Properties

Label 231.4.a.f.1.2
Level $231$
Weight $4$
Character 231.1
Self dual yes
Analytic conductor $13.629$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [231,4,Mod(1,231)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(231, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("231.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 231.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.6294412113\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 231.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.561553 q^{2} +3.00000 q^{3} -7.68466 q^{4} -3.31534 q^{5} +1.68466 q^{6} +7.00000 q^{7} -8.80776 q^{8} +9.00000 q^{9} -1.86174 q^{10} +11.0000 q^{11} -23.0540 q^{12} -41.9157 q^{13} +3.93087 q^{14} -9.94602 q^{15} +56.5312 q^{16} -68.8769 q^{17} +5.05398 q^{18} -114.408 q^{19} +25.4773 q^{20} +21.0000 q^{21} +6.17708 q^{22} -124.985 q^{23} -26.4233 q^{24} -114.009 q^{25} -23.5379 q^{26} +27.0000 q^{27} -53.7926 q^{28} -147.670 q^{29} -5.58522 q^{30} -55.9697 q^{31} +102.207 q^{32} +33.0000 q^{33} -38.6780 q^{34} -23.2074 q^{35} -69.1619 q^{36} +162.948 q^{37} -64.2462 q^{38} -125.747 q^{39} +29.2007 q^{40} +258.617 q^{41} +11.7926 q^{42} -106.739 q^{43} -84.5312 q^{44} -29.8381 q^{45} -70.1856 q^{46} +110.779 q^{47} +169.594 q^{48} +49.0000 q^{49} -64.0218 q^{50} -206.631 q^{51} +322.108 q^{52} +10.4451 q^{53} +15.1619 q^{54} -36.4688 q^{55} -61.6543 q^{56} -343.224 q^{57} -82.9242 q^{58} -182.283 q^{59} +76.4318 q^{60} +189.879 q^{61} -31.4299 q^{62} +63.0000 q^{63} -394.855 q^{64} +138.965 q^{65} +18.5312 q^{66} +580.779 q^{67} +529.295 q^{68} -374.955 q^{69} -13.0322 q^{70} -1161.39 q^{71} -79.2699 q^{72} -79.6998 q^{73} +91.5038 q^{74} -342.026 q^{75} +879.187 q^{76} +77.0000 q^{77} -70.6137 q^{78} +1090.04 q^{79} -187.420 q^{80} +81.0000 q^{81} +145.227 q^{82} -874.830 q^{83} -161.378 q^{84} +228.350 q^{85} -59.9394 q^{86} -443.009 q^{87} -96.8854 q^{88} -844.193 q^{89} -16.7557 q^{90} -293.410 q^{91} +960.466 q^{92} -167.909 q^{93} +62.2084 q^{94} +379.302 q^{95} +306.622 q^{96} +925.097 q^{97} +27.5161 q^{98} +99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} + 6 q^{3} - 3 q^{4} - 19 q^{5} - 9 q^{6} + 14 q^{7} + 3 q^{8} + 18 q^{9} + 54 q^{10} + 22 q^{11} - 9 q^{12} + 11 q^{13} - 21 q^{14} - 57 q^{15} - 23 q^{16} - 146 q^{17} - 27 q^{18} - 101 q^{19}+ \cdots + 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.561553 0.198539 0.0992695 0.995061i \(-0.468349\pi\)
0.0992695 + 0.995061i \(0.468349\pi\)
\(3\) 3.00000 0.577350
\(4\) −7.68466 −0.960582
\(5\) −3.31534 −0.296533 −0.148267 0.988947i \(-0.547369\pi\)
−0.148267 + 0.988947i \(0.547369\pi\)
\(6\) 1.68466 0.114626
\(7\) 7.00000 0.377964
\(8\) −8.80776 −0.389252
\(9\) 9.00000 0.333333
\(10\) −1.86174 −0.0588734
\(11\) 11.0000 0.301511
\(12\) −23.0540 −0.554592
\(13\) −41.9157 −0.894256 −0.447128 0.894470i \(-0.647553\pi\)
−0.447128 + 0.894470i \(0.647553\pi\)
\(14\) 3.93087 0.0750407
\(15\) −9.94602 −0.171204
\(16\) 56.5312 0.883301
\(17\) −68.8769 −0.982653 −0.491326 0.870975i \(-0.663488\pi\)
−0.491326 + 0.870975i \(0.663488\pi\)
\(18\) 5.05398 0.0661796
\(19\) −114.408 −1.38142 −0.690711 0.723131i \(-0.742702\pi\)
−0.690711 + 0.723131i \(0.742702\pi\)
\(20\) 25.4773 0.284845
\(21\) 21.0000 0.218218
\(22\) 6.17708 0.0598617
\(23\) −124.985 −1.13309 −0.566547 0.824030i \(-0.691721\pi\)
−0.566547 + 0.824030i \(0.691721\pi\)
\(24\) −26.4233 −0.224735
\(25\) −114.009 −0.912068
\(26\) −23.5379 −0.177545
\(27\) 27.0000 0.192450
\(28\) −53.7926 −0.363066
\(29\) −147.670 −0.945570 −0.472785 0.881178i \(-0.656751\pi\)
−0.472785 + 0.881178i \(0.656751\pi\)
\(30\) −5.58522 −0.0339906
\(31\) −55.9697 −0.324273 −0.162136 0.986768i \(-0.551838\pi\)
−0.162136 + 0.986768i \(0.551838\pi\)
\(32\) 102.207 0.564621
\(33\) 33.0000 0.174078
\(34\) −38.6780 −0.195095
\(35\) −23.2074 −0.112079
\(36\) −69.1619 −0.320194
\(37\) 162.948 0.724013 0.362006 0.932176i \(-0.382092\pi\)
0.362006 + 0.932176i \(0.382092\pi\)
\(38\) −64.2462 −0.274266
\(39\) −125.747 −0.516299
\(40\) 29.2007 0.115426
\(41\) 258.617 0.985104 0.492552 0.870283i \(-0.336064\pi\)
0.492552 + 0.870283i \(0.336064\pi\)
\(42\) 11.7926 0.0433247
\(43\) −106.739 −0.378546 −0.189273 0.981924i \(-0.560613\pi\)
−0.189273 + 0.981924i \(0.560613\pi\)
\(44\) −84.5312 −0.289626
\(45\) −29.8381 −0.0988444
\(46\) −70.1856 −0.224963
\(47\) 110.779 0.343805 0.171902 0.985114i \(-0.445009\pi\)
0.171902 + 0.985114i \(0.445009\pi\)
\(48\) 169.594 0.509974
\(49\) 49.0000 0.142857
\(50\) −64.0218 −0.181081
\(51\) −206.631 −0.567335
\(52\) 322.108 0.859006
\(53\) 10.4451 0.0270706 0.0135353 0.999908i \(-0.495691\pi\)
0.0135353 + 0.999908i \(0.495691\pi\)
\(54\) 15.1619 0.0382088
\(55\) −36.4688 −0.0894081
\(56\) −61.6543 −0.147123
\(57\) −343.224 −0.797565
\(58\) −82.9242 −0.187732
\(59\) −182.283 −0.402225 −0.201112 0.979568i \(-0.564456\pi\)
−0.201112 + 0.979568i \(0.564456\pi\)
\(60\) 76.4318 0.164455
\(61\) 189.879 0.398549 0.199274 0.979944i \(-0.436141\pi\)
0.199274 + 0.979944i \(0.436141\pi\)
\(62\) −31.4299 −0.0643807
\(63\) 63.0000 0.125988
\(64\) −394.855 −0.771201
\(65\) 138.965 0.265177
