Properties

Label 2400.2.o.i.2399.3
Level $2400$
Weight $2$
Character 2400.2399
Analytic conductor $19.164$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,2,Mod(2399,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.2399");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2400.o (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1640964851\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 480)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2399.3
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 2400.2399
Dual form 2400.2.o.i.2399.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.70711 - 0.292893i) q^{3} -3.41421 q^{7} +(2.82843 - 1.00000i) q^{9} +O(q^{10})\) \(q+(1.70711 - 0.292893i) q^{3} -3.41421 q^{7} +(2.82843 - 1.00000i) q^{9} +2.82843 q^{11} -2.00000i q^{13} -7.65685 q^{17} +2.82843i q^{19} +(-5.82843 + 1.00000i) q^{21} -7.41421i q^{23} +(4.53553 - 2.53553i) q^{27} -8.00000i q^{29} -5.65685i q^{31} +(4.82843 - 0.828427i) q^{33} +0.343146i q^{37} +(-0.585786 - 3.41421i) q^{39} -2.00000i q^{41} +7.89949 q^{43} -6.24264i q^{47} +4.65685 q^{49} +(-13.0711 + 2.24264i) q^{51} -3.65685 q^{53} +(0.828427 + 4.82843i) q^{57} +1.65685 q^{59} +5.65685 q^{61} +(-9.65685 + 3.41421i) q^{63} +1.07107 q^{67} +(-2.17157 - 12.6569i) q^{69} -1.17157 q^{71} +15.6569i q^{73} -9.65685 q^{77} +4.48528i q^{79} +(7.00000 - 5.65685i) q^{81} -5.07107i q^{83} +(-2.34315 - 13.6569i) q^{87} -7.31371i q^{89} +6.82843i q^{91} +(-1.65685 - 9.65685i) q^{93} -18.9706i q^{97} +(8.00000 - 2.82843i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{3} - 8 q^{7} - 8 q^{17} - 12 q^{21} + 4 q^{27} + 8 q^{33} - 8 q^{39} - 8 q^{43} - 4 q^{49} - 24 q^{51} + 8 q^{53} - 8 q^{57} - 16 q^{59} - 16 q^{63} - 24 q^{67} - 20 q^{69} - 16 q^{71} - 16 q^{77} + 28 q^{81} - 32 q^{87} + 16 q^{93} + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2400\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1601\) \(1951\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.70711 0.292893i 0.985599 0.169102i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −3.41421 −1.29045 −0.645226 0.763992i \(-0.723237\pi\)
−0.645226 + 0.763992i \(0.723237\pi\)
\(8\) 0 0
\(9\) 2.82843 1.00000i 0.942809 0.333333i
\(10\) 0 0
\(11\) 2.82843 0.852803 0.426401 0.904534i \(-0.359781\pi\)
0.426401 + 0.904534i \(0.359781\pi\)
\(12\) 0 0
\(13\) 2.00000i 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −7.65685 −1.85706 −0.928530 0.371257i \(-0.878927\pi\)
−0.928530 + 0.371257i \(0.878927\pi\)
\(18\) 0 0
\(19\) 2.82843i 0.648886i 0.945905 + 0.324443i \(0.105177\pi\)
−0.945905 + 0.324443i \(0.894823\pi\)
\(20\) 0 0
\(21\) −5.82843 + 1.00000i −1.27187 + 0.218218i
\(22\) 0 0
\(23\) 7.41421i 1.54597i −0.634424 0.772985i \(-0.718763\pi\)
0.634424 0.772985i \(-0.281237\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.53553 2.53553i 0.872864 0.487964i
\(28\) 0 0
\(29\) 8.00000i 1.48556i −0.669534 0.742781i \(-0.733506\pi\)
0.669534 0.742781i \(-0.266494\pi\)
\(30\) 0 0
\(31\) 5.65685i 1.01600i −0.861357 0.508001i \(-0.830385\pi\)
0.861357 0.508001i \(-0.169615\pi\)
\(32\) 0 0
\(33\) 4.82843 0.828427i 0.840521 0.144211i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.343146i 0.0564128i 0.999602 + 0.0282064i \(0.00897957\pi\)
−0.999602 + 0.0282064i \(0.991020\pi\)
\(38\) 0 0
\(39\) −0.585786 3.41421i −0.0938009 0.546712i
\(40\) 0 0
\(41\) 2.00000i 0.312348i −0.987730 0.156174i \(-0.950084\pi\)
0.987730 0.156174i \(-0.0499160\pi\)
\(42\) 0 0
\(43\) 7.89949 1.20466 0.602331 0.798247i \(-0.294239\pi\)
0.602331 + 0.798247i \(0.294239\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.24264i 0.910583i −0.890343 0.455291i \(-0.849535\pi\)
0.890343 0.455291i \(-0.150465\pi\)
\(48\) 0 0
\(49\) 4.65685 0.665265
\(50\) 0 0
\(51\) −13.0711 + 2.24264i −1.83032 + 0.314033i
\(52\) 0 0
\(53\) −3.65685 −0.502308 −0.251154 0.967947i \(-0.580810\pi\)
−0.251154 + 0.967947i \(0.580810\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.828427 + 4.82843i 0.109728 + 0.639541i
\(58\) 0 0
\(59\) 1.65685 0.215704 0.107852 0.994167i \(-0.465603\pi\)
0.107852 + 0.994167i \(0.465603\pi\)
\(60\) 0 0
\(61\) 5.65685 0.724286 0.362143 0.932123i \(-0.382045\pi\)
0.362143 + 0.932123i \(0.382045\pi\)
\(62\) 0 0
\(63\) −9.65685 + 3.41421i −1.21665 + 0.430150i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1.07107 0.130852 0.0654259 0.997857i \(-0.479159\pi\)
0.0654259 + 0.997857i \(0.479159\pi\)
\(68\) 0 0
\(69\) −2.17157 12.6569i −0.261427 1.52371i
\(70\) 0 0
\(71\) −1.17157 −0.139040 −0.0695201 0.997581i \(-0.522147\pi\)
