Properties

Label 2520.2.bi.c.1801.1
Level $2520$
Weight $2$
Character 2520.1801
Analytic conductor $20.122$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2520,2,Mod(361,2520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2520, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2520.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2520.bi (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.1223013094\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1801.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2520.1801
Dual form 2520.2.bi.c.361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{5} +(0.500000 + 2.59808i) q^{7} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{5} +(0.500000 + 2.59808i) q^{7} +(-1.00000 - 1.73205i) q^{11} +1.00000 q^{13} +(-1.50000 + 2.59808i) q^{19} +(-0.500000 - 0.866025i) q^{25} +(4.50000 + 7.79423i) q^{31} +(-2.50000 - 0.866025i) q^{35} +(-1.50000 + 2.59808i) q^{37} -2.00000 q^{41} +3.00000 q^{43} +(-3.00000 + 5.19615i) q^{47} +(-6.50000 + 2.59808i) q^{49} +2.00000 q^{55} +(-2.00000 - 3.46410i) q^{59} +(-1.00000 + 1.73205i) q^{61} +(-0.500000 + 0.866025i) q^{65} +(-2.50000 - 4.33013i) q^{67} -14.0000 q^{71} +(-0.500000 - 0.866025i) q^{73} +(4.00000 - 3.46410i) q^{77} +(-4.50000 + 7.79423i) q^{79} +6.00000 q^{83} +(-2.00000 + 3.46410i) q^{89} +(0.500000 + 2.59808i) q^{91} +(-1.50000 - 2.59808i) q^{95} -14.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{5} + q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{5} + q^{7} - 2 q^{11} + 2 q^{13} - 3 q^{19} - q^{25} + 9 q^{31} - 5 q^{35} - 3 q^{37} - 4 q^{41} + 6 q^{43} - 6 q^{47} - 13 q^{49} + 4 q^{55} - 4 q^{59} - 2 q^{61} - q^{65} - 5 q^{67} - 28 q^{71} - q^{73} + 8 q^{77} - 9 q^{79} + 12 q^{83} - 4 q^{89} + q^{91} - 3 q^{95} - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2520\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(1081\) \(1261\) \(2017\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 0.500000 + 2.59808i 0.188982 + 0.981981i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00000 1.73205i −0.301511 0.522233i 0.674967 0.737848i \(-0.264158\pi\)
−0.976478 + 0.215615i \(0.930824\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) −1.50000 + 2.59808i −0.344124 + 0.596040i −0.985194 0.171442i \(-0.945157\pi\)
0.641071 + 0.767482i \(0.278491\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 4.50000 + 7.79423i 0.808224 + 1.39988i 0.914093 + 0.405505i \(0.132904\pi\)
−0.105869 + 0.994380i \(0.533762\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.50000 0.866025i −0.422577 0.146385i
\(36\) 0 0
\(37\) −1.50000 + 2.59808i −0.246598 + 0.427121i −0.962580 0.270998i \(-0.912646\pi\)
0.715981 + 0.698119i \(0.245980\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 3.00000 0.457496 0.228748 0.973486i \(-0.426537\pi\)
0.228748 + 0.973486i \(0.426537\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.00000 + 5.19615i −0.437595 + 0.757937i −0.997503 0.0706177i \(-0.977503\pi\)
0.559908 + 0.828554i \(0.310836\pi\)
\(48\) 0 0
\(49\) −6.50000 + 2.59808i −0.928571 + 0.371154i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.00000 3.46410i −0.260378 0.450988i 0.705965 0.708247i \(-0.250514\pi\)
−0.966342 + 0.257260i \(0.917180\pi\)
\(60\) 0 0
\(61\) −1.00000 + 1.73205i −0.128037 + 0.221766i −0.922916 0.385002i \(-0.874201\pi\)