\(66\) 18.5312 0.0345612
\(67\) 580.779 1.05901 0.529504 0.848308i \(-0.322378\pi\)
0.529504 + 0.848308i \(0.322378\pi\)
\(68\) 529.295 0.943919
\(69\) −374.955 −0.654192
\(70\) −13.0322 −0.0222520
\(71\) −1161.39 −1.94129 −0.970645 0.240515i \(-0.922684\pi\)
−0.970645 + 0.240515i \(0.922684\pi\)
\(72\) −79.2699 −0.129751
\(73\) −79.6998 −0.127783 −0.0638915 0.997957i \(-0.520351\pi\)
−0.0638915 + 0.997957i \(0.520351\pi\)
\(74\) 91.5038 0.143745
\(75\) −342.026 −0.526583
\(76\) 879.187 1.32697
\(77\) 77.0000 0.113961
\(78\) −70.6137 −0.102505
\(79\) 1090.04 1.55239 0.776195 0.630493i \(-0.217147\pi\)
0.776195 + 0.630493i \(0.217147\pi\)
\(80\) −187.420 −0.261928
\(81\) 81.0000 0.111111
\(82\) 145.227 0.195581
\(83\) −874.830 −1.15693 −0.578464 0.815708i \(-0.696348\pi\)
−0.578464 + 0.815708i \(0.696348\pi\)
\(84\) −161.378 −0.209616
\(85\) 228.350 0.291389
\(86\) −59.9394 −0.0751562
\(87\) −443.009 −0.545925
\(88\) −96.8854 −0.117364
\(89\) −844.193 −1.00544 −0.502721 0.864449i \(-0.667668\pi\)
−0.502721 + 0.864449i \(0.667668\pi\)
\(90\) −16.7557 −0.0196245
\(91\) −293.410 −0.337997
\(92\) 960.466 1.08843
\(93\) −167.909 −0.187219
\(94\) 62.2084 0.0682586
\(95\) 379.302 0.409638
\(96\) 306.622 0.325984
\(97\) 925.097 0.968344 0.484172 0.874973i \(-0.339121\pi\)
0.484172 + 0.874973i \(0.339121\pi\)
\(98\) 27.5161 0.0283627
\(99\) 99.0000 0.100504
\(100\) 876.116 0.876116
\(101\) −884.867 −0.871758 −0.435879 0.900005i \(-0.643562\pi\)
−0.435879 + 0.900005i \(0.643562\pi\)
\(102\) −116.034 −0.112638
\(103\) 1069.78 1.02339 0.511694 0.859168i \(-0.329018\pi\)
0.511694 + 0.859168i \(0.329018\pi\)
\(104\) 369.184 0.348091
\(105\) −69.6222 −0.0647088
\(106\) 5.86547 0.00537457
\(107\) 178.196 0.160999 0.0804993 0.996755i \(-0.474349\pi\)
0.0804993 + 0.996755i \(0.474349\pi\)
\(108\) −207.486 −0.184864
\(109\) 1973.58 1.73426 0.867130 0.498082i \(-0.165962\pi\)
0.867130 + 0.498082i \(0.165962\pi\)
\(110\) −20.4791 −0.0177510
\(111\) 488.844 0.418009
\(112\) 395.719 0.333856
\(113\) 1642.68 1.36753 0.683763 0.729704i \(-0.260342\pi\)
0.683763 + 0.729704i \(0.260342\pi\)
\(114\) −192.739 −0.158348
\(115\) 414.367 0.336000
\(116\) 1134.79 0.908298
\(117\) −377.241 −0.298085
\(118\) −102.362 −0.0798572
\(119\) −482.138 −0.371408
\(120\) 87.6022 0.0666413
\(121\) 121.000 0.0909091
\(122\) 106.627 0.0791275
\(123\) 775.852 0.568750
\(124\) 430.108 0.311491
\(125\) 792.395 0.566992
\(126\) 35.3778 0.0250136
\(127\) −1796.94 −1.25554 −0.627768 0.778400i \(-0.716031\pi\)
−0.627768 + 0.778400i \(0.716031\pi\)
\(128\) −1039.39 −0.717735
\(129\) −320.216 −0.218554
\(130\) 78.0361 0.0526479
\(131\) 934.305 0.623134 0.311567 0.950224i \(-0.399146\pi\)
0.311567 + 0.950224i \(0.399146\pi\)
\(132\) −253.594 −0.167216
\(133\) −800.857 −0.522129
\(134\) 326.138 0.210254
\(135\) −89.5142 −0.0570678
\(136\) 606.651 0.382499
\(137\) −1590.87 −0.992097 −0.496048 0.868295i \(-0.665216\pi\)
−0.496048 + 0.868295i \(0.665216\pi\)
\(138\) −210.557 −0.129882
\(139\) −1549.00 −0.945213 −0.472607 0.881274i \(-0.656687\pi\)
−0.472607 + 0.881274i \(0.656687\pi\)
\(140\) 178.341 0.107661
\(141\) 332.338 0.198496
\(142\) −652.182 −0.385422
\(143\) −461.073 −0.269628
\(144\) 508.781 0.294434
\(145\) 489.575 0.280393
\(146\) −44.7557 −0.0253699
\(147\) 147.000 0.0824786
\(148\) −1252.20 −0.695474
\(149\) −468.094 −0.257367 −0.128684 0.991686i \(-0.541075\pi\)
−0.128684 + 0.991686i \(0.541075\pi\)
\(150\) −192.065 −0.104547
\(151\) 1865.34 1.00529 0.502647 0.864492i \(-0.332360\pi\)
0.502647 + 0.864492i \(0.332360\pi\)
\(152\) 1007.68 0.537721
\(153\) −619.892 −0.327551
\(154\) 43.2396 0.0226256
\(155\) 185.559 0.0961576
\(156\) 966.324 0.495948
\(157\) 1501.59 0.763310 0.381655 0.924305i \(-0.375354\pi\)
0.381655 + 0.924305i \(0.375354\pi\)
\(158\) 612.114 0.308210
\(159\) 31.3353 0.0156292
\(160\) −338.852 −0.167429
\(161\) −874.894 −0.428269
\(162\) 45.4858 0.0220599
\(163\) 524.401 0.251989 0.125995 0.992031i \(-0.459788\pi\)
0.125995 + 0.992031i \(0.459788\pi\)
\(164\) −1987.39 −0.946273
\(165\) −109.406 −0.0516198
\(166\) −491.263 −0.229695
\(167\) −3293.09 −1.52591 −0.762956 0.646450i \(-0.776253\pi\)
−0.762956 + 0.646450i \(0.776253\pi\)
\(168\) −184.963 −0.0849417
\(169\) −440.073 −0.200306
\(170\) 128.231 0.0578521
\(171\) −1029.67 −0.460474
\(172\) 820.250 0.363625
\(173\) −3036.96 −1.33466 −0.667330 0.744762i \(-0.732563\pi\)
−0.667330 + 0.744762i \(0.732563\pi\)
\(174\) −248.773 −0.108387
\(175\) −798.060 −0.344729
\(176\) 621.844 0.266325
\(177\) −546.849 −0.232224
\(178\) −474.059 −0.199619
\(179\) 690.152 0.288181 0.144090 0.989565i \(-0.453974\pi\)
0.144090 + 0.989565i \(0.453974\pi\)
\(180\) 229.295 0.0949482
\(181\) −2533.94 −1.04059 −0.520294 0.853987i \(-0.674178\pi\)
−0.520294 + 0.853987i \(0.674178\pi\)
\(182\) −164.765 −0.0671056
\(183\) 569.636 0.230102
\(184\) 1100.84 0.441059
\(185\) −540.228 −0.214694
\(186\) −94.2898 −0.0371702
\(187\) −757.646 −0.296281
\(188\) −851.301 −0.330253
\(189\) 189.000 0.0727393
\(190\) 212.998 0.0813290
\(191\) 1845.13 0.698998 0.349499 0.936937i \(-0.386352\pi\)
0.349499 + 0.936937i \(0.386352\pi\)