−0.0695201 + 0.997581i \(0.522147\pi\)
\(72\) 0 0
\(73\) 15.6569i 1.83250i 0.400611 + 0.916248i \(0.368798\pi\)
−0.400611 + 0.916248i \(0.631202\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −9.65685 −1.10050
\(78\) 0 0
\(79\) 4.48528i 0.504634i 0.967645 + 0.252317i \(0.0811925\pi\)
−0.967645 + 0.252317i \(0.918807\pi\)
\(80\) 0 0
\(81\) 7.00000 5.65685i 0.777778 0.628539i
\(82\) 0 0
\(83\) 5.07107i 0.556622i −0.960491 0.278311i \(-0.910225\pi\)
0.960491 0.278311i \(-0.0897746\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −2.34315 13.6569i −0.251212 1.46417i
\(88\) 0 0
\(89\) 7.31371i 0.775252i −0.921817 0.387626i \(-0.873295\pi\)
0.921817 0.387626i \(-0.126705\pi\)
\(90\) 0 0
\(91\) 6.82843i 0.715814i
\(92\) 0 0
\(93\) −1.65685 9.65685i −0.171808 1.00137i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 18.9706i 1.92617i −0.269200 0.963084i \(-0.586759\pi\)
0.269200 0.963084i \(-0.413241\pi\)
\(98\) 0 0
\(99\) 8.00000 2.82843i 0.804030 0.284268i
\(100\) 0 0
\(101\) 7.31371i 0.727741i 0.931450 + 0.363871i \(0.118545\pi\)
−0.931450 + 0.363871i \(0.881455\pi\)
\(102\) 0 0
\(103\) −2.24264 −0.220974 −0.110487 0.993878i \(-0.535241\pi\)
−0.110487 + 0.993878i \(0.535241\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15.4142i 1.49015i −0.666982 0.745074i \(-0.732414\pi\)
0.666982 0.745074i \(-0.267586\pi\)
\(108\) 0 0
\(109\) −17.6569 −1.69122 −0.845610 0.533801i \(-0.820763\pi\)
−0.845610 + 0.533801i \(0.820763\pi\)
\(110\) 0 0
\(111\) 0.100505 + 0.585786i 0.00953952 + 0.0556004i
\(112\) 0 0
\(113\) −10.0000 −0.940721 −0.470360 0.882474i \(-0.655876\pi\)
−0.470360 + 0.882474i \(0.655876\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.00000 5.65685i −0.184900 0.522976i
\(118\) 0 0
\(119\) 26.1421 2.39645
\(120\) 0 0
\(121\) −3.00000 −0.272727
\(122\) 0 0
\(123\) −0.585786 3.41421i −0.0528186 0.307849i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 17.0711 1.51481 0.757406 0.652944i \(-0.226466\pi\)
0.757406 + 0.652944i \(0.226466\pi\)
\(128\) 0 0
\(129\) 13.4853 2.31371i 1.18731 0.203711i
\(130\) 0 0
\(131\) 10.8284 0.946084 0.473042 0.881040i \(-0.343156\pi\)
0.473042 + 0.881040i \(0.343156\pi\)
\(132\) 0 0
\(133\) 9.65685i 0.837355i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −17.3137 −1.47921 −0.739605 0.673041i \(-0.764988\pi\)
−0.739605 + 0.673041i \(0.764988\pi\)
\(138\) 0 0
\(139\) 13.1716i 1.11720i −0.829438 0.558599i \(-0.811339\pi\)
0.829438 0.558599i \(-0.188661\pi\)
\(140\) 0 0
\(141\) −1.82843 10.6569i −0.153981 0.897469i
\(142\) 0 0
\(143\) 5.65685i 0.473050i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 7.94975 1.36396i 0.655684 0.112498i
\(148\) 0 0
\(149\) 13.3137i 1.09070i 0.838208 + 0.545351i \(0.183604\pi\)
−0.838208 + 0.545351i \(0.816396\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) −21.6569 + 7.65685i −1.75085 + 0.619020i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 7.65685i 0.611083i 0.952179 + 0.305542i \(0.0988376\pi\)
−0.952179 + 0.305542i \(0.901162\pi\)
\(158\) 0 0
\(159\) −6.24264 + 1.07107i −0.495074 + 0.0849412i
\(160\) 0 0
\(161\) 25.3137i 1.99500i
\(162\) 0 0
\(163\) −10.2426 −0.802266 −0.401133 0.916020i \(-0.631383\pi\)
−0.401133 + 0.916020i \(0.631383\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 18.7279i 1.44921i 0.689164 + 0.724605i \(0.257978\pi\)
−0.689164 + 0.724605i \(0.742022\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 2.82843 + 8.00000i 0.216295 + 0.611775i
\(172\) 0 0
\(173\) 2.00000 0.152057 0.0760286 0.997106i \(-0.475776\pi\)
0.0760286 + 0.997106i \(0.475776\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.82843 0.485281i 0.212598 0.0364760i
\(178\) 0 0
\(179\) 17.6569 1.31974 0.659868 0.751382i \(-0.270612\pi\)
0.659868 + 0.751382i \(0.270612\pi\)
\(180\) 0 0
\(181\) −9.31371 −0.692283 −0.346141 0.938182i \(-0.612508\pi\)
−0.346141 + 0.938182i \(0.612508\pi\)
\(182\) 0 0
\(183\) 9.65685 1.65685i 0.713855 0.122478i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −21.6569 −1.58371
\(188\) 0 0
\(189\) −15.4853 + 8.65685i −1.12639 + 0.629693i
\(190\) 0 0
\(191\) 18.1421 1.31272 0.656359 0.754448i \(-0.272096\pi\)
0.656359 + 0.754448i \(0.272096\pi\)
\(192\) 0 0
\(193\) 7.65685i 0.551152i −0.961279 0.275576i \(-0.911131\pi\)
0.961279 0.275576i \(-0.0888686\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −22.9706 −1.63658 −0.818292 0.574802i \(-0.805079\pi\)
−0.818292 + 0.574802i \(0.805079\pi\)
\(198\) 0 0
\(199\) 22.8284i 1.61826i 0.587627 + 0.809132i \(0.300062\pi\)
−0.587627 + 0.809132i \(0.699938\pi\)
\(200\) 0 0
