904i | 0.477214 | − | 0.826558i | ||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0.500000 | + | 2.59808i | 0.0310685 | + | 0.161437i | ||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | − | 32.9090i | − | 1.99908i | −0.0303728 | − | 0.999539i | \(-0.509669\pi\) | ||
0.0303728 | − | 0.999539i | \(-0.490331\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −13.0000 | − | 22.5167i | −0.781094 | − | 1.35290i | −0.931305 | − | 0.364241i | \(-0.881328\pi\) |
0.150210 | − | 0.988654i | \(-0.452005\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 9.00000 | + | 5.19615i | 0.534994 | + | 0.308879i | 0.743048 | − | 0.669238i | \(-0.233379\pi\) |
−0.208053 | + | 0.978117i | \(0.566713\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −17.0000 | −1.00000 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −16.0000 | + | 13.8564i | −0.922225 | + | 0.798670i | ||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 31.1769i | 1.77936i | 0.456584 | + | 0.889680i | \(0.349073\pi\) | ||||
−0.456584 | + | 0.889680i | \(0.650927\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −28.5000 | + | 16.4545i | −1.61092 | + | 0.930062i | −0.621757 | + | 0.783210i | \(0.713581\pi\) |
−0.989158 | + | 0.146852i | \(0.953086\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 8.66025i | 0.480384i | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −15.5000 | − | 26.8468i | −0.851957 | − | 1.47563i | −0.879440 | − | 0.476011i | \(-0.842082\pi\) |
0.0274825 | − | 0.999622i | \(-0.491251\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 14.5000 | − | 25.1147i | 0.789865 | − | 1.36809i | −0.136184 | − | 0.990684i | \(-0.543484\pi\) |
0.926049 | − | 0.377403i | \(-0.123183\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −10.0000 | − | 15.5885i | −0.539949 | − | 0.841698i | ||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −25.5000 | + | 14.7224i | −1.36498 | + | 0.788074i | −0.990282 | − | 0.139072i | \(-0.955588\pi\) |
−0.374701 | + | 0.927146i | \(0.622255\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −56.0000 | −2.94737 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −19.5000 | + | 11.2583i | −1.01789 | + | 0.587680i | −0.913493 | − | 0.406855i | \(-0.866625\pi\) |
−0.104399 | + | 0.994535i | \(0.533292\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 12.5000 | − | 21.6506i | 0.647225 | − | 1.12103i | −0.336557 | − | 0.941663i | \(-0.609263\pi\) |
0.983783 | − | 0.179364i | \(-0.0574041\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 37.0000 | 1.90056 | 0.950281 | − | 0.311393i | \(-0.100796\pi\) | ||||
0.950281 | + | 0.311393i | \(0.100796\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − | 20.7846i | − | 1.04315i | −0.853206 | − | 0.521575i | \(-0.825345\pi\) | ||
0.853206 | − | 0.521575i | \(-0.174655\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 9.00000 | + | 15.5885i | 0.448322 | + | 0.776516i | ||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 34.5000 | + | 19.9186i | 1.70592 | + | 0.984911i | 0.939490 | + | 0.342578i | \(0.111300\pi\) |
0.766426 | + | 0.642333i | \(0.222033\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −20.5000 | − | 35.5070i | −0.999109 | − | 1.73051i | −0.536107 | − | 0.844150i | \(-0.680106\pi\) |
−0.463002 | − | 0.886357i | \(-0.653228\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | −15.0000 | − | 17.3205i | −0.725901 | − | 0.838198i | ||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | − | 41.5692i | − | 1.99769i | −0.0480569 | − | 0.998845i | \(-0.515303\pi\) | ||
0.0480569 | − | 0.998845i | \(-0.484697\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −27.0000 | + | 15.5885i | −1.28864 | + | 0.743996i | −0.978412 | − | 0.206666i | \(-0.933739\pi\) |
−0.310228 | + | 0.950662i | \(0.600405\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −5.00000 | − | 8.66025i | −0.233890 | − | 0.405110i | 0.725059 | − | 0.688686i | \(-0.241812\pi\) |