0.794879 + 0.606768i \(0.207534\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.500000 + 0.866025i −0.0620174 + 0.107417i
\(66\) 0 0
\(67\) −2.50000 4.33013i −0.305424 0.529009i 0.671932 0.740613i \(-0.265465\pi\)
−0.977356 + 0.211604i \(0.932131\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −14.0000 −1.66149 −0.830747 0.556650i \(-0.812086\pi\)
−0.830747 + 0.556650i \(0.812086\pi\)
\(72\) 0 0
\(73\) −0.500000 0.866025i −0.0585206 0.101361i 0.835281 0.549823i \(-0.185305\pi\)
−0.893801 + 0.448463i \(0.851972\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.00000 3.46410i 0.455842 0.394771i
\(78\) 0 0
\(79\) −4.50000 + 7.79423i −0.506290 + 0.876919i 0.493684 + 0.869641i \(0.335650\pi\)
−0.999974 + 0.00727784i \(0.997683\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.00000 + 3.46410i −0.212000 + 0.367194i −0.952340 0.305038i \(-0.901331\pi\)
0.740341 + 0.672232i \(0.234664\pi\)
\(90\) 0 0
\(91\) 0.500000 + 2.59808i 0.0524142 + 0.272352i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.50000 2.59808i −0.153897 0.266557i
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.00000 1.73205i −0.0995037 0.172345i 0.811976 0.583691i \(-0.198392\pi\)
−0.911479 + 0.411346i \(0.865059\pi\)
\(102\) 0 0
\(103\) −1.50000 + 2.59808i −0.147799 + 0.255996i −0.930414 0.366511i \(-0.880552\pi\)
0.782614 + 0.622507i \(0.213886\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.00000 + 13.8564i −0.773389 + 1.33955i 0.162306 + 0.986740i \(0.448107\pi\)
−0.935695 + 0.352809i \(0.885227\pi\)
\(108\) 0 0
\(109\) −6.50000 11.2583i −0.622587 1.07835i −0.989002 0.147901i \(-0.952748\pi\)
0.366415 0.930451i \(-0.380585\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 11.0000 0.976092 0.488046 0.872818i \(-0.337710\pi\)
0.488046 + 0.872818i \(0.337710\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −9.00000 + 15.5885i −0.786334 + 1.36197i 0.141865 + 0.989886i \(0.454690\pi\)
−0.928199 + 0.372084i \(0.878643\pi\)
\(132\) 0 0
\(133\) −7.50000 2.59808i −0.650332 0.225282i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.00000 + 6.92820i 0.341743 + 0.591916i 0.984757 0.173939i \(-0.0556494\pi\)
−0.643013 + 0.765855i \(0.722316\pi\)
\(138\) 0 0
\(139\) −9.00000 −0.763370 −0.381685 0.924292i \(-0.624656\pi\)
−0.381685 + 0.924292i \(0.624656\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.00000 1.73205i −0.0836242 0.144841i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.0000 + 17.3205i −0.819232 + 1.41895i 0.0870170 + 0.996207i \(0.472267\pi\)
−0.906249 + 0.422744i \(0.861067\pi\)
\(150\) 0 0
\(151\) 8.00000 + 13.8564i 0.651031 + 1.12762i 0.982873 + 0.184284i \(0.0589965\pi\)
−0.331842 + 0.943335i \(0.607670\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.00000 −0.722897
\(156\) 0 0
\(157\) −5.00000 8.66025i −0.399043 0.691164i 0.594565 0.804048i \(-0.297324\pi\)
−0.993608 + 0.112884i \(0.963991\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 6.00000 10.3923i 0.469956 0.813988i −0.529454 0.848339i \(-0.677603\pi\)
0.999410 + 0.0343508i \(0.0109363\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 18.0000 1.39288 0.696441 0.717614i \(-0.254766\pi\)
0.696441 + 0.717614i \(0.254766\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.00000 3.46410i 0.152057 0.263371i −0.779926 0.625871i \(-0.784744\pi\)
0.931984 + 0.362500i \(0.118077\pi\)
\(174\) 0 0