\(201\) 1.82843 0.313708i 0.128967 0.0221273i
\(202\) 0 0
\(203\) 27.3137i 1.91705i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −7.41421 20.9706i −0.515323 1.45755i
\(208\) 0 0
\(209\) 8.00000i 0.553372i
\(210\) 0 0
\(211\) 12.0000i 0.826114i −0.910705 0.413057i \(-0.864461\pi\)
0.910705 0.413057i \(-0.135539\pi\)
\(212\) 0 0
\(213\) −2.00000 + 0.343146i −0.137038 + 0.0235120i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 19.3137i 1.31110i
\(218\) 0 0
\(219\) 4.58579 + 26.7279i 0.309879 + 1.80611i
\(220\) 0 0
\(221\) 15.3137i 1.03011i
\(222\) 0 0
\(223\) 7.89949 0.528989 0.264495 0.964387i \(-0.414795\pi\)
0.264495 + 0.964387i \(0.414795\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.41421i 0.492099i 0.969257 + 0.246049i \(0.0791325\pi\)
−0.969257 + 0.246049i \(0.920867\pi\)
\(228\) 0 0
\(229\) −2.68629 −0.177515 −0.0887576 0.996053i \(-0.528290\pi\)
−0.0887576 + 0.996053i \(0.528290\pi\)
\(230\) 0 0
\(231\) −16.4853 + 2.82843i −1.08465 + 0.186097i
\(232\) 0 0
\(233\) 6.97056 0.456657 0.228328 0.973584i \(-0.426674\pi\)
0.228328 + 0.973584i \(0.426674\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1.31371 + 7.65685i 0.0853345 + 0.497366i
\(238\) 0 0
\(239\) 2.34315 0.151565 0.0757827 0.997124i \(-0.475854\pi\)
0.0757827 + 0.997124i \(0.475854\pi\)
\(240\) 0 0
\(241\) 9.65685 0.622053 0.311026 0.950401i \(-0.399327\pi\)
0.311026 + 0.950401i \(0.399327\pi\)
\(242\) 0 0
\(243\) 10.2929 11.7071i 0.660289 0.751011i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.65685 0.359937
\(248\) 0 0
\(249\) −1.48528 8.65685i −0.0941259 0.548606i
\(250\) 0 0
\(251\) 0.485281 0.0306307 0.0153153 0.999883i \(-0.495125\pi\)
0.0153153 + 0.999883i \(0.495125\pi\)
\(252\) 0 0
\(253\) 20.9706i 1.31841i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 22.0000 1.37232 0.686161 0.727450i \(-0.259294\pi\)
0.686161 + 0.727450i \(0.259294\pi\)
\(258\) 0 0
\(259\) 1.17157i 0.0727980i
\(260\) 0 0
\(261\) −8.00000 22.6274i −0.495188 1.40060i
\(262\) 0 0
\(263\) 11.8995i 0.733754i 0.930269 + 0.366877i \(0.119573\pi\)
−0.930269 + 0.366877i \(0.880427\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −2.14214 12.4853i −0.131097 0.764087i
\(268\) 0 0
\(269\) 18.0000i 1.09748i −0.835993 0.548740i \(-0.815108\pi\)
0.835993 0.548740i \(-0.184892\pi\)
\(270\) 0 0
\(271\) 2.34315i 0.142336i −0.997464 0.0711680i \(-0.977327\pi\)
0.997464 0.0711680i \(-0.0226726\pi\)
\(272\) 0 0
\(273\) 2.00000 + 11.6569i 0.121046 + 0.705505i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 11.6569i 0.700392i −0.936676 0.350196i \(-0.886115\pi\)
0.936676 0.350196i \(-0.113885\pi\)
\(278\) 0 0
\(279\) −5.65685 16.0000i −0.338667 0.957895i
\(280\) 0 0
\(281\) 13.3137i 0.794229i 0.917769 + 0.397115i \(0.129988\pi\)
−0.917769 + 0.397115i \(0.870012\pi\)
\(282\) 0 0
\(283\) −13.5563 −0.805841 −0.402921 0.915235i \(-0.632005\pi\)
−0.402921 + 0.915235i \(0.632005\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6.82843i 0.403069i
\(288\) 0 0
\(289\) 41.6274 2.44867
\(290\) 0 0
\(291\) −5.55635 32.3848i −0.325719 1.89843i
\(292\) 0 0
\(293\) 22.0000 1.28525 0.642627 0.766179i \(-0.277845\pi\)
0.642627 + 0.766179i \(0.277845\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 12.8284 7.17157i 0.744381 0.416137i
\(298\) 0 0
\(299\) −14.8284 −0.857550
\(300\) 0 0
\(301\) −26.9706 −1.55456
\(302\) 0 0
\(303\) 2.14214 + 12.4853i 0.123062 + 0.717261i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 7.89949 0.450848 0.225424 0.974261i \(-0.427623\pi\)
0.225424 + 0.974261i \(0.427623\pi\)
\(308\) 0 0
\(309\) −3.82843 + 0.656854i −0.217792 + 0.0373671i
\(310\) 0 0
\(311\) −11.5147 −0.652940 −0.326470 0.945208i \(-0.605859\pi\)
−0.326470 + 0.945208i \(0.605859\pi\)
\(312\) 0 0
\(313\) 17.3137i 0.978629i 0.872107 + 0.489314i \(0.162753\pi\)
−0.872107 + 0.489314i \(0.837247\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.343146 0.0192730 0.00963649 0.999954i \(-0.496933\pi\)
0.00963649 + 0.999954i \(0.496933\pi\)
\(318\) 0 0
\(319\) 22.6274i 1.26689i
\(320\) 0 0
\(321\) −4.51472 26.3137i −0.251987 1.46869i
\(322\) 0 0
\(323\) 21.6569i 1.20502i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −30.1421 + 5.17157i −1.66686 + 0.285989i
\(328\) 0 0
\(329\) 21.3137i 1.17506i
\(330\) 0 0
\(331\) 8.68629i 0.477442i 0.971088 + 0.238721i \(0.0767281\pi\)
−0.971088 + 0.238721i \(0.923272\pi\)
\(332\) 0 0
\(333\) 0.343146 + 0.970563i 0.0188043 + 0.0531865i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 9.31371i 0.507350i 0.967290 + 0.253675i \(0.0816394\pi\)