−0.958950 | + | 0.283577i | \(0.908479\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 21.5000 | − | 37.2391i | 0.999190 | − | 1.73065i | 0.464739 | − | 0.885448i | \(-0.346148\pi\) |
0.534450 | − | 0.845200i | \(-0.320519\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −27.5000 | − | 9.52628i | −1.26983 | − | 0.439883i | ||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 37.5000 | − | 21.6506i | 1.72062 | − | 0.993399i | ||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 1.50000 | + | 0.866025i | 0.0683941 | + | 0.0394874i | ||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 19.0000 | 0.860972 | 0.430486 | − | 0.902597i | \(-0.358342\pi\) | ||||
0.430486 | + | 0.902597i | \(0.358342\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 16.0000 | − | 27.7128i | 0.716258 | − | 1.24060i | −0.246214 | − | 0.969216i | \(-0.579187\pi\) |
0.962472 | − | 0.271380i | \(-0.0874801\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −4.50000 | + | 0.866025i | −0.199068 | + | 0.0383107i | ||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 29.4449i | 1.28753i | 0.765222 | + | 0.643767i | \(0.222629\pi\) | ||||
−0.765222 | + | 0.643767i | \(0.777371\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −11.5000 | − | 19.9186i | −0.500000 | − | 0.866025i | ||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 17.0000 | 0.730887 | 0.365444 | − | 0.930834i | \(-0.380917\pi\) | ||||
0.365444 | + | 0.930834i | \(0.380917\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −20.5000 | − | 35.5070i | −0.876517 | − | 1.51817i | −0.855138 | − | 0.518400i | \(-0.826528\pi\) |
−0.0213785 | − | 0.999771i | \(-0.506805\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −26.0000 | + | 22.5167i | −1.10563 | + | 0.957506i | ||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 13.8564i | 0.586064i | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −23.5000 | + | 40.7032i | −0.983444 | + | 1.70338i | −0.334790 | + | 0.942293i | \(0.608665\pi\) |
−0.648655 | + | 0.761083i | \(0.724668\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 32.9090i | 1.37002i | 0.728535 | + | 0.685009i | \(0.240202\pi\) | ||||
−0.728535 | + | 0.685009i | \(0.759798\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 45.0000 | − | 77.9423i | 1.85419 | − | 3.21156i | ||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −36.0000 | + | 20.7846i | −1.46847 | + | 0.847822i | −0.999376 | − | 0.0353259i | \(-0.988753\pi\) |
−0.469095 | + | 0.883148i | \(0.655420\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −34.5000 | − | 19.9186i | −1.40031 | − | 0.808470i | −0.405887 | − | 0.913923i | \(-0.633038\pi\) |
−0.994424 | + | 0.105453i | \(0.966371\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −37.0000 | −1.49442 | −0.747208 | − | 0.664590i | \(-0.768606\pi\) | ||||
−0.747208 | + | 0.664590i | \(0.768606\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 7.50000 | − | 4.33013i | 0.301450 | − | 0.174042i | −0.341644 | − | 0.939829i | \(-0.610984\pi\) |
0.643094 | + | 0.765787i | \(0.277650\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −12.5000 | + | 21.6506i | −0.500000 | + | 0.866025i | ||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −1.00000 | −0.0398094 | −0.0199047 | − | 0.999802i | \(-0.506336\pi\) | ||||
−0.0199047 | + | 0.999802i | \(0.506336\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −12.0000 | − | 1.73205i | −0.475457 | − | 0.0686264i | ||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −27.0000 | − | 15.5885i | −1.06478 | − | 0.614749i | −0.138027 | − | 0.990429i | \(-0.544076\pi\) |
−0.926750 | + | 0.375680i | \(0.877409\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −43.5000 | − | 25.1147i | −1.69195 | − | 0.976850i | −0.952940 | − | 0.303160i | \(-0.901958\pi\) |