\(175\) 2.00000 1.73205i 0.151186 0.130931i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.00000 + 8.66025i 0.373718 + 0.647298i 0.990134 0.140122i \(-0.0447496\pi\)
−0.616417 + 0.787420i \(0.711416\pi\)
\(180\) 0 0
\(181\) 25.0000 1.85824 0.929118 0.369784i \(-0.120568\pi\)
0.929118 + 0.369784i \(0.120568\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.50000 2.59808i −0.110282 0.191014i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −11.0000 + 19.0526i −0.795932 + 1.37859i 0.126314 + 0.991990i \(0.459685\pi\)
−0.922246 + 0.386604i \(0.873648\pi\)
\(192\) 0 0
\(193\) −11.5000 19.9186i −0.827788 1.43377i −0.899770 0.436365i \(-0.856266\pi\)
0.0719816 0.997406i \(-0.477068\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 12.0000 + 20.7846i 0.850657 + 1.47338i 0.880616 + 0.473831i \(0.157129\pi\)
−0.0299585 + 0.999551i \(0.509538\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 1.00000 1.73205i 0.0698430 0.120972i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.00000 0.415029
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.50000 + 2.59808i −0.102299 + 0.177187i
\(216\) 0 0
\(217\) −18.0000 + 15.5885i −1.22192 + 1.05821i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −16.0000 −1.07144 −0.535720 0.844396i \(-0.679960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.0000 + 22.5167i 0.862840 + 1.49448i 0.869176 + 0.494503i \(0.164650\pi\)
−0.00633544 + 0.999980i \(0.502017\pi\)
\(228\) 0 0
\(229\) 11.5000 19.9186i 0.759941 1.31626i −0.182939 0.983124i \(-0.558561\pi\)
0.942880 0.333133i \(-0.108106\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −11.0000 + 19.0526i −0.720634 + 1.24817i 0.240112 + 0.970745i \(0.422816\pi\)
−0.960746 + 0.277429i \(0.910518\pi\)
\(234\) 0 0
\(235\) −3.00000 5.19615i −0.195698 0.338960i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 22.0000 1.42306 0.711531 0.702655i \(-0.248002\pi\)
0.711531 + 0.702655i \(0.248002\pi\)
\(240\) 0 0
\(241\) 9.00000 + 15.5885i 0.579741 + 1.00414i 0.995509 + 0.0946700i \(0.0301796\pi\)
−0.415768 + 0.909471i \(0.636487\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.00000 6.92820i 0.0638877 0.442627i
\(246\) 0 0
\(247\) −1.50000 + 2.59808i −0.0954427 + 0.165312i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 16.0000 1.00991 0.504956 0.863145i \(-0.331509\pi\)
0.504956 + 0.863145i \(0.331509\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.00000 15.5885i 0.561405 0.972381i −0.435970 0.899961i \(-0.643595\pi\)
0.997374 0.0724199i \(-0.0230722\pi\)
\(258\) 0 0
\(259\) −7.50000 2.59808i −0.466027 0.161437i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.00000 10.3923i −0.369976 0.640817i 0.619586 0.784929i \(-0.287301\pi\)
−0.989561 + 0.144112i \(0.953967\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.00000 1.73205i −0.0609711 0.105605i 0.833929 0.551872i \(-0.186086\pi\)
−0.894900 + 0.446267i \(0.852753\pi\)
\(270\) 0 0
\(271\) −8.00000 + 13.8564i −0.485965 + 0.841717i −0.999870 0.0161307i \(-0.994865\pi\)
0.513905 + 0.857847i \(0.328199\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.00000 + 1.73205i −0.0603023 + 0.104447i
\(276\) 0 0
\(277\) −2.50000 4.33013i −0.150210 0.260172i 0.781094 0.624413i \(-0.214662\pi\)
−0.931305 + 0.364241i \(0.881328\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −8.00000 −0.477240 −0.238620 0.971113i \(-0.576695\pi\)
−0.238620 + 0.971113i \(0.576695\pi\)
\(282\) 0 0