−0.967290 + 0.253675i \(0.918361\pi\)
\(338\) 0 0
\(339\) −17.0711 + 2.92893i −0.927173 + 0.159078i
\(340\) 0 0
\(341\) 16.0000i 0.866449i
\(342\) 0 0
\(343\) 8.00000 0.431959
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 27.6985i 1.48693i 0.668773 + 0.743466i \(0.266820\pi\)
−0.668773 + 0.743466i \(0.733180\pi\)
\(348\) 0 0
\(349\) −16.6274 −0.890045 −0.445023 0.895519i \(-0.646804\pi\)
−0.445023 + 0.895519i \(0.646804\pi\)
\(350\) 0 0
\(351\) −5.07107 9.07107i −0.270674 0.484178i
\(352\) 0 0
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 44.6274 7.65685i 2.36193 0.405244i
\(358\) 0 0
\(359\) −29.6569 −1.56523 −0.782614 0.622507i \(-0.786114\pi\)
−0.782614 + 0.622507i \(0.786114\pi\)
\(360\) 0 0
\(361\) 11.0000 0.578947
\(362\) 0 0
\(363\) −5.12132 + 0.878680i −0.268800 + 0.0461187i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 14.9289 0.779284 0.389642 0.920966i \(-0.372599\pi\)
0.389642 + 0.920966i \(0.372599\pi\)
\(368\) 0 0
\(369\) −2.00000 5.65685i −0.104116 0.294484i
\(370\) 0 0
\(371\) 12.4853 0.648204
\(372\) 0 0
\(373\) 19.6569i 1.01779i −0.860828 0.508897i \(-0.830054\pi\)
0.860828 0.508897i \(-0.169946\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −16.0000 −0.824042
\(378\) 0 0
\(379\) 14.1421i 0.726433i −0.931705 0.363216i \(-0.881679\pi\)
0.931705 0.363216i \(-0.118321\pi\)
\(380\) 0 0
\(381\) 29.1421 5.00000i 1.49300 0.256158i
\(382\) 0 0
\(383\) 0.585786i 0.0299323i −0.999888 0.0149661i \(-0.995236\pi\)
0.999888 0.0149661i \(-0.00476405\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 22.3431 7.89949i 1.13577 0.401554i
\(388\) 0 0
\(389\) 9.31371i 0.472224i 0.971726 + 0.236112i \(0.0758732\pi\)
−0.971726 + 0.236112i \(0.924127\pi\)
\(390\) 0 0
\(391\) 56.7696i 2.87096i
\(392\) 0 0
\(393\) 18.4853 3.17157i 0.932459 0.159985i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 20.6274i 1.03526i 0.855604 + 0.517630i \(0.173186\pi\)
−0.855604 + 0.517630i \(0.826814\pi\)
\(398\) 0 0
\(399\) −2.82843 16.4853i −0.141598 0.825296i
\(400\) 0 0
\(401\) 8.00000i 0.399501i −0.979847 0.199750i \(-0.935987\pi\)
0.979847 0.199750i \(-0.0640132\pi\)
\(402\) 0 0
\(403\) −11.3137 −0.563576
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.970563i 0.0481090i
\(408\) 0 0
\(409\) −5.65685 −0.279713 −0.139857 0.990172i \(-0.544664\pi\)
−0.139857 + 0.990172i \(0.544664\pi\)
\(410\) 0 0
\(411\) −29.5563 + 5.07107i −1.45791 + 0.250137i
\(412\) 0 0
\(413\) −5.65685 −0.278356
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −3.85786 22.4853i −0.188920 1.10111i
\(418\) 0 0
\(419\) −20.0000 −0.977064 −0.488532 0.872546i \(-0.662467\pi\)
−0.488532 + 0.872546i \(0.662467\pi\)
\(420\) 0 0
\(421\) 16.9706 0.827095 0.413547 0.910483i \(-0.364290\pi\)
0.413547 + 0.910483i \(0.364290\pi\)
\(422\) 0 0
\(423\) −6.24264 17.6569i −0.303528 0.858506i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −19.3137 −0.934656
\(428\) 0 0
\(429\) −1.65685 9.65685i −0.0799937 0.466237i
\(430\) 0 0
\(431\) 11.5147 0.554644 0.277322 0.960777i \(-0.410553\pi\)
0.277322 + 0.960777i \(0.410553\pi\)
\(432\) 0 0
\(433\) 15.6569i 0.752420i 0.926534 + 0.376210i \(0.122773\pi\)
−0.926534 + 0.376210i \(0.877227\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 20.9706 1.00316
\(438\) 0 0
\(439\) 17.1716i 0.819554i 0.912186 + 0.409777i \(0.134394\pi\)
−0.912186 + 0.409777i \(0.865606\pi\)
\(440\) 0 0
\(441\) 13.1716 4.65685i 0.627218 0.221755i
\(442\) 0 0
\(443\) 35.8995i 1.70564i −0.522208 0.852818i \(-0.674891\pi\)
0.522208 0.852818i \(-0.325109\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 3.89949 + 22.7279i 0.184440 + 1.07499i
\(448\) 0 0
\(449\) 2.00000i 0.0943858i −0.998886 0.0471929i \(-0.984972\pi\)
0.998886 0.0471929i \(-0.0150276\pi\)
\(450\) 0 0
\(451\) 5.65685i 0.266371i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 5.31371i 0.248565i 0.992247 + 0.124282i \(0.0396629\pi\)
−0.992247 + 0.124282i \(0.960337\pi\)
\(458\) 0 0
\(459\) −34.7279 + 19.4142i −1.62096 + 0.906178i
\(460\) 0 0
\(461\) 26.6274i 1.24016i 0.784538 + 0.620081i \(0.212900\pi\)
−0.784538 + 0.620081i \(0.787100\pi\)
\(462\) 0 0
\(463\) 20.5858 0.956703 0.478351 0.878169i \(-0.341235\pi\)
0.478351 + 0.878169i \(0.341235\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 35.8995i 1.66123i 0.556847 + 0.830615i \(0.312011\pi\)
−0.556847 + 0.830615i \(0.687989\pi\)
\(468\) 0 0
\(469\) −3.65685 −0.168858
\(470\) 0 0
\(471\) 2.24264 + 13.0711i 0.103335 + 0.602283i
\(472\) 0 0
\(473\) 22.3431 1.02734
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −10.3431 + 3.65685i −0.473580 + 0.167436i