−0.739014 | − | 0.673690i | \(-0.764708\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −6.50000 | − | 11.2583i | −0.250557 | − | 0.433977i | 0.713123 | − | 0.701039i | \(-0.247280\pi\) |
−0.963679 | + | 0.267063i | \(0.913947\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 33.0000 | + | 38.1051i | 1.26642 | + | 1.46234i | ||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 45.0000 | − | 25.9808i | 1.71188 | − | 0.988355i | 0.779857 | − | 0.625958i | \(-0.215292\pi\) |
0.932024 | − | 0.362397i | \(-0.118041\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | − | 8.66025i | − | 0.326628i | ||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −15.5000 | − | 26.8468i | −0.582115 | − | 1.00825i | −0.995228 | − | 0.0975728i | \(-0.968892\pi\) |
0.413114 | − | 0.910679i | \(-0.364441\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −16.5000 | + | 47.6314i | −0.614492 | + | 1.77389i | ||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 27.0000 | − | 15.5885i | 1.00137 | − | 0.578144i | 0.0927199 | − | 0.995692i | \(-0.470444\pi\) |
0.908655 | + | 0.417548i | \(0.137111\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 18.0000 | + | 10.3923i | 0.664845 | + | 0.383849i | 0.794121 | − | 0.607760i | \(-0.207932\pi\) |
−0.129275 | + | 0.991609i | \(0.541265\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −16.0000 | −0.588570 | −0.294285 | − | 0.955718i | \(-0.595081\pi\) | ||||
−0.294285 | + | 0.955718i | \(0.595081\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 5.50000 | − | 9.52628i | 0.200698 | − | 0.347619i | −0.748056 | − | 0.663636i | \(-0.769012\pi\) |
0.948753 | + | 0.316017i | \(0.102346\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 55.0000 | 1.99901 | 0.999505 | − | 0.0314762i | \(-0.0100208\pi\) | ||||
0.999505 | + | 0.0314762i | \(0.0100208\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | −1.00000 | − | 5.19615i | −0.0362024 | − | 0.188113i | ||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 25.5000 | + | 14.7224i | 0.919554 | + | 0.530904i | 0.883493 | − | 0.468445i | \(-0.155186\pi\) |
0.0360609 | + | 0.999350i | \(0.488519\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 51.9615i | 1.86651i | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −43.5000 | − | 25.1147i | −1.55061 | − | 0.895244i | −0.998092 | − | 0.0617409i | \(-0.980335\pi\) |
−0.552515 | − | 0.833503i | \(-0.686332\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −15.0000 | −0.532666 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 10.3923i | 0.364923i | 0.983213 | + | 0.182462i | \(0.0584065\pi\) | ||||
−0.983213 | + | 0.182462i | \(0.941593\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 60.0000 | − | 34.6410i | 2.09913 | − | 1.21194i | ||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −23.5000 | + | 40.7032i | −0.819159 | + | 1.41882i | 0.0871445 | + | 0.996196i | \(0.472226\pi\) |
−0.906303 | + | 0.422628i | \(0.861108\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | − | 22.5167i | − | 0.782036i | −0.920383 | − | 0.391018i | \(-0.872123\pi\) | ||
0.920383 | − | 0.391018i | \(-0.127877\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −14.5000 | + | 25.1147i | −0.500000 | + | 0.866025i | ||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | −27.5000 | − | 9.52628i | −0.944911 | − | 0.327327i | ||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | −46.5000 | + | 26.8468i | −1.59213 | + | 0.919216i | −0.599189 | + | 0.800608i | \(0.704510\pi\) |
−0.992941 | + | 0.118609i | \(0.962157\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −34.5000 | − | 19.9186i | −1.17712 | − | 0.679613i | −0.221777 | − | 0.975097i | \(-0.571186\pi\) |
−0.955348 | + | 0.295484i | \(0.904519\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −16.5000 | + | 9.52628i | −0.559081 | + | 0.322786i | ||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 12.5000 | − | 21.6506i | 0.422095 | − | 0.731090i | −0.574049 | − | 0.818821i | \(-0.694628\pi\) |