\(283\) −5.50000 9.52628i −0.326941 0.566279i 0.654962 0.755662i \(-0.272685\pi\)
−0.981903 + 0.189383i \(0.939351\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.00000 5.19615i −0.0590281 0.306719i
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −8.00000 −0.467365 −0.233682 0.972313i \(-0.575078\pi\)
−0.233682 + 0.972313i \(0.575078\pi\)
\(294\) 0 0
\(295\) 4.00000 0.232889
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 1.50000 + 7.79423i 0.0864586 + 0.449252i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.00000 1.73205i −0.0572598 0.0991769i
\(306\) 0 0
\(307\) −15.0000 −0.856095 −0.428048 0.903756i \(-0.640798\pi\)
−0.428048 + 0.903756i \(0.640798\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −7.00000 12.1244i −0.396934 0.687509i 0.596412 0.802678i \(-0.296592\pi\)
−0.993346 + 0.115169i \(0.963259\pi\)
\(312\) 0 0
\(313\) 6.50000 11.2583i 0.367402 0.636358i −0.621757 0.783210i \(-0.713581\pi\)
0.989158 + 0.146852i \(0.0469141\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.00000 10.3923i 0.336994 0.583690i −0.646872 0.762598i \(-0.723923\pi\)
0.983866 + 0.178908i \(0.0572566\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −0.500000 0.866025i −0.0277350 0.0480384i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −15.0000 5.19615i −0.826977 0.286473i
\(330\) 0 0
\(331\) −6.50000 + 11.2583i −0.357272 + 0.618814i −0.987504 0.157593i \(-0.949627\pi\)
0.630232 + 0.776407i \(0.282960\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.00000 0.273179
\(336\) 0 0
\(337\) 1.00000 0.0544735 0.0272367 0.999629i \(-0.491329\pi\)
0.0272367 + 0.999629i \(0.491329\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 9.00000 15.5885i 0.487377 0.844162i
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2.00000 3.46410i −0.107366 0.185963i 0.807337 0.590091i \(-0.200908\pi\)
−0.914702 + 0.404128i \(0.867575\pi\)
\(348\) 0 0
\(349\) 26.0000 1.39175 0.695874 0.718164i \(-0.255017\pi\)
0.695874 + 0.718164i \(0.255017\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.0000 25.9808i −0.798369 1.38282i −0.920677 0.390324i \(-0.872363\pi\)
0.122308 0.992492i \(-0.460970\pi\)
\(354\) 0 0
\(355\) 7.00000 12.1244i 0.371521 0.643494i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(360\) 0 0
\(361\) 5.00000 + 8.66025i 0.263158 + 0.455803i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.00000 0.0523424
\(366\) 0 0
\(367\) 17.5000 + 30.3109i 0.913493 + 1.58222i 0.809093 + 0.587680i \(0.199959\pi\)
0.104399 + 0.994535i \(0.466708\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 16.5000 28.5788i 0.854338 1.47976i −0.0229205 0.999737i \(-0.507296\pi\)
0.877258 0.480019i \(-0.159370\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.00000 0.0513665 0.0256833 0.999670i \(-0.491824\pi\)
0.0256833 + 0.999670i \(0.491824\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 12.0000 20.7846i 0.613171 1.06204i −0.377531 0.925997i \(-0.623227\pi\)
0.990702 0.136047i \(-0.0434398\pi\)
\(384\) 0 0
\(385\) 1.00000 + 5.19615i 0.0509647 + 0.264820i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −7.00000 12.1244i −0.354914 0.614729i 0.632189 0.774814i \(-0.282157\pi\)
−0.987103 + 0.160085i \(0.948823\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −4.50000 7.79423i −0.226420 0.392170i
\(396\) 0 0
\(397\) −3.50000 + 6.06218i −0.175660 + 0.304252i −0.940389 0.340099i \(-0.889539\pi\)