\(478\) 0 0
\(479\) 0.970563 0.0443461 0.0221731 0.999754i \(-0.492942\pi\)
0.0221731 + 0.999754i \(0.492942\pi\)
\(480\) 0 0
\(481\) 0.686292 0.0312922
\(482\) 0 0
\(483\) 7.41421 + 43.2132i 0.337358 + 1.96627i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 8.10051 0.367069 0.183534 0.983013i \(-0.441246\pi\)
0.183534 + 0.983013i \(0.441246\pi\)
\(488\) 0 0
\(489\) −17.4853 + 3.00000i −0.790712 + 0.135665i
\(490\) 0 0
\(491\) 39.1127 1.76513 0.882566 0.470189i \(-0.155814\pi\)
0.882566 + 0.470189i \(0.155814\pi\)
\(492\) 0 0
\(493\) 61.2548i 2.75878i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.00000 0.179425
\(498\) 0 0
\(499\) 33.4558i 1.49769i −0.662746 0.748845i \(-0.730609\pi\)
0.662746 0.748845i \(-0.269391\pi\)
\(500\) 0 0
\(501\) 5.48528 + 31.9706i 0.245064 + 1.42834i
\(502\) 0 0
\(503\) 0.786797i 0.0350815i 0.999846 + 0.0175408i \(0.00558368\pi\)
−0.999846 + 0.0175408i \(0.994416\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 15.3640 2.63604i 0.682337 0.117071i
\(508\) 0 0
\(509\) 22.6274i 1.00294i 0.865174 + 0.501471i \(0.167208\pi\)
−0.865174 + 0.501471i \(0.832792\pi\)
\(510\) 0 0
\(511\) 53.4558i 2.36475i
\(512\) 0 0
\(513\) 7.17157 + 12.8284i 0.316633 + 0.566389i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 17.6569i 0.776548i
\(518\) 0 0
\(519\) 3.41421 0.585786i 0.149867 0.0257132i
\(520\) 0 0
\(521\) 16.0000i 0.700973i −0.936568 0.350486i \(-0.886016\pi\)
0.936568 0.350486i \(-0.113984\pi\)
\(522\) 0 0
\(523\) −11.4142 −0.499109 −0.249554 0.968361i \(-0.580284\pi\)
−0.249554 + 0.968361i \(0.580284\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 43.3137i 1.88677i
\(528\) 0 0
\(529\) −31.9706 −1.39002
\(530\) 0 0
\(531\) 4.68629 1.65685i 0.203368 0.0719014i
\(532\) 0 0
\(533\) −4.00000 −0.173259
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 30.1421 5.17157i 1.30073 0.223170i
\(538\) 0 0
\(539\) 13.1716 0.567340
\(540\) 0 0
\(541\) −14.6863 −0.631413 −0.315706 0.948857i \(-0.602241\pi\)
−0.315706 + 0.948857i \(0.602241\pi\)
\(542\) 0 0
\(543\) −15.8995 + 2.72792i −0.682313 + 0.117066i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −18.0416 −0.771404 −0.385702 0.922623i \(-0.626041\pi\)
−0.385702 + 0.922623i \(0.626041\pi\)
\(548\) 0 0
\(549\) 16.0000 5.65685i 0.682863 0.241429i
\(550\) 0 0
\(551\) 22.6274 0.963960
\(552\) 0 0
\(553\) 15.3137i 0.651205i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.0000 0.762684 0.381342 0.924434i \(-0.375462\pi\)
0.381342 + 0.924434i \(0.375462\pi\)
\(558\) 0 0
\(559\) 15.7990i 0.668226i
\(560\) 0 0
\(561\) −36.9706 + 6.34315i −1.56090 + 0.267808i
\(562\) 0 0
\(563\) 25.5563i 1.07707i 0.842603 + 0.538536i \(0.181022\pi\)
−0.842603 + 0.538536i \(0.818978\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −23.8995 + 19.3137i −1.00368 + 0.811100i
\(568\) 0 0
\(569\) 28.6274i 1.20012i 0.799954 + 0.600062i \(0.204857\pi\)
−0.799954 + 0.600062i \(0.795143\pi\)
\(570\) 0 0
\(571\) 16.2843i 0.681476i 0.940158 + 0.340738i \(0.110677\pi\)
−0.940158 + 0.340738i \(0.889323\pi\)
\(572\) 0 0
\(573\) 30.9706 5.31371i 1.29381 0.221983i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 22.0000i 0.915872i −0.888985 0.457936i \(-0.848589\pi\)
0.888985 0.457936i \(-0.151411\pi\)
\(578\) 0 0
\(579\) −2.24264 13.0711i −0.0932010 0.543215i
\(580\) 0 0
\(581\) 17.3137i 0.718294i
\(582\) 0 0
\(583\) −10.3431 −0.428369
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.7279i 0.772984i 0.922293 + 0.386492i \(0.126313\pi\)
−0.922293 + 0.386492i \(0.873687\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) 0 0
\(591\) −39.2132 + 6.72792i −1.61302 + 0.276750i
\(592\) 0 0
\(593\) 32.6274 1.33985 0.669924 0.742430i \(-0.266327\pi\)
0.669924 + 0.742430i \(0.266327\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6.68629 + 38.9706i 0.273652 + 1.59496i
\(598\) 0 0
\(599\) −30.6274 −1.25140 −0.625701 0.780063i \(-0.715187\pi\)
−0.625701 + 0.780063i \(0.715187\pi\)
\(600\) 0 0
\(601\) 4.97056 0.202753 0.101377 0.994848i \(-0.467675\pi\)
0.101377 + 0.994848i \(0.467675\pi\)
\(602\) 0 0
\(603\) 3.02944 1.07107i 0.123368 0.0436173i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 41.0711 1.66702 0.833512 0.552502i \(-0.186327\pi\)
0.833512 + 0.552502i \(0.186327\pi\)
\(608\) 0 0
\(609\) 8.00000 + 46.6274i 0.324176 + 1.88944i
\(610\) 0 0
\(611\) −12.4853 −0.505100
\(612\) 0 0
\(613\) 37.3137i 1.50709i −0.657398 0.753543i \(-0.728343\pi\)
0.657398 0.753543i \(-0.271657\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.65685 0.147219 0.0736097 0.997287i \(-0.476548\pi\)