\(192\) −1184.57 −0.445253
\(193\) −2654.48 −0.990019 −0.495009 0.868888i \(-0.664835\pi\)
−0.495009 + 0.868888i \(0.664835\pi\)
\(194\) 519.491 0.192254
\(195\) 416.895 0.153100
\(196\) −376.548 −0.137226
\(197\) 164.057 0.0593328 0.0296664 0.999560i \(-0.490555\pi\)
0.0296664 + 0.999560i \(0.490555\pi\)
\(198\) 55.5937 0.0199539
\(199\) 2888.41 1.02891 0.514457 0.857516i \(-0.327993\pi\)
0.514457 + 0.857516i \(0.327993\pi\)
\(200\) 1004.16 0.355024
\(201\) 1742.34 0.611418
\(202\) −496.900 −0.173078
\(203\) −1033.69 −0.357392
\(204\) 1587.89 0.544972
\(205\) −857.405 −0.292116
\(206\) 600.740 0.203182
\(207\) −1124.86 −0.377698
\(208\) −2369.55 −0.789897
\(209\) −1258.49 −0.416515
\(210\) −39.0965 −0.0128472
\(211\) 630.956 0.205862 0.102931 0.994689i \(-0.467178\pi\)
0.102931 + 0.994689i \(0.467178\pi\)
\(212\) −80.2670 −0.0260036
\(213\) −3484.17 −1.12080
\(214\) 100.066 0.0319645
\(215\) 353.875 0.112252
\(216\) −237.810 −0.0749116
\(217\) −391.788 −0.122564
\(218\) 1108.27 0.344318
\(219\) −239.099 −0.0737755
\(220\) 280.250 0.0858839
\(221\) 2887.02 0.878743
\(222\) 274.512 0.0829910
\(223\) −6252.50 −1.87757 −0.938786 0.344501i \(-0.888048\pi\)
−0.938786 + 0.344501i \(0.888048\pi\)
\(224\) 715.452 0.213407
\(225\) −1026.08 −0.304023
\(226\) 922.453 0.271507
\(227\) −3316.20 −0.969621 −0.484810 0.874619i \(-0.661111\pi\)
−0.484810 + 0.874619i \(0.661111\pi\)
\(228\) 2637.56 0.766126
\(229\) 3077.20 0.887979 0.443989 0.896032i \(-0.353563\pi\)
0.443989 + 0.896032i \(0.353563\pi\)
\(230\) 232.689 0.0667090
\(231\) 231.000 0.0657952
\(232\) 1300.64 0.368065
\(233\) 1358.08 0.381849 0.190924 0.981605i \(-0.438851\pi\)
0.190924 + 0.981605i \(0.438851\pi\)
\(234\) −211.841 −0.0591815
\(235\) −367.271 −0.101950
\(236\) 1400.78 0.386370
\(237\) 3270.11 0.896273
\(238\) −270.746 −0.0737389
\(239\) −4151.18 −1.12350 −0.561752 0.827306i \(-0.689872\pi\)
−0.561752 + 0.827306i \(0.689872\pi\)
\(240\) −562.261 −0.151224
\(241\) −3491.71 −0.933282 −0.466641 0.884447i \(-0.654536\pi\)
−0.466641 + 0.884447i \(0.654536\pi\)
\(242\) 67.9479 0.0180490
\(243\) 243.000 0.0641500
\(244\) −1459.15 −0.382839
\(245\) −162.452 −0.0423619
\(246\) 435.682 0.112919
\(247\) 4795.50 1.23535
\(248\) 492.968 0.126224
\(249\) −2624.49 −0.667953
\(250\) 444.972 0.112570
\(251\) −879.383 −0.221140 −0.110570 0.993868i \(-0.535268\pi\)
−0.110570 + 0.993868i \(0.535268\pi\)
\(252\) −484.133 −0.121022
\(253\) −1374.83 −0.341640
\(254\) −1009.08 −0.249273
\(255\) 685.051 0.168234
\(256\) 2575.17 0.628703
\(257\) 5691.10 1.38133 0.690663 0.723176i \(-0.257319\pi\)
0.690663 + 0.723176i \(0.257319\pi\)
\(258\) −179.818 −0.0433914
\(259\) 1140.64 0.273651
\(260\) −1067.90 −0.254724
\(261\) −1329.03 −0.315190
\(262\) 524.661 0.123716
\(263\) 2024.55 0.474673 0.237337 0.971427i \(-0.423726\pi\)
0.237337 + 0.971427i \(0.423726\pi\)
\(264\) −290.656 −0.0677601
\(265\) −34.6290 −0.00802734
\(266\) −449.723 −0.103663
\(267\) −2532.58 −0.580492
\(268\) −4463.09 −1.01726
\(269\) −3431.96 −0.777882 −0.388941 0.921263i \(-0.627159\pi\)
−0.388941 + 0.921263i \(0.627159\pi\)
\(270\) −50.2670 −0.0113302
\(271\) −2974.80 −0.666812 −0.333406 0.942783i \(-0.608198\pi\)
−0.333406 + 0.942783i \(0.608198\pi\)
\(272\) −3893.70 −0.867978
\(273\) −880.230 −0.195143
\(274\) −893.358 −0.196970
\(275\) −1254.09 −0.274999
\(276\) 2881.40 0.628405
\(277\) 7781.98 1.68799 0.843996 0.536350i \(-0.180197\pi\)
0.843996 + 0.536350i \(0.180197\pi\)
\(278\) −869.846 −0.187662
\(279\) −503.727 −0.108091
\(280\) 204.405 0.0436270
\(281\) −2627.68 −0.557845 −0.278922 0.960314i \(-0.589977\pi\)
−0.278922 + 0.960314i \(0.589977\pi\)
\(282\) 186.625 0.0394091
\(283\) −2501.46 −0.525430 −0.262715 0.964873i \(-0.584618\pi\)
−0.262715 + 0.964873i \(0.584618\pi\)
\(284\) 8924.89 1.86477
\(285\) 1137.91 0.236504
\(286\) −258.917 −0.0535317
\(287\) 1810.32 0.372334
\(288\) 919.867 0.188207
\(289\) −168.973 −0.0343931
\(290\) 274.922 0.0556689
\(291\) 2775.29 0.559073
\(292\) 612.466 0.122746
\(293\) −4646.04 −0.926364 −0.463182 0.886263i \(-0.653292\pi\)
−0.463182 + 0.886263i \(0.653292\pi\)
\(294\) 82.5483 0.0163752
\(295\) 604.331 0.119273
\(296\) −1435.21 −0.281823
\(297\) 297.000 0.0580259
\(298\) −262.859 −0.0510974
\(299\) 5238.83 1.01328
\(300\) 2628.35 0.505826
\(301\) −747.170 −0.143077
\(302\) 1047.49 0.199590
\(303\) −2654.60 −0.503310
\(304\) −6467.63 −1.22021
\(305\) −629.513 −0.118183
\(306\) −348.102 −0.0650316
\(307\) −4325.92 −0.804213 −0.402107 0.915593i \(-0.631722\pi\)
−0.402107 + 0.915593i \(0.631722\pi\)
\(308\) −591.719 −0.109469
\(309\) 3209.35 0.590853
\(310\) 104.201 0.0190910
\(311\) 1845.22 0.336440 0.168220 0.985749i \(-0.446198\pi\)
0.168220 + 0.985749i \(0.446198\pi\)
\(312\) 1107.55 0.200970
\(313\) −5287.15 −0.954784 −0.477392 0.878690i \(-0.658418\pi\)
−0.477392 + 0.878690i \(0.658418\pi\)
\(314\) 843.220 0.151547
\(315\) −208.867 −0.0373597
\(316\) −8376.57 −1.49120
\(317\) 9353.74 1.65728 0.828641 0.559780i \(-0.189114\pi\)
0.828641 + 0.559780i \(0.189114\pi\)
\(318\) 17.5964 0.00310301
\(319\) −1624.36 −0.285100
\(320\) 1309.08 0.228687
\(321\) 534.588 0.0929526