0.764730 + 0.644351i \(0.222873\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12.0000 + 20.7846i −0.599251 + 1.03793i 0.393680 + 0.919247i \(0.371202\pi\)
−0.992932 + 0.118686i \(0.962132\pi\)
\(402\) 0 0
\(403\) 4.50000 + 7.79423i 0.224161 + 0.388258i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) 9.50000 + 16.4545i 0.469745 + 0.813622i 0.999402 0.0345902i \(-0.0110126\pi\)
−0.529657 + 0.848212i \(0.677679\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 8.00000 6.92820i 0.393654 0.340915i
\(414\) 0 0
\(415\) −3.00000 + 5.19615i −0.147264 + 0.255069i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 30.0000 1.46560 0.732798 0.680446i \(-0.238214\pi\)
0.732798 + 0.680446i \(0.238214\pi\)
\(420\) 0 0
\(421\) 5.00000 0.243685 0.121843 0.992549i \(-0.461120\pi\)
0.121843 + 0.992549i \(0.461120\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −5.00000 1.73205i −0.241967 0.0838198i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −17.0000 29.4449i −0.818861 1.41831i −0.906522 0.422159i \(-0.861272\pi\)
0.0876607 0.996150i \(-0.472061\pi\)
\(432\) 0 0
\(433\) 3.00000 0.144171 0.0720854 0.997398i \(-0.477035\pi\)
0.0720854 + 0.997398i \(0.477035\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −4.00000 + 6.92820i −0.190910 + 0.330665i −0.945552 0.325471i \(-0.894477\pi\)
0.754642 + 0.656136i \(0.227810\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(444\) 0 0
\(445\) −2.00000 3.46410i −0.0948091 0.164214i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) 2.00000 + 3.46410i 0.0941763 + 0.163118i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.50000 0.866025i −0.117202 0.0405999i
\(456\) 0 0
\(457\) −8.50000 + 14.7224i −0.397613 + 0.688686i −0.993431 0.114433i \(-0.963495\pi\)
0.595818 + 0.803120i \(0.296828\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 24.0000 1.11779 0.558896 0.829238i \(-0.311225\pi\)
0.558896 + 0.829238i \(0.311225\pi\)
\(462\) 0 0
\(463\) −19.0000 −0.883005 −0.441502 0.897260i \(-0.645554\pi\)
−0.441502 + 0.897260i \(0.645554\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −9.00000 + 15.5885i −0.416470 + 0.721348i −0.995582 0.0939008i \(-0.970066\pi\)
0.579111 + 0.815249i \(0.303400\pi\)
\(468\) 0 0
\(469\) 10.0000 8.66025i 0.461757 0.399893i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.00000 5.19615i −0.137940 0.238919i
\(474\) 0 0
\(475\) 3.00000 0.137649
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12.0000 20.7846i −0.548294 0.949673i −0.998392 0.0566937i \(-0.981944\pi\)
0.450098 0.892979i \(-0.351389\pi\)
\(480\) 0 0
\(481\) −1.50000 + 2.59808i −0.0683941 + 0.118462i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.00000 12.1244i 0.317854 0.550539i
\(486\) 0 0
\(487\) −2.50000 4.33013i −0.113286 0.196217i 0.803807 0.594890i \(-0.202804\pi\)
−0.917093 + 0.398673i \(0.869471\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −7.00000 36.3731i −0.313993 1.63156i
\(498\) 0 0
\(499\) 0.500000 0.866025i 0.0223831 0.0387686i −0.854617 0.519259i \(-0.826208\pi\)
0.877000 + 0.480490i \(0.159541\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 22.0000 0.980932 0.490466 0.871460i \(-0.336827\pi\)
0.490466 + 0.871460i \(0.336827\pi\)
\(504\) 0 0
\(505\) 2.00000 0.0889988
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 15.0000 25.9808i 0.664863 1.15158i −0.314459 0.949271i \(-0.601823\pi\)