0.0736097 + 0.997287i \(0.476548\pi\)
\(618\) 0 0
\(619\) 17.4558i 0.701610i 0.936449 + 0.350805i \(0.114092\pi\)
−0.936449 + 0.350805i \(0.885908\pi\)
\(620\) 0 0
\(621\) −18.7990 33.6274i −0.754377 1.34942i
\(622\) 0 0
\(623\) 24.9706i 1.00042i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 2.34315 + 13.6569i 0.0935762 + 0.545402i
\(628\) 0 0
\(629\) 2.62742i 0.104762i
\(630\) 0 0
\(631\) 3.31371i 0.131917i −0.997822 0.0659583i \(-0.978990\pi\)
0.997822 0.0659583i \(-0.0210104\pi\)
\(632\) 0 0
\(633\) −3.51472 20.4853i −0.139698 0.814217i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 9.31371i 0.369023i
\(638\) 0 0
\(639\) −3.31371 + 1.17157i −0.131088 + 0.0463467i
\(640\) 0 0
\(641\) 5.31371i 0.209879i −0.994479 0.104939i \(-0.966535\pi\)
0.994479 0.104939i \(-0.0334649\pi\)
\(642\) 0 0
\(643\) −16.1005 −0.634942 −0.317471 0.948268i \(-0.602834\pi\)
−0.317471 + 0.948268i \(0.602834\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 33.7574i 1.32714i −0.748115 0.663569i \(-0.769041\pi\)
0.748115 0.663569i \(-0.230959\pi\)
\(648\) 0 0
\(649\) 4.68629 0.183953
\(650\) 0 0
\(651\) 5.65685 + 32.9706i 0.221710 + 1.29222i
\(652\) 0 0
\(653\) −32.3431 −1.26569 −0.632843 0.774281i \(-0.718112\pi\)
−0.632843 + 0.774281i \(0.718112\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 15.6569 + 44.2843i 0.610832 + 1.72769i
\(658\) 0 0
\(659\) 22.3431 0.870365 0.435183 0.900342i \(-0.356684\pi\)
0.435183 + 0.900342i \(0.356684\pi\)
\(660\) 0 0
\(661\) 10.3431 0.402302 0.201151 0.979560i \(-0.435532\pi\)
0.201151 + 0.979560i \(0.435532\pi\)
\(662\) 0 0
\(663\) 4.48528 + 26.1421i 0.174194 + 1.01528i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −59.3137 −2.29664
\(668\) 0 0
\(669\) 13.4853 2.31371i 0.521371 0.0894531i
\(670\) 0 0
\(671\) 16.0000 0.617673
\(672\) 0 0
\(673\) 24.3431i 0.938359i −0.883103 0.469180i \(-0.844550\pi\)
0.883103 0.469180i \(-0.155450\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −0.343146 −0.0131882 −0.00659408 0.999978i \(-0.502099\pi\)
−0.00659408 + 0.999978i \(0.502099\pi\)
\(678\) 0 0
\(679\) 64.7696i 2.48563i
\(680\) 0 0
\(681\) 2.17157 + 12.6569i 0.0832149 + 0.485012i
\(682\) 0 0
\(683\) 9.55635i 0.365664i −0.983144 0.182832i \(-0.941474\pi\)
0.983144 0.182832i \(-0.0585264\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −4.58579 + 0.786797i −0.174959 + 0.0300182i
\(688\) 0 0
\(689\) 7.31371i 0.278630i
\(690\) 0 0
\(691\) 40.2843i 1.53249i −0.642551 0.766243i \(-0.722124\pi\)
0.642551 0.766243i \(-0.277876\pi\)
\(692\) 0 0
\(693\) −27.3137 + 9.65685i −1.03756 + 0.366834i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 15.3137i 0.580048i
\(698\) 0 0
\(699\) 11.8995 2.04163i 0.450080 0.0772216i
\(700\) 0 0
\(701\) 15.9411i 0.602088i −0.953610 0.301044i \(-0.902665\pi\)
0.953610 0.301044i \(-0.0973351\pi\)
\(702\) 0 0
\(703\) −0.970563 −0.0366055
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 24.9706i 0.939115i
\(708\) 0 0
\(709\) 2.68629 0.100886 0.0504429 0.998727i \(-0.483937\pi\)
0.0504429 + 0.998727i \(0.483937\pi\)
\(710\) 0 0
\(711\) 4.48528 + 12.6863i 0.168211 + 0.475773i
\(712\) 0 0
\(713\) −41.9411 −1.57071
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 4.00000 0.686292i 0.149383 0.0256300i
\(718\) 0 0
\(719\) −12.2843 −0.458126 −0.229063 0.973412i \(-0.573566\pi\)
−0.229063 + 0.973412i \(0.573566\pi\)
\(720\) 0 0
\(721\) 7.65685 0.285156
\(722\) 0 0
\(723\) 16.4853 2.82843i 0.613094 0.105190i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −28.1838 −1.04528 −0.522639 0.852554i \(-0.675052\pi\)
−0.522639 + 0.852554i \(0.675052\pi\)
\(728\) 0 0
\(729\) 14.1421 23.0000i 0.523783 0.851852i
\(730\) 0 0
\(731\) −60.4853 −2.23713
\(732\) 0 0
\(733\) 9.02944i 0.333510i 0.985998 + 0.166755i \(0.0533289\pi\)
−0.985998 + 0.166755i \(0.946671\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.02944 0.111591
\(738\) 0 0
\(739\) 15.5147i 0.570718i −0.958421 0.285359i \(-0.907887\pi\)
0.958421 0.285359i \(-0.0921129\pi\)
\(740\) 0 0
\(741\) 9.65685 1.65685i 0.354753 0.0608661i
\(742\) 0 0
\(743\) 5.27208i 0.193414i −0.995313 0.0967069i \(-0.969169\pi\)
0.995313 0.0967069i \(-0.0308309\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −5.07107 14.3431i −0.185541 0.524788i
\(748\) 0 0
\(749\) 52.6274i 1.92296i
\(750\) 0 0
\(751\) 38.6274i 1.40953i −0.709439 0.704767i \(-0.751051\pi\)
0.709439 0.704767i \(-0.248949\pi\)
\(752\) 0 0
\(753\) 0.828427 0.142136i 0.0301896 0.00517971i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 16.3431i 0.594002i −0.954877 0.297001i \(-0.904014\pi\)