\(322\) −491.299 −0.0850280
\(323\) 7880.08 1.35746
\(324\) −622.457 −0.106731
\(325\) 4778.75 0.815622
\(326\) 294.479 0.0500296
\(327\) 5920.73 1.00128
\(328\) −2277.84 −0.383453
\(329\) 775.455 0.129946
\(330\) −61.4374 −0.0102485
\(331\) 11385.6 1.89066 0.945330 0.326115i \(-0.105740\pi\)
0.945330 + 0.326115i \(0.105740\pi\)
\(332\) 6722.77 1.11132
\(333\) 1466.53 0.241338
\(334\) −1849.25 −0.302953
\(335\) −1925.48 −0.314031
\(336\) 1187.16 0.192752
\(337\) −10686.1 −1.72732 −0.863660 0.504075i \(-0.831833\pi\)
−0.863660 + 0.504075i \(0.831833\pi\)
\(338\) −247.124 −0.0397686
\(339\) 4928.05 0.789542
\(340\) −1754.80 −0.279903
\(341\) −615.667 −0.0977719
\(342\) −578.216 −0.0914220
\(343\) 343.000 0.0539949
\(344\) 940.129 0.147350
\(345\) 1243.10 0.193990
\(346\) −1705.42 −0.264982
\(347\) 6242.71 0.965782 0.482891 0.875680i \(-0.339587\pi\)
0.482891 + 0.875680i \(0.339587\pi\)
\(348\) 3404.37 0.524406
\(349\) 4518.02 0.692964 0.346482 0.938057i \(-0.387376\pi\)
0.346482 + 0.938057i \(0.387376\pi\)
\(350\) −448.153 −0.0684422
\(351\) −1131.72 −0.172100
\(352\) 1124.28 0.170240
\(353\) −9270.29 −1.39776 −0.698878 0.715241i \(-0.746317\pi\)
−0.698878 + 0.715241i \(0.746317\pi\)
\(354\) −307.085 −0.0461056
\(355\) 3850.40 0.575657
\(356\) 6487.34 0.965809
\(357\) −1446.41 −0.214432
\(358\) 387.557 0.0572151
\(359\) 8219.53 1.20838 0.604192 0.796839i \(-0.293496\pi\)
0.604192 + 0.796839i \(0.293496\pi\)
\(360\) 262.807 0.0384754
\(361\) 6230.22 0.908328
\(362\) −1422.94 −0.206597
\(363\) 363.000 0.0524864
\(364\) 2254.76 0.324674
\(365\) 264.232 0.0378919
\(366\) 319.881 0.0456843
\(367\) 9001.57 1.28032 0.640161 0.768241i \(-0.278868\pi\)
0.640161 + 0.768241i \(0.278868\pi\)
\(368\) −7065.55 −1.00086
\(369\) 2327.56 0.328368
\(370\) −303.367 −0.0426251
\(371\) 73.1156 0.0102317
\(372\) 1290.32 0.179839
\(373\) 1966.15 0.272931 0.136466 0.990645i \(-0.456426\pi\)
0.136466 + 0.990645i \(0.456426\pi\)
\(374\) −425.458 −0.0588233
\(375\) 2377.18 0.327353
\(376\) −975.718 −0.133827
\(377\) 6189.67 0.845582
\(378\) 106.133 0.0144416
\(379\) 1022.30 0.138554 0.0692768 0.997597i \(-0.477931\pi\)
0.0692768 + 0.997597i \(0.477931\pi\)
\(380\) −2914.81 −0.393491
\(381\) −5390.83 −0.724884
\(382\) 1036.14 0.138778
\(383\) 12825.9 1.71116 0.855579 0.517672i \(-0.173201\pi\)
0.855579 + 0.517672i \(0.173201\pi\)
\(384\) −3118.17 −0.414384
\(385\) −255.281 −0.0337931
\(386\) −1490.63 −0.196557
\(387\) −960.648 −0.126182
\(388\) −7109.05 −0.930174
\(389\) −12229.1 −1.59393 −0.796964 0.604027i \(-0.793562\pi\)
−0.796964 + 0.604027i \(0.793562\pi\)
\(390\) 234.108 0.0303963
\(391\) 8608.57 1.11344
\(392\) −431.580 −0.0556074
\(393\) 2802.91 0.359767
\(394\) 92.1266 0.0117799
\(395\) −3613.85 −0.460335
\(396\) −760.781 −0.0965422
\(397\) −3401.07 −0.429961 −0.214981 0.976618i \(-0.568969\pi\)
−0.214981 + 0.976618i \(0.568969\pi\)
\(398\) 1622.00 0.204280
\(399\) −2402.57 −0.301451
\(400\) −6445.04 −0.805630
\(401\) −6234.40 −0.776386 −0.388193 0.921578i \(-0.626901\pi\)
−0.388193 + 0.921578i \(0.626901\pi\)
\(402\) 978.415 0.121390
\(403\) 2346.01 0.289983
\(404\) 6799.90 0.837396
\(405\) −268.543 −0.0329481
\(406\) −580.470 −0.0709562
\(407\) 1792.43 0.218298
\(408\) 1819.95 0.220836
\(409\) −11429.3 −1.38177 −0.690885 0.722964i \(-0.742779\pi\)
−0.690885 + 0.722964i \(0.742779\pi\)
\(410\) −481.478 −0.0579964
\(411\) −4772.61 −0.572787
\(412\) −8220.93 −0.983048
\(413\) −1275.98 −0.152027
\(414\) −631.670 −0.0749877
\(415\) 2900.36 0.343068
\(416\) −4284.10 −0.504916
\(417\) −4647.01 −0.545719
\(418\) −706.708 −0.0826943
\(419\) 3827.73 0.446293 0.223146 0.974785i \(-0.428367\pi\)
0.223146 + 0.974785i \(0.428367\pi\)
\(420\) 535.023 0.0621582
\(421\) −11626.8 −1.34597 −0.672987 0.739654i \(-0.734989\pi\)
−0.672987 + 0.739654i \(0.734989\pi\)
\(422\) 354.315 0.0408716
\(423\) 997.014 0.114602
\(424\) −91.9979 −0.0105373
\(425\) 7852.55 0.896246
\(426\) −1956.55 −0.222523
\(427\) 1329.15 0.150637
\(428\) −1369.38 −0.154652
\(429\) −1383.22 −0.155670
\(430\) 198.720 0.0222863
\(431\) 7469.80 0.834820 0.417410 0.908718i \(-0.362938\pi\)
0.417410 + 0.908718i \(0.362938\pi\)
\(432\) 1526.34 0.169991
\(433\) 1546.97 0.171692 0.0858459 0.996308i \(-0.472641\pi\)
0.0858459 + 0.996308i \(0.472641\pi\)
\(434\) −220.010 −0.0243336
\(435\) 1468.72 0.161885
\(436\) −15166.3 −1.66590
\(437\) 14299.3 1.56528
\(438\) −134.267 −0.0146473
\(439\) −8082.79 −0.878748 −0.439374 0.898304i \(-0.644800\pi\)
−0.439374 + 0.898304i \(0.644800\pi\)
\(440\) 321.208 0.0348023
\(441\) 441.000 0.0476190
\(442\) 1621.22 0.174465
\(443\) −13000.1 −1.39426 −0.697128 0.716947i \(-0.745539\pi\)
−0.697128 + 0.716947i \(0.745539\pi\)
\(444\) −3756.60 −0.401532
\(445\) 2798.79 0.298147
\(446\) −3511.11 −0.372771
\(447\) −1404.28 −0.148591
\(448\) −2763.99 −0.291487
\(449\) −4572.68 −0.480619 −0.240310 0.970696i \(-0.577249\pi\)
−0.240310 + 0.970696i \(0.577249\pi\)
\(450\) −576.196 −0.0603603
\(451\) 2844.79 0.297020
\(452\) −12623.4 −1.31362
\(453\) 5596.03 0.580407
\(454\) −1862.22 −0.192507
\(455\) 972.754 0.100227
\(456\) 3023.04 0.310454
\(457\) −10846.5 −1.11024 −0.555119 0.831771i \(-0.687327\pi\)