0.979322 0.202306i \(-0.0648436\pi\)
\(510\) 0 0
\(511\) 2.00000 1.73205i 0.0884748 0.0766214i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.50000 2.59808i −0.0660979 0.114485i
\(516\) 0 0
\(517\) 12.0000 0.527759
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 6.00000 + 10.3923i 0.262865 + 0.455295i 0.967002 0.254769i \(-0.0819994\pi\)
−0.704137 + 0.710064i \(0.748666\pi\)
\(522\) 0 0
\(523\) −0.500000 + 0.866025i −0.0218635 + 0.0378686i −0.876750 0.480946i \(-0.840293\pi\)
0.854887 + 0.518815i \(0.173627\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.00000 −0.0866296
\(534\) 0 0
\(535\) −8.00000 13.8564i −0.345870 0.599065i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 11.0000 + 8.66025i 0.473804 + 0.373024i
\(540\) 0 0
\(541\) −16.5000 + 28.5788i −0.709390 + 1.22870i 0.255693 + 0.966758i \(0.417696\pi\)
−0.965084 + 0.261942i \(0.915637\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 13.0000 0.556859
\(546\) 0 0
\(547\) 44.0000 1.88130 0.940652 0.339372i \(-0.110215\pi\)
0.940652 + 0.339372i \(0.110215\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −22.5000 7.79423i −0.956797 0.331444i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3.00000 + 5.19615i 0.127114 + 0.220168i 0.922557 0.385860i \(-0.126095\pi\)
−0.795443 + 0.606028i \(0.792762\pi\)
\(558\) 0 0
\(559\) 3.00000 0.126886
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.00000 1.73205i −0.0421450 0.0729972i 0.844183 0.536054i \(-0.180086\pi\)
−0.886328 + 0.463057i \(0.846752\pi\)
\(564\) 0 0
\(565\) 3.00000 5.19615i 0.126211 0.218604i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −19.0000 + 32.9090i −0.796521 + 1.37962i 0.125347 + 0.992113i \(0.459996\pi\)
−0.921869 + 0.387503i \(0.873338\pi\)
\(570\) 0 0
\(571\) −7.50000 12.9904i −0.313865 0.543631i 0.665330 0.746549i \(-0.268291\pi\)
−0.979196 + 0.202919i \(0.934957\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 6.50000 + 11.2583i 0.270599 + 0.468690i 0.969015 0.247001i \(-0.0794451\pi\)
−0.698417 + 0.715691i \(0.746112\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.00000 + 15.5885i 0.124461 + 0.646718i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 28.0000 1.15568 0.577842 0.816149i \(-0.303895\pi\)
0.577842 + 0.816149i \(0.303895\pi\)
\(588\) 0 0
\(589\) −27.0000 −1.11252
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 19.0000 32.9090i 0.780236 1.35141i −0.151567 0.988447i \(-0.548432\pi\)
0.931804 0.362962i \(-0.118235\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −6.00000 10.3923i −0.245153 0.424618i 0.717021 0.697051i \(-0.245505\pi\)
−0.962175 + 0.272433i \(0.912172\pi\)
\(600\) 0 0
\(601\) 23.0000 0.938190 0.469095 0.883148i \(-0.344580\pi\)
0.469095 + 0.883148i \(0.344580\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.50000 + 6.06218i 0.142295 + 0.246463i
\(606\) 0 0
\(607\) 21.5000 37.2391i 0.872658 1.51149i 0.0134214 0.999910i \(-0.495728\pi\)
0.859237 0.511578i \(-0.170939\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.00000 + 5.19615i −0.121367 + 0.210214i
\(612\) 0 0
\(613\) −13.0000 22.5167i −0.525065 0.909439i −0.999574 0.0291886i \(-0.990708\pi\)
0.474509 0.880251i \(-0.342626\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −34.0000 −1.36879 −0.684394 0.729112i \(-0.739933\pi\)
−0.684394 + 0.729112i \(0.739933\pi\)
\(618\) 0 0