0.954877 0.297001i \(-0.0959864\pi\)
\(758\) 0 0
\(759\) −6.14214 35.7990i −0.222945 1.29942i
\(760\) 0 0
\(761\) 11.3137i 0.410122i 0.978749 + 0.205061i \(0.0657392\pi\)
−0.978749 + 0.205061i \(0.934261\pi\)
\(762\) 0 0
\(763\) 60.2843 2.18244
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.31371i 0.119651i
\(768\) 0 0
\(769\) −25.3137 −0.912836 −0.456418 0.889766i \(-0.650868\pi\)
−0.456418 + 0.889766i \(0.650868\pi\)
\(770\) 0 0
\(771\) 37.5563 6.44365i 1.35256 0.232062i
\(772\) 0 0
\(773\) 26.2843 0.945380 0.472690 0.881229i \(-0.343283\pi\)
0.472690 + 0.881229i \(0.343283\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −0.343146 2.00000i −0.0123103 0.0717496i
\(778\) 0 0
\(779\) 5.65685 0.202678
\(780\) 0 0
\(781\) −3.31371 −0.118574
\(782\) 0 0
\(783\) −20.2843 36.2843i −0.724901 1.29669i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 21.5563 0.768401 0.384200 0.923250i \(-0.374477\pi\)
0.384200 + 0.923250i \(0.374477\pi\)
\(788\) 0 0
\(789\) 3.48528 + 20.3137i 0.124079 + 0.723187i
\(790\) 0 0
\(791\) 34.1421 1.21395
\(792\) 0 0
\(793\) 11.3137i 0.401762i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 30.9706 1.09703 0.548517 0.836140i \(-0.315193\pi\)
0.548517 + 0.836140i \(0.315193\pi\)
\(798\) 0 0
\(799\) 47.7990i 1.69101i
\(800\) 0 0
\(801\) −7.31371 20.6863i −0.258417 0.730914i
\(802\) 0 0
\(803\) 44.2843i 1.56276i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −5.27208 30.7279i −0.185586 1.08167i
\(808\) 0 0
\(809\) 26.6274i 0.936170i −0.883683 0.468085i \(-0.844944\pi\)
0.883683 0.468085i \(-0.155056\pi\)
\(810\) 0 0
\(811\) 42.6274i 1.49685i 0.663219 + 0.748426i \(0.269190\pi\)
−0.663219 + 0.748426i \(0.730810\pi\)
\(812\) 0 0
\(813\) −0.686292 4.00000i −0.0240693 0.140286i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 22.3431i 0.781688i
\(818\) 0 0
\(819\) 6.82843 + 19.3137i 0.238605 + 0.674876i
\(820\) 0 0
\(821\) 28.6274i 0.999104i −0.866284 0.499552i \(-0.833498\pi\)
0.866284 0.499552i \(-0.166502\pi\)
\(822\) 0 0
\(823\) 16.1005 0.561228 0.280614 0.959821i \(-0.409462\pi\)
0.280614 + 0.959821i \(0.409462\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 24.5858i 0.854932i 0.904032 + 0.427466i \(0.140594\pi\)
−0.904032 + 0.427466i \(0.859406\pi\)
\(828\) 0 0
\(829\) 12.9706 0.450486 0.225243 0.974303i \(-0.427682\pi\)
0.225243 + 0.974303i \(0.427682\pi\)
\(830\) 0 0
\(831\) −3.41421 19.8995i −0.118438 0.690306i
\(832\) 0 0
\(833\) −35.6569 −1.23544
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −14.3431 25.6569i −0.495772 0.886831i
\(838\) 0 0
\(839\) 17.9411 0.619396 0.309698 0.950835i \(-0.399772\pi\)
0.309698 + 0.950835i \(0.399772\pi\)
\(840\) 0 0
\(841\) −35.0000 −1.20690
\(842\) 0 0
\(843\) 3.89949 + 22.7279i 0.134306 + 0.782791i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 10.2426 0.351941
\(848\) 0 0
\(849\) −23.1421 + 3.97056i −0.794236 + 0.136269i
\(850\) 0 0
\(851\) 2.54416 0.0872125
\(852\) 0 0
\(853\) 47.9411i 1.64147i 0.571307 + 0.820736i \(0.306437\pi\)
−0.571307 + 0.820736i \(0.693563\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 10.0000 0.341593 0.170797 0.985306i \(-0.445366\pi\)
0.170797 + 0.985306i \(0.445366\pi\)
\(858\) 0 0
\(859\) 7.51472i 0.256399i 0.991748 + 0.128199i \(0.0409198\pi\)
−0.991748 + 0.128199i \(0.959080\pi\)
\(860\) 0 0
\(861\) 2.00000 + 11.6569i 0.0681598 + 0.397265i
\(862\) 0 0
\(863\) 17.5563i 0.597625i −0.954312 0.298813i \(-0.903409\pi\)
0.954312 0.298813i \(-0.0965905\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 71.0624 12.1924i 2.41341 0.414075i
\(868\) 0 0
\(869\) 12.6863i 0.430353i
\(870\) 0 0
\(871\) 2.14214i 0.0725835i
\(872\) 0 0
\(873\) −18.9706 53.6569i −0.642056 1.81601i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 23.6569i 0.798835i 0.916769 + 0.399418i \(0.130788\pi\)
−0.916769 + 0.399418i \(0.869212\pi\)
\(878\) 0 0
\(879\) 37.5563 6.44365i 1.26674 0.217339i
\(880\) 0 0
\(881\) 28.6274i 0.964482i 0.876039 + 0.482241i \(0.160177\pi\)
−0.876039 + 0.482241i \(0.839823\pi\)
\(882\) 0 0
\(883\) −1.27208 −0.0428088 −0.0214044 0.999771i \(-0.506814\pi\)
−0.0214044 + 0.999771i \(0.506814\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11.8995i 0.399546i 0.979842 + 0.199773i \(0.0640205\pi\)
−0.979842 + 0.199773i \(0.935980\pi\)
\(888\) 0 0
\(889\) −58.2843 −1.95479
\(890\) 0 0
\(891\) 19.7990 16.0000i 0.663291 0.536020i
\(892\) 0 0
\(893\) 17.6569 0.590864
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −25.3137 + 4.34315i −0.845200 + 0.145013i
\(898\) 0 0
\(899\) −45.2548 −1.50933
\(900\) 0 0