−0.555119 + 0.831771i \(0.687327\pi\)
\(458\) 1728.01 0.176298
\(459\) −1859.68 −0.189112
\(460\) −3184.27 −0.322755
\(461\) −1299.33 −0.131270 −0.0656352 0.997844i \(-0.520907\pi\)
−0.0656352 + 0.997844i \(0.520907\pi\)
\(462\) 129.719 0.0130629
\(463\) 12116.9 1.21624 0.608120 0.793845i \(-0.291924\pi\)
0.608120 + 0.793845i \(0.291924\pi\)
\(464\) −8347.94 −0.835223
\(465\) 556.676 0.0555166
\(466\) 762.633 0.0758118
\(467\) −13546.6 −1.34232 −0.671160 0.741313i \(-0.734204\pi\)
−0.671160 + 0.741313i \(0.734204\pi\)
\(468\) 2898.97 0.286335
\(469\) 4065.46 0.400267
\(470\) −206.242 −0.0202409
\(471\) 4504.76 0.440697
\(472\) 1605.51 0.156567
\(473\) −1174.12 −0.114136
\(474\) 1836.34 0.177945
\(475\) 13043.5 1.25995
\(476\) 3705.07 0.356768
\(477\) 94.0058 0.00902355
\(478\) −2331.10 −0.223059
\(479\) −10663.2 −1.01715 −0.508573 0.861019i \(-0.669827\pi\)
−0.508573 + 0.861019i \(0.669827\pi\)
\(480\) −1016.56 −0.0966652
\(481\) −6830.08 −0.647453
\(482\) −1960.78 −0.185293
\(483\) −2624.68 −0.247261
\(484\) −929.844 −0.0873257
\(485\) −3067.01 −0.287146
\(486\) 136.457 0.0127363
\(487\) 8149.91 0.758332 0.379166 0.925329i \(-0.376211\pi\)
0.379166 + 0.925329i \(0.376211\pi\)
\(488\) −1672.41 −0.155136
\(489\) 1573.20 0.145486
\(490\) −91.2252 −0.00841048
\(491\) −15142.4 −1.39178 −0.695891 0.718147i \(-0.744990\pi\)
−0.695891 + 0.718147i \(0.744990\pi\)
\(492\) −5962.16 −0.546331
\(493\) 10171.0 0.929167
\(494\) 2692.93 0.245264
\(495\) −328.219 −0.0298027
\(496\) −3164.04 −0.286430
\(497\) −8129.73 −0.733739
\(498\) −1473.79 −0.132615
\(499\) 10430.8 0.935764 0.467882 0.883791i \(-0.345017\pi\)
0.467882 + 0.883791i \(0.345017\pi\)
\(500\) −6089.28 −0.544642
\(501\) −9879.28 −0.880986
\(502\) −493.820 −0.0439049
\(503\) 2173.55 0.192671 0.0963356 0.995349i \(-0.469288\pi\)
0.0963356 + 0.995349i \(0.469288\pi\)
\(504\) −554.889 −0.0490411
\(505\) 2933.64 0.258505
\(506\) −772.042 −0.0678289
\(507\) −1320.22 −0.115647
\(508\) 13808.9 1.20605
\(509\) −13729.6 −1.19559 −0.597793 0.801651i \(-0.703955\pi\)
−0.597793 + 0.801651i \(0.703955\pi\)
\(510\) 384.692 0.0334009
\(511\) −557.899 −0.0482974
\(512\) 9761.22 0.842557
\(513\) −3089.02 −0.265855
\(514\) 3195.85 0.274247
\(515\) −3546.70 −0.303468
\(516\) 2460.75 0.209939
\(517\) 1218.57 0.103661
\(518\) 640.527 0.0543304
\(519\) −9110.89 −0.770566
\(520\) −1223.97 −0.103220
\(521\) 18257.2 1.53525 0.767623 0.640902i \(-0.221439\pi\)
0.767623 + 0.640902i \(0.221439\pi\)
\(522\) −746.318 −0.0625775
\(523\) −19979.6 −1.67045 −0.835225 0.549908i \(-0.814663\pi\)
−0.835225 + 0.549908i \(0.814663\pi\)
\(524\) −7179.81 −0.598572
\(525\) −2394.18 −0.199030
\(526\) 1136.89 0.0942411
\(527\) 3855.02 0.318648
\(528\) 1865.53 0.153763
\(529\) 3454.21 0.283900
\(530\) −19.4460 −0.00159374
\(531\) −1640.55 −0.134075
\(532\) 6154.31 0.501548
\(533\) −10840.1 −0.880935
\(534\) −1422.18 −0.115250
\(535\) −590.780 −0.0477414
\(536\) −5115.37 −0.412221
\(537\) 2070.45 0.166381
\(538\) −1927.23 −0.154440
\(539\) 539.000 0.0430730
\(540\) 687.886 0.0548184
\(541\) 7904.01 0.628133 0.314066 0.949401i \(-0.398309\pi\)
0.314066 + 0.949401i \(0.398309\pi\)
\(542\) −1670.51 −0.132388
\(543\) −7601.83 −0.600784
\(544\) −7039.73 −0.554827
\(545\) −6543.08 −0.514265
\(546\) −494.296 −0.0387434
\(547\) 16806.6 1.31370 0.656852 0.754019i \(-0.271887\pi\)
0.656852 + 0.754019i \(0.271887\pi\)
\(548\) 12225.3 0.952991
\(549\) 1708.91 0.132850
\(550\) −704.240 −0.0545980
\(551\) 16894.6 1.30623
\(552\) 3302.51 0.254645
\(553\) 7630.26 0.586748
\(554\) 4369.99 0.335132
\(555\) −1620.68 −0.123954
\(556\) 11903.6 0.907955
\(557\) −8002.82 −0.608780 −0.304390 0.952548i \(-0.598453\pi\)
−0.304390 + 0.952548i \(0.598453\pi\)
\(558\) −282.869 −0.0214602
\(559\) 4474.03 0.338517
\(560\) −1311.94 −0.0989995
\(561\) −2272.94 −0.171058
\(562\) −1475.58 −0.110754
\(563\) −12327.9 −0.922840 −0.461420 0.887182i \(-0.652660\pi\)
−0.461420 + 0.887182i \(0.652660\pi\)
\(564\) −2553.90 −0.190672
\(565\) −5446.05 −0.405517
\(566\) −1404.70 −0.104318
\(567\) 567.000 0.0419961
\(568\) 10229.2 0.755651
\(569\) −6786.77 −0.500028 −0.250014 0.968242i \(-0.580435\pi\)
−0.250014 + 0.968242i \(0.580435\pi\)
\(570\) 638.994 0.0469553
\(571\) 16890.0 1.23787 0.618935 0.785442i \(-0.287564\pi\)
0.618935 + 0.785442i \(0.287564\pi\)
\(572\) 3543.19 0.259000
\(573\) 5535.38 0.403567
\(574\) 1016.59 0.0739228
\(575\) 14249.3 1.03346
\(576\) −3553.70 −0.257067
\(577\) 1857.64 0.134029 0.0670144 0.997752i \(-0.478653\pi\)
0.0670144 + 0.997752i \(0.478653\pi\)
\(578\) −94.8875 −0.00682837
\(579\) −7963.44 −0.571588
\(580\) −3762.22 −0.269341
\(581\) −6123.81 −0.437278
\(582\) 1558.47 0.110998
\(583\) 114.896 0.00816210
\(584\) 701.977 0.0497398
\(585\) 1250.68 0.0883922
\(586\) −2609.00 −0.183919
\(587\) 21977.7 1.54534 0.772672 0.634805i \(-0.218920\pi\)
0.772672 + 0.634805i \(0.218920\pi\)
\(588\) −1129.64 −0.0792275
\(589\) 6403.39 0.447958
\(590\) 339.364 0.0236803
\(591\) 492.171 0.0342558
\(592\) 9211.65 0.639521
\(593\) 17263.7 1.19550 0.597752 0.801681i \(-0.296061\pi\)
0.597752 + 0.801681i \(0.296061\pi\)