0.996144 | + | 0.0877308i | \(0.0279615\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 55.0000 | 1.85090 | 0.925449 | − | 0.378873i | \(-0.123688\pi\) | ||||
0.925449 | + | 0.378873i | \(0.123688\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 10.0000 | + | 51.9615i | 0.335389 | + | 1.74273i | ||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 0 | 0 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 29.5000 | + | 51.0955i | 0.979531 | + | 1.69660i | 0.664089 | + | 0.747653i | \(0.268820\pi\) |
0.315442 | + | 0.948945i | \(0.397847\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 52.0000 | 1.71532 | 0.857661 | − | 0.514216i | \(-0.171917\pi\) | ||||
0.857661 | + | 0.514216i | \(0.171917\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 2.50000 | + | 4.33013i | 0.0821995 | + | 0.142374i | ||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 22.5000 | + | 56.2917i | 0.737408 | + | 1.84488i | ||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | − | 50.2295i | − | 1.64093i | −0.571700 | − | 0.820463i | \(-0.693716\pi\) | ||
0.571700 | − | 0.820463i | \(-0.306284\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 0 | 0 | −0.500000 | − | 0.866025i | \(-0.666667\pi\) | ||||
0.500000 | + | 0.866025i | \(0.333333\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −1.50000 | + | 2.59808i | −0.0486921 | + | 0.0843371i | ||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 38.5000 | + | 66.6840i | 1.24194 | + | 2.15110i | ||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 30.5000 | − | 52.8275i | 0.980814 | − | 1.69882i | 0.321578 | − | 0.946883i | \(-0.395787\pi\) |
0.659236 | − | 0.751936i | \(-0.270880\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 19.5000 | − | 56.2917i | 0.625141 | − | 1.80463i | ||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 0 | 0 | 0.500000 | − | 0.866025i | \(-0.333333\pi\) | ||||
−0.500000 | + | 0.866025i | \(0.666667\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −17.0000 | −0.540023 | −0.270011 | − | 0.962857i | \(-0.587027\pi\) | ||||
−0.270011 | + | 0.962857i | \(0.587027\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 54.0000 | − | 31.1769i | 1.71020 | − | 0.987383i | 0.775923 | − | 0.630828i | \(-0.217285\pi\) |
0.934274 | − | 0.356555i | \(-0.116049\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 2268.2.x.d.377.1 | 2 | ||
3.2 | odd | 2 | CM | 2268.2.x.d.377.1 | 2 | ||
7.6 | odd | 2 | 2268.2.x.f.377.1 | 2 | |||
9.2 | odd | 6 | 2268.2.x.f.1889.1 | 2 | |||
9.4 | even | 3 | 756.2.f.b.377.1 | ✓ | 2 | ||
9.5 | odd | 6 | 756.2.f.b.377.1 | ✓ | 2 | ||
9.7 | even | 3 | 2268.2.x.f.1889.1 | 2 | |||
21.20 | even | 2 | 2268.2.x.f.377.1 | 2 | |||
36.23 | even | 6 | 3024.2.k.c.1889.2 | 2 | |||
36.31 | odd | 6 | 3024.2.k.c.1889.2 | 2 | |||
63.13 | odd | 6 | 756.2.f.b.377.2 | yes | 2 | ||
63.20 | even | 6 | inner | 2268.2.x.d.1889.1 | 2 | ||
63.34 | odd | 6 | inner | 2268.2.x.d.1889.1 | 2 | ||
63.41 | even | 6 | 756.2.f.b.377.2 | yes | 2 | ||
252.139 | even | 6 | 3024.2.k.c.1889.1 | 2 | |||
252.167 | odd | 6 | 3024.2.k.c.1889.1 | 2 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
756.2.f.b.377.1 | ✓ | 2 | 9.4 | even | 3 | ||
756.2.f.b.377.1 | ✓ | 2 | 9.5 | odd | 6 | ||
756.2.f.b.377.2 | yes | 2 | 63.13 | odd | 6 | ||
756.2.f.b.377.2 | yes | 2 | 63.41 | even | 6 | ||
2268.2.x.d.377.1 | 2 | 1.1 | even | 1 | trivial | ||
2268.2.x.d.377.1 | 2 | 3.2 | odd | 2 | CM | ||
2268.2.x.d.1889.1 | 2 | 63.20 | even | 6 | inner | ||
2268.2.x.d.1889.1 | 2 | 63.34 | odd | 6 | inner | ||
2268.2.x.f.377.1 | 2 | 7.6 | odd | 2 | |||
2268.2.x.f.377.1 | 2 | 21.20 | even | 2 | |||
2268.2.x.f.1889.1 | 2 | 9.2 | odd | 6 | |||
2268.2.x.f.1889.1 | 2 | 9.7 | even | 3 | |||
3024.2.k.c.1889.1 | 2 | 252.139 | even | 6 | |||
3024.2.k.c.1889.1 | 2 | 252.167 | odd | 6 | |||
3024.2.k.c.1889.2 | 2 | 36.23 | even | 6 | |||
3024.2.k.c.1889.2 | 2 | 36.31 | odd | 6 |