\(619\) 15.5000 + 26.8468i 0.622998 + 1.07906i 0.988924 + 0.148420i \(0.0474187\pi\)
−0.365927 + 0.930644i \(0.619248\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −10.0000 3.46410i −0.400642 0.138786i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 24.0000 0.955425 0.477712 0.878516i \(-0.341466\pi\)
0.477712 + 0.878516i \(0.341466\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −5.50000 + 9.52628i −0.218261 + 0.378039i
\(636\) 0 0
\(637\) −6.50000 + 2.59808i −0.257539 + 0.102940i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 20.0000 + 34.6410i 0.789953 + 1.36824i 0.925995 + 0.377535i \(0.123228\pi\)
−0.136043 + 0.990703i \(0.543438\pi\)
\(642\) 0 0
\(643\) 11.0000 0.433798 0.216899 0.976194i \(-0.430406\pi\)
0.216899 + 0.976194i \(0.430406\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.00000 + 15.5885i 0.353827 + 0.612845i 0.986916 0.161233i \(-0.0515470\pi\)
−0.633090 + 0.774078i \(0.718214\pi\)
\(648\) 0 0
\(649\) −4.00000 + 6.92820i −0.157014 + 0.271956i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3.00000 5.19615i 0.117399 0.203341i −0.801337 0.598213i \(-0.795878\pi\)
0.918736 + 0.394872i \(0.129211\pi\)
\(654\) 0 0
\(655\) −9.00000 15.5885i −0.351659 0.609091i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 40.0000 1.55818 0.779089 0.626913i \(-0.215682\pi\)
0.779089 + 0.626913i \(0.215682\pi\)
\(660\) 0 0
\(661\) −17.5000 30.3109i −0.680671 1.17896i −0.974776 0.223184i \(-0.928355\pi\)
0.294105 0.955773i \(-0.404978\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.00000 5.19615i 0.232670 0.201498i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4.00000 0.154418
\(672\) 0 0
\(673\) −13.0000 −0.501113 −0.250557 0.968102i \(-0.580614\pi\)
−0.250557 + 0.968102i \(0.580614\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(678\) 0 0
\(679\) −7.00000 36.3731i −0.268635 1.39587i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −22.0000 38.1051i −0.841807 1.45805i −0.888366 0.459136i \(-0.848159\pi\)
0.0465592 0.998916i \(-0.485174\pi\)
\(684\) 0 0
\(685\) −8.00000 −0.305664
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −8.50000 + 14.7224i −0.323355 + 0.560068i −0.981178 0.193105i \(-0.938144\pi\)
0.657823 + 0.753173i \(0.271478\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.50000 7.79423i 0.170695 0.295652i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 48.0000 1.81293 0.906467 0.422276i \(-0.138769\pi\)
0.906467 + 0.422276i \(0.138769\pi\)
\(702\) 0 0
\(703\) −4.50000 7.79423i −0.169721 0.293965i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.00000 3.46410i 0.150435 0.130281i
\(708\) 0 0
\(709\) 13.0000 22.5167i 0.488225 0.845631i −0.511683 0.859174i \(-0.670978\pi\)
0.999908 + 0.0135434i \(0.00431112\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 2.00000 0.0747958
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.00000 1.73205i 0.0372937 0.0645946i −0.846776 0.531949i \(-0.821460\pi\)
0.884070 + 0.467355i \(0.154793\pi\)
\(720\) 0 0
\(721\) −7.50000 2.59808i −0.279315 0.0967574i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 17.0000 0.630495 0.315248 0.949009i \(-0.397912\pi\)
0.315248 + 0.949009i \(0.397912\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 15.5000 26.8468i 0.572506 0.991609i −0.423802 0.905755i \(-0.639305\pi\)
0.996308 0.0858539i \(-0.0273618\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.00000 + 8.66025i −0.184177 + 0.319005i