\(594\) 166.781 0.0115204
\(595\) 1598.45 0.110135
\(596\) 3597.14 0.247223
\(597\) 8665.23 0.594044
\(598\) 2941.88 0.201175
\(599\) −23211.4 −1.58329 −0.791646 0.610981i \(-0.790775\pi\)
−0.791646 + 0.610981i \(0.790775\pi\)
\(600\) 3012.48 0.204973
\(601\) −20051.0 −1.36089 −0.680446 0.732799i \(-0.738214\pi\)
−0.680446 + 0.732799i \(0.738214\pi\)
\(602\) −419.576 −0.0284064
\(603\) 5227.01 0.353002
\(604\) −14334.5 −0.965668
\(605\) −401.156 −0.0269576
\(606\) −1490.70 −0.0999266
\(607\) −7862.63 −0.525756 −0.262878 0.964829i \(-0.584672\pi\)
−0.262878 + 0.964829i \(0.584672\pi\)
\(608\) −11693.4 −0.779981
\(609\) −3101.06 −0.206340
\(610\) −353.505 −0.0234639
\(611\) −4643.39 −0.307449
\(612\) 4763.66 0.314640
\(613\) −16366.2 −1.07835 −0.539173 0.842195i \(-0.681263\pi\)
−0.539173 + 0.842195i \(0.681263\pi\)
\(614\) −2429.23 −0.159668
\(615\) −2572.21 −0.168653
\(616\) −678.198 −0.0443594
\(617\) 3749.07 0.244622 0.122311 0.992492i \(-0.460969\pi\)
0.122311 + 0.992492i \(0.460969\pi\)
\(618\) 1802.22 0.117307
\(619\) 20036.9 1.30105 0.650525 0.759485i \(-0.274549\pi\)
0.650525 + 0.759485i \(0.274549\pi\)
\(620\) −1425.95 −0.0923673
\(621\) −3374.59 −0.218064
\(622\) 1036.19 0.0667965
\(623\) −5909.35 −0.380021
\(624\) −7108.64 −0.456047
\(625\) 11624.0 0.743936
\(626\) −2969.01 −0.189562
\(627\) −3775.47 −0.240475
\(628\) −11539.2 −0.733222
\(629\) −11223.3 −0.711453
\(630\) −117.290 −0.00741735
\(631\) 5839.34 0.368400 0.184200 0.982889i \(-0.441031\pi\)
0.184200 + 0.982889i \(0.441031\pi\)
\(632\) −9600.80 −0.604271
\(633\) 1892.87 0.118854
\(634\) 5252.62 0.329035
\(635\) 5957.49 0.372308
\(636\) −240.801 −0.0150132
\(637\) −2053.87 −0.127751
\(638\) −912.166 −0.0566035
\(639\) −10452.5 −0.647097
\(640\) 3445.94 0.212832
\(641\) −14682.2 −0.904702 −0.452351 0.891840i \(-0.649415\pi\)
−0.452351 + 0.891840i \(0.649415\pi\)
\(642\) 300.199 0.0184547
\(643\) 30541.3 1.87314 0.936571 0.350477i \(-0.113981\pi\)
0.936571 + 0.350477i \(0.113981\pi\)
\(644\) 6723.26 0.411388
\(645\) 1061.63 0.0648084
\(646\) 4425.08 0.269508
\(647\) 7991.44 0.485588 0.242794 0.970078i \(-0.421936\pi\)
0.242794 + 0.970078i \(0.421936\pi\)
\(648\) −713.429 −0.0432502
\(649\) −2005.11 −0.121275
\(650\) 2683.52 0.161933
\(651\) −1175.36 −0.0707621
\(652\) −4029.84 −0.242056
\(653\) 18400.0 1.10268 0.551338 0.834282i \(-0.314117\pi\)
0.551338 + 0.834282i \(0.314117\pi\)
\(654\) 3324.80 0.198792
\(655\) −3097.54 −0.184780
\(656\) 14620.0 0.870143
\(657\) −717.298 −0.0425943
\(658\) 435.459 0.0257993
\(659\) 15887.4 0.939126 0.469563 0.882899i \(-0.344411\pi\)
0.469563 + 0.882899i \(0.344411\pi\)
\(660\) 840.750 0.0495851
\(661\) −14947.8 −0.879582 −0.439791 0.898100i \(-0.644947\pi\)
−0.439791 + 0.898100i \(0.644947\pi\)
\(662\) 6393.61 0.375370
\(663\) 8661.07 0.507343
\(664\) 7705.29 0.450336
\(665\) 2655.11 0.154828
\(666\) 823.535 0.0479149
\(667\) 18456.4 1.07142
\(668\) 25306.3 1.46576
\(669\) −18757.5 −1.08402
\(670\) −1081.26 −0.0623473
\(671\) 2088.67 0.120167
\(672\) 2146.36 0.123210
\(673\) 1091.22 0.0625014 0.0312507 0.999512i \(-0.490051\pi\)
0.0312507 + 0.999512i \(0.490051\pi\)
\(674\) −6000.79 −0.342940
\(675\) −3078.23 −0.175528
\(676\) 3381.81 0.192411
\(677\) −26564.2 −1.50804 −0.754022 0.656849i \(-0.771889\pi\)
−0.754022 + 0.656849i \(0.771889\pi\)
\(678\) 2767.36 0.156755
\(679\) 6475.68 0.365999
\(680\) −2011.26 −0.113424
\(681\) −9948.60 −0.559811
\(682\) −345.729 −0.0194115
\(683\) −20461.6 −1.14633 −0.573164 0.819441i \(-0.694284\pi\)
−0.573164 + 0.819441i \(0.694284\pi\)
\(684\) 7912.69 0.442323
\(685\) 5274.28 0.294190
\(686\) 192.613 0.0107201
\(687\) 9231.60 0.512675
\(688\) −6034.07 −0.334370
\(689\) −437.813 −0.0242081
\(690\) 698.068 0.0385145
\(691\) −12100.6 −0.666175 −0.333087 0.942896i \(-0.608090\pi\)
−0.333087 + 0.942896i \(0.608090\pi\)
\(692\) 23338.0 1.28205
\(693\) 693.000 0.0379869
\(694\) 3505.61 0.191745
\(695\) 5135.47 0.280287
\(696\) 3901.91 0.212502
\(697\) −17812.8 −0.968015
\(698\) 2537.11 0.137580
\(699\) 4074.24 0.220460
\(700\) 6132.82 0.331141
\(701\) 27360.5 1.47417 0.737083 0.675802i \(-0.236203\pi\)
0.737083 + 0.675802i \(0.236203\pi\)
\(702\) −635.523 −0.0341685
\(703\) −18642.6 −1.00017
\(704\) −4343.41 −0.232526
\(705\) −1101.81 −0.0588606
\(706\) −5205.76 −0.277509
\(707\) −6194.07 −0.329494
\(708\) 4202.35 0.223071
\(709\) 19314.2 1.02308 0.511538 0.859261i \(-0.329076\pi\)
0.511538 + 0.859261i \(0.329076\pi\)
\(710\) 2162.21 0.114290
\(711\) 9810.34 0.517463
\(712\) 7435.45 0.391370
\(713\) 6995.36 0.367431
\(714\) −812.238 −0.0425732
\(715\) 1528.61 0.0799537
\(716\) −5303.58 −0.276821
\(717\) −12453.5 −0.648655
\(718\) 4615.70 0.239911
\(719\) −11811.2 −0.612635 −0.306317 0.951929i \(-0.599097\pi\)
−0.306317 + 0.951929i \(0.599097\pi\)
\(720\) −1686.78 −0.0873093
\(721\) 7488.49 0.386804
\(722\) 3498.60 0.180338
\(723\) −10475.1 −0.538831
\(724\) 19472.5 0.999571
\(725\) 16835.6 0.862424
\(726\) 203.844 0.0104206
\(727\) 17995.3 0.918034 0.459017 0.888428i \(-0.348202\pi\)
0.459017 + 0.888428i \(0.348202\pi\)
\(728\) 2584.29 0.131566
\(729\) 729.000 0.0370370
\(730\) 148.380 0.00752301