\(901\) 28.0000 0.932815
\(902\) 0 0
\(903\) −46.0416 + 7.89949i −1.53217 + 0.262879i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.07107 0.0355642 0.0177821 0.999842i \(-0.494339\pi\)
0.0177821 + 0.999842i \(0.494339\pi\)
\(908\) 0 0
\(909\) 7.31371 + 20.6863i 0.242580 + 0.686121i
\(910\) 0 0
\(911\) −11.1127 −0.368180 −0.184090 0.982909i \(-0.558934\pi\)
−0.184090 + 0.982909i \(0.558934\pi\)
\(912\) 0 0
\(913\) 14.3431i 0.474689i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −36.9706 −1.22088
\(918\) 0 0
\(919\) 44.4853i 1.46743i −0.679455 0.733717i \(-0.737784\pi\)
0.679455 0.733717i \(-0.262216\pi\)
\(920\) 0 0
\(921\) 13.4853 2.31371i 0.444355 0.0762393i
\(922\) 0 0
\(923\) 2.34315i 0.0771256i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −6.34315 + 2.24264i −0.208336 + 0.0736580i
\(928\) 0 0
\(929\) 46.0000i 1.50921i −0.656179 0.754606i \(-0.727828\pi\)
0.656179 0.754606i \(-0.272172\pi\)
\(930\) 0 0
\(931\) 13.1716i 0.431681i
\(932\) 0 0
\(933\) −19.6569 + 3.37258i −0.643537 + 0.110413i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 37.5980i 1.22827i −0.789200 0.614136i \(-0.789505\pi\)
0.789200 0.614136i \(-0.210495\pi\)
\(938\) 0 0
\(939\) 5.07107 + 29.5563i 0.165488 + 0.964535i
\(940\) 0 0
\(941\) 12.0000i 0.391189i −0.980685 0.195594i \(-0.937336\pi\)
0.980685 0.195594i \(-0.0626636\pi\)
\(942\) 0 0
\(943\) −14.8284 −0.482880
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23.2132i 0.754328i −0.926147 0.377164i \(-0.876899\pi\)
0.926147 0.377164i \(-0.123101\pi\)
\(948\) 0 0
\(949\) 31.3137 1.01649
\(950\) 0 0
\(951\) 0.585786 0.100505i 0.0189954 0.00325910i
\(952\) 0 0
\(953\) 25.3137 0.819991 0.409996 0.912087i \(-0.365530\pi\)
0.409996 + 0.912087i \(0.365530\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −6.62742 38.6274i −0.214234 1.24865i
\(958\) 0 0
\(959\) 59.1127 1.90885
\(960\) 0 0
\(961\) −1.00000 −0.0322581
\(962\) 0 0
\(963\) −15.4142 43.5980i −0.496716 1.40493i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −11.4142 −0.367056 −0.183528 0.983014i \(-0.558752\pi\)
−0.183528 + 0.983014i \(0.558752\pi\)
\(968\) 0 0
\(969\) −6.34315 36.9706i −0.203771 1.18767i
\(970\) 0 0
\(971\) −32.4853 −1.04250 −0.521251 0.853403i \(-0.674535\pi\)
−0.521251 + 0.853403i \(0.674535\pi\)
\(972\) 0 0
\(973\) 44.9706i 1.44169i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −21.0294 −0.672791 −0.336396 0.941721i \(-0.609208\pi\)
−0.336396 + 0.941721i \(0.609208\pi\)
\(978\) 0 0
\(979\) 20.6863i 0.661137i
\(980\) 0 0
\(981\) −49.9411 + 17.6569i −1.59450 + 0.563740i
\(982\) 0 0
\(983\) 45.0711i 1.43754i 0.695246 + 0.718772i \(0.255295\pi\)
−0.695246 + 0.718772i \(0.744705\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 6.24264 + 36.3848i 0.198705 + 1.15814i
\(988\) 0 0
\(989\) 58.5685i 1.86237i
\(990\) 0 0
\(991\) 28.2843i 0.898479i 0.893411 + 0.449240i \(0.148305\pi\)
−0.893411 + 0.449240i \(0.851695\pi\)
\(992\) 0 0
\(993\) 2.54416 + 14.8284i 0.0807363 + 0.470566i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 18.0000i 0.570066i 0.958518 + 0.285033i \(0.0920045\pi\)
−0.958518 + 0.285033i \(0.907995\pi\)
\(998\) 0 0
\(999\) 0.870058 + 1.55635i 0.0275274 + 0.0492407i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.2.o.i.2399.3 4
3.2 odd 2 2400.2.o.j.2399.4 4
4.3 odd 2 2400.2.o.b.2399.2 4
5.2 odd 4 480.2.h.b.191.3 4
5.3 odd 4 2400.2.h.e.1151.2 4
5.4 even 2 2400.2.o.c.2399.2 4
12.11 even 2 2400.2.o.c.2399.1 4
15.2 even 4 480.2.h.d.191.1 yes 4
15.8 even 4 2400.2.h.b.1151.4 4
15.14 odd 2 2400.2.o.b.2399.1 4
20.3 even 4 2400.2.h.b.1151.3 4
20.7 even 4 480.2.h.d.191.2 yes 4
20.19 odd 2 2400.2.o.j.2399.3 4
40.27 even 4 960.2.h.b.191.3 4
40.37 odd 4 960.2.h.f.191.2 4
60.23 odd 4 2400.2.h.e.1151.1 4
60.47 odd 4 480.2.h.b.191.4 yes 4
60.59 even 2 inner 2400.2.o.i.2399.4 4
120.77 even 4 960.2.h.b.191.4 4
120.107 odd 4 960.2.h.f.191.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.2.h.b.191.3 4 5.2 odd 4
480.2.h.b.191.4 yes 4 60.47 odd 4
480.2.h.d.191.1 yes 4 15.2 even 4
480.2.h.d.191.2 yes 4 20.7 even 4
960.2.h.b.191.3 4 40.27 even 4
960.2.h.b.191.4 4 120.77 even 4
960.2.h.f.191.1 4 120.107 odd 4
960.2.h.f.191.2 4 40.37 odd 4
2400.2.h.b.1151.3 4 20.3 even 4
2400.2.h.b.1151.4 4 15.8 even 4
2400.2.h.e.1151.1 4 60.23 odd 4
2400.2.h.e.1151.2 4 5.3 odd 4
2400.2.o.b.2399.1 4 15.14 odd 2
2400.2.o.b.2399.2 4 4.3 odd 2
2400.2.o.c.2399.1 4 12.11 even 2
2400.2.o.c.2399.2 4 5.4 even 2
2400.2.o.i.2399.3 4 1.1 even 1 trivial
2400.2.o.i.2399.4 4 60.59 even 2 inner
2400.2.o.j.2399.3 4 20.19 odd 2
2400.2.o.j.2399.4 4 3.2 odd 2