\(731\) 7351.83 0.371980
\(732\) −4377.46 −0.221032
\(733\) −28542.7 −1.43827 −0.719133 0.694873i \(-0.755461\pi\)
−0.719133 + 0.694873i \(0.755461\pi\)
\(734\) 5054.86 0.254194
\(735\) −487.355 −0.0244576
\(736\) −12774.4 −0.639769
\(737\) 6388.57 0.319303
\(738\) 1307.05 0.0651938
\(739\) −5283.32 −0.262991 −0.131495 0.991317i \(-0.541978\pi\)
−0.131495 + 0.991317i \(0.541978\pi\)
\(740\) 4151.47 0.206231
\(741\) 14386.5 0.713227
\(742\) 41.0583 0.00203140
\(743\) −8423.21 −0.415905 −0.207953 0.978139i \(-0.566680\pi\)
−0.207953 + 0.978139i \(0.566680\pi\)
\(744\) 1478.90 0.0728753
\(745\) 1551.89 0.0763180
\(746\) 1104.10 0.0541874
\(747\) −7873.47 −0.385643
\(748\) 5822.25 0.284602
\(749\) 1247.37 0.0608518
\(750\) 1334.91 0.0649923
\(751\) 26417.9 1.28363 0.641814 0.766861i \(-0.278182\pi\)
0.641814 + 0.766861i \(0.278182\pi\)
\(752\) 6262.49 0.303683
\(753\) −2638.15 −0.127675
\(754\) 3475.83 0.167881
\(755\) −6184.25 −0.298103
\(756\) −1452.40 −0.0698721
\(757\) −24157.9 −1.15988 −0.579942 0.814658i \(-0.696925\pi\)
−0.579942 + 0.814658i \(0.696925\pi\)
\(758\) 574.073 0.0275083
\(759\) −4124.50 −0.197246
\(760\) −3340.80 −0.159452
\(761\) −9195.59 −0.438029 −0.219014 0.975722i \(-0.570284\pi\)
−0.219014 + 0.975722i \(0.570284\pi\)
\(762\) −3027.24 −0.143918
\(763\) 13815.0 0.655488
\(764\) −14179.2 −0.671445
\(765\) 2055.15 0.0971297
\(766\) 7202.43 0.339732
\(767\) 7640.53 0.359692
\(768\) 7725.50 0.362982
\(769\) −15430.5 −0.723589 −0.361794 0.932258i \(-0.617836\pi\)
−0.361794 + 0.932258i \(0.617836\pi\)
\(770\) −143.354 −0.00670924
\(771\) 17073.3 0.797509
\(772\) 20398.8 0.950994
\(773\) −14100.0 −0.656068 −0.328034 0.944666i \(-0.606386\pi\)
−0.328034 + 0.944666i \(0.606386\pi\)
\(774\) −539.454 −0.0250521
\(775\) 6381.02 0.295759
\(776\) −8148.03 −0.376930
\(777\) 3421.91 0.157993
\(778\) −6867.26 −0.316457
\(779\) −29587.9 −1.36084
\(780\) −3203.69 −0.147065
\(781\) −12775.3 −0.585321
\(782\) 4834.17 0.221061
\(783\) −3987.08 −0.181975
\(784\) 2770.03 0.126186
\(785\) −4978.27 −0.226347
\(786\) 1573.98 0.0714277
\(787\) 4428.96 0.200604 0.100302 0.994957i \(-0.468019\pi\)
0.100302 + 0.994957i \(0.468019\pi\)
\(788\) −1260.72 −0.0569941
\(789\) 6073.65 0.274053
\(790\) −2029.37 −0.0913944
\(791\) 11498.8 0.516876
\(792\) −871.969 −0.0391213
\(793\) −7958.90 −0.356405
\(794\) −1909.88 −0.0853640
\(795\) −103.887 −0.00463459
\(796\) −22196.4 −0.988357
\(797\) 32311.2 1.43604 0.718019 0.696024i \(-0.245049\pi\)
0.718019 + 0.696024i \(0.245049\pi\)
\(798\) −1349.17 −0.0598498
\(799\) −7630.14 −0.337841
\(800\) −11652.5 −0.514973
\(801\) −7597.74 −0.335147
\(802\) −3500.94 −0.154143
\(803\) −876.698 −0.0385280
\(804\) −13389.3 −0.587317
\(805\) 2900.57 0.126996
\(806\) 1317.41 0.0575729
\(807\) −10295.9 −0.449110
\(808\) 7793.70 0.339334
\(809\) −45404.2 −1.97321 −0.986605 0.163125i \(-0.947843\pi\)
−0.986605 + 0.163125i \(0.947843\pi\)
\(810\) −150.801 −0.00654149
\(811\) −36636.7 −1.58630 −0.793150 0.609026i \(-0.791560\pi\)
−0.793150 + 0.609026i \(0.791560\pi\)
\(812\) 7943.53 0.343304
\(813\) −8924.39 −0.384984
\(814\) 1006.54 0.0433407
\(815\) −1738.57 −0.0747231
\(816\) −11681.1 −0.501127
\(817\) 12211.8 0.522932
\(818\) −6418.17 −0.274335
\(819\) −2640.69 −0.112666
\(820\) 6588.86 0.280601
\(821\) −14967.9 −0.636279 −0.318139 0.948044i \(-0.603058\pi\)
−0.318139 + 0.948044i \(0.603058\pi\)
\(822\) −2680.07 −0.113721
\(823\) −8353.81 −0.353822 −0.176911 0.984227i \(-0.556610\pi\)
−0.176911 + 0.984227i \(0.556610\pi\)
\(824\) −9422.41 −0.398356
\(825\) −3762.28 −0.158771
\(826\) −716.531 −0.0301832
\(827\) 26797.4 1.12677 0.563384 0.826195i \(-0.309499\pi\)
0.563384 + 0.826195i \(0.309499\pi\)
\(828\) 8644.19 0.362810
\(829\) −14645.0 −0.613562 −0.306781 0.951780i \(-0.599252\pi\)
−0.306781 + 0.951780i \(0.599252\pi\)
\(830\) 1628.70 0.0681122
\(831\) 23345.9 0.974563
\(832\) 16550.6 0.689651
\(833\) −3374.97 −0.140379
\(834\) −2609.54 −0.108346
\(835\) 10917.7 0.452484
\(836\) 9671.06 0.400097
\(837\) −1511.18 −0.0624063
\(838\) 2149.47 0.0886065
\(839\) −10093.3 −0.415327 −0.207664 0.978200i \(-0.566586\pi\)
−0.207664 + 0.978200i \(0.566586\pi\)
\(840\) 613.216 0.0251880
\(841\) −2582.72 −0.105897
\(842\) −6529.06 −0.267228
\(843\) −7883.04 −0.322072
\(844\) −4848.68 −0.197747
\(845\) 1458.99 0.0593975
\(846\) 559.876 0.0227529
\(847\) 847.000 0.0343604
\(848\) 590.474 0.0239115
\(849\) −7504.39 −0.303357
\(850\) 4409.62 0.177940
\(851\) −20366.0 −0.820374
\(852\) 26774.7 1.07663
\(853\) 28743.0 1.15374 0.576872 0.816835i \(-0.304273\pi\)
0.576872 + 0.816835i \(0.304273\pi\)
\(854\) 746.389 0.0299074
\(855\) 3413.72 0.136546
\(856\) −1569.51 −0.0626690
\(857\) −19741.2 −0.786870 −0.393435 0.919352i \(-0.628713\pi\)
−0.393435 + 0.919352i \(0.628713\pi\)
\(858\) −776.750 −0.0309065
\(859\) −41550.0 −1.65037 −0.825185 0.564863i \(-0.808929\pi\)
−0.825185 + 0.564863i \(0.808929\pi\)
\(860\) −2719.41 −0.107827
\(861\) 5430.97 0.214967
\(862\) 4194.69 0.165744
\(863\) 45844.4 1.80830 0.904150 0.427215i \(-0.140505\pi\)
0.904150 + 0.427215i \(0.140505\pi\)
\(864\) 2759.60 0.108661
\(865\) 10068.6 0.395771
\(866\) 868.704 0.0340875
\(867\) −506.920 −0.0198569
\(868\) 3010.76 0.117732
\(869\) 11990.4 0.468063
\(870\) 824.766 0.0321405
\(871\) −24343.8 −0.947024
\(872\) −17382.8 −0.675064
\(873\) 8325.87 0.322781
\(874\) 8029.80 0.310769
\(875\) 5546.76 0.214303
\(876\) 1837.40 0.0708675
\(877\) 2558.92 0.0985277 0.0492638 0.998786i \(-0.484312\pi\)
0.0492638 + 0.998786i \(0.484312\pi\)
\(878\) −4538.91 −0.174466
\(879\) −13938.1 −0.534836
\(880\) −2061.62 −0.0789742
\(881\) 1119.16 0.0427983 0.0213992 0.999771i \(-0.493188\pi\)
0.0213992 + 0.999771i \(0.493188\pi\)
\(882\) 247.645 0.00945423
\(883\) −1677.64 −0.0639377 −0.0319688 0.999489i \(-0.510178\pi\)
−0.0319688 + 0.999489i \(0.510178\pi\)
\(884\) −22185.8 −0.844105
\(885\) 1812.99 0.0688622
\(886\) −7300.27 −0.276814
\(887\) 12127.5 0.459076 0.229538 0.973300i \(-0.426278\pi\)
0.229538 + 0.973300i \(0.426278\pi\)
\(888\) −4305.62 −0.162711
\(889\) −12578.6 −0.474548
\(890\) 1571.67 0.0591937
\(891\) 891.000 0.0335013
\(892\) 48048.4 1.80356
\(893\) −12674.1 −0.474940
\(894\) −788.578 −0.0295011
\(895\) −2288.09 −0.0854551
\(896\) −7275.74 −0.271278
\(897\) 15716.5 0.585015
\(898\) −2567.80 −0.0954216
\(899\) 8265.02 0.306623
\(900\) 7885.05 0.292039
\(901\) −719.425 −0.0266010
\(902\) 1597.50 0.0589700
\(903\) −2241.51 −0.0826056
\(904\) −14468.4 −0.532312
\(905\) 8400.89 0.308569
\(906\) 3142.47 0.115233
\(907\) −13826.8 −0.506186 −0.253093 0.967442i \(-0.581448\pi\)
−0.253093 + 0.967442i \(0.581448\pi\)
\(908\) 25483.9 0.931401
\(909\) −7963.81 −0.290586
\(910\) 546.253 0.0198990
\(911\) −41945.3 −1.52548 −0.762739 0.646706i \(-0.776146\pi\)
−0.762739 + 0.646706i \(0.776146\pi\)
\(912\) −19402.9 −0.704489
\(913\) −9623.13 −0.348827
\(914\) −6090.90 −0.220426
\(915\) −1888.54 −0.0682330
\(916\) −23647.2 −0.852977
\(917\) 6540.13 0.235523
\(918\) −1044.31 −0.0375460
\(919\) −8132.54 −0.291913 −0.145956 0.989291i \(-0.546626\pi\)
−0.145956 + 0.989291i \(0.546626\pi\)
\(920\) −3649.65 −0.130789
\(921\) −12977.8 −0.464313
\(922\) −729.641 −0.0260623
\(923\) 48680.5 1.73601
\(924\) −1775.16 −0.0632017
\(925\) −18577.4 −0.660349
\(926\) 6804.27 0.241471
\(927\) 9628.06 0.341129
\(928\) −15092.9 −0.533889
\(929\) −48334.7 −1.70701 −0.853504 0.521086i \(-0.825527\pi\)
−0.853504 + 0.521086i \(0.825527\pi\)
\(930\) 312.603 0.0110222
\(931\) −5606.00 −0.197346
\(932\) −10436.4 −0.366797
\(933\) 5535.66 0.194244
\(934\) −7607.15 −0.266503
\(935\) 2511.85 0.0878571
\(936\) 3322.65 0.116030
\(937\) −6068.39 −0.211575 −0.105787 0.994389i \(-0.533736\pi\)
−0.105787 + 0.994389i \(0.533736\pi\)
\(938\) 2282.97 0.0794686
\(939\) −15861.5 −0.551245
\(940\) 2822.35 0.0979309
\(941\) 15416.2 0.534065 0.267032 0.963688i \(-0.413957\pi\)
0.267032 + 0.963688i \(0.413957\pi\)
\(942\) 2529.66 0.0874955
\(943\) −32323.3 −1.11621
\(944\) −10304.7 −0.355285
\(945\) −626.600 −0.0215696
\(946\) −659.333 −0.0226604
\(947\) −45788.4 −1.57120 −0.785598 0.618737i \(-0.787645\pi\)
−0.785598 + 0.618737i \(0.787645\pi\)
\(948\) −25129.7 −0.860944
\(949\) 3340.67 0.114271
\(950\) 7324.61 0.250149
\(951\) 28061.2 0.956833
\(952\) 4246.56 0.144571
\(953\) 36543.7 1.24215 0.621074 0.783752i \(-0.286697\pi\)
0.621074 + 0.783752i \(0.286697\pi\)
\(954\) 52.7892 0.00179152
\(955\) −6117.23 −0.207276
\(956\) 31900.4 1.07922
\(957\) −4873.09 −0.164603
\(958\) −5987.94 −0.201943
\(959\) −11136.1 −0.374977
\(960\) 3927.24 0.132032
\(961\) −26658.4 −0.894847
\(962\) −3835.45 −0.128545
\(963\) 1603.76 0.0536662
\(964\) 26832.6 0.896494
\(965\) 8800.50 0.293573
\(966\) −1473.90 −0.0490910
\(967\) 3077.00 0.102327 0.0511633 0.998690i \(-0.483707\pi\)
0.0511633 + 0.998690i \(0.483707\pi\)
\(968\) −1065.74 −0.0353865
\(969\) 23640.2 0.783729
\(970\) −1722.29 −0.0570096
\(971\) 41714.2 1.37865 0.689327 0.724451i \(-0.257906\pi\)
0.689327 + 0.724451i \(0.257906\pi\)
\(972\) −1867.37 −0.0616214
\(973\) −10843.0 −0.357257
\(974\) 4576.61 0.150558
\(975\) 14336.2 0.470900
\(976\) 10734.1 0.352039
\(977\) −22237.2 −0.728178 −0.364089 0.931364i \(-0.618620\pi\)
−0.364089 + 0.931364i \(0.618620\pi\)
\(978\) 883.436 0.0288846
\(979\) −9286.12 −0.303152
\(980\) 1248.39 0.0406921
\(981\) 17762.2 0.578086
\(982\) −8503.23 −0.276323
\(983\) −26617.2 −0.863639 −0.431820 0.901960i \(-0.642128\pi\)
−0.431820 + 0.901960i \(0.642128\pi\)
\(984\) −6833.52 −0.221387
\(985\) −543.905 −0.0175942
\(986\) 5711.56 0.184476
\(987\) 2326.37 0.0750244
\(988\) −36851.8 −1.18665
\(989\) 13340.7 0.428928
\(990\) −184.312 −0.00591700
\(991\) 28839.4 0.924435 0.462217 0.886767i \(-0.347054\pi\)
0.462217 + 0.886767i \(0.347054\pi\)
\(992\) −5720.52 −0.183091
\(993\) 34156.8 1.09157
\(994\) −4565.27 −0.145676
\(995\) −9576.07 −0.305107
\(996\) 20168.3 0.641624
\(997\) 35924.1 1.14115 0.570575 0.821246i \(-0.306720\pi\)
0.570575 + 0.821246i \(0.306720\pi\)
\(998\) 5857.44 0.185786
\(999\) 4399.59 0.139336
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 231.4.a.f.1.2 2
3.2 odd 2 693.4.a.k.1.1 2
7.6 odd 2 1617.4.a.i.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.f.1.2 2 1.1 even 1 trivial
693.4.a.k.1.1 2 3.2 odd 2
1617.4.a.i.1.2 2 7.6 odd 2