\(738\) 0 0
\(739\) −5.50000 9.52628i −0.202321 0.350430i 0.746955 0.664875i \(-0.231515\pi\)
−0.949276 + 0.314445i \(0.898182\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 30.0000 1.10059 0.550297 0.834969i \(-0.314515\pi\)
0.550297 + 0.834969i \(0.314515\pi\)
\(744\) 0 0
\(745\) −10.0000 17.3205i −0.366372 0.634574i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −40.0000 13.8564i −1.46157 0.506302i
\(750\) 0 0
\(751\) −9.50000 + 16.4545i −0.346660 + 0.600433i −0.985654 0.168779i \(-0.946018\pi\)
0.638994 + 0.769212i \(0.279351\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −16.0000 −0.582300
\(756\) 0 0
\(757\) 26.0000 0.944986 0.472493 0.881334i \(-0.343354\pi\)
0.472493 + 0.881334i \(0.343354\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.00000 6.92820i 0.145000 0.251147i −0.784373 0.620289i \(-0.787015\pi\)
0.929373 + 0.369142i \(0.120348\pi\)
\(762\) 0 0
\(763\) 26.0000 22.5167i 0.941263 0.815158i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.00000 3.46410i −0.0722158 0.125081i
\(768\) 0 0
\(769\) −25.0000 −0.901523 −0.450762 0.892644i \(-0.648848\pi\)
−0.450762 + 0.892644i \(0.648848\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 17.0000 + 29.4449i 0.611448 + 1.05906i 0.990997 + 0.133887i \(0.0427458\pi\)
−0.379549 + 0.925172i \(0.623921\pi\)
\(774\) 0 0
\(775\) 4.50000 7.79423i 0.161645 0.279977i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.00000 5.19615i 0.107486 0.186171i
\(780\) 0 0
\(781\) 14.0000 + 24.2487i 0.500959 + 0.867687i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 10.0000 0.356915
\(786\) 0 0
\(787\) −4.00000 6.92820i −0.142585 0.246964i 0.785885 0.618373i \(-0.212208\pi\)
−0.928469 + 0.371409i \(0.878875\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3.00000 15.5885i −0.106668 0.554262i
\(792\) 0 0
\(793\) −1.00000 + 1.73205i −0.0355110 + 0.0615069i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −32.0000 −1.13350 −0.566749 0.823890i \(-0.691799\pi\)
−0.566749 + 0.823890i \(0.691799\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.00000 + 1.73205i −0.0352892 + 0.0611227i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 5.00000 + 8.66025i 0.175791 + 0.304478i 0.940435 0.339975i \(-0.110418\pi\)
−0.764644 + 0.644453i \(0.777085\pi\)
\(810\) 0 0
\(811\) −40.0000 −1.40459 −0.702295 0.711886i \(-0.747841\pi\)
−0.702295 + 0.711886i \(0.747841\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.00000 + 10.3923i 0.210171 + 0.364027i
\(816\) 0 0
\(817\) −4.50000 + 7.79423i −0.157435 + 0.272686i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.00000 1.73205i 0.0349002 0.0604490i −0.848048 0.529920i \(-0.822222\pi\)
0.882948 + 0.469471i \(0.155555\pi\)
\(822\) 0 0
\(823\) −16.0000 27.7128i −0.557725 0.966008i −0.997686 0.0679910i \(-0.978341\pi\)
0.439961 0.898017i \(-0.354992\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −50.0000 −1.73867 −0.869335 0.494223i \(-0.835453\pi\)
−0.869335 + 0.494223i \(0.835453\pi\)
\(828\) 0 0
\(829\) 5.50000 + 9.52628i 0.191023 + 0.330861i 0.945589 0.325362i \(-0.105486\pi\)
−0.754567 + 0.656223i \(0.772153\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −9.00000 + 15.5885i −0.311458 + 0.539461i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −40.0000 −1.38095 −0.690477 0.723355i \(-0.742599\pi\)
−0.690477 + 0.723355i \(0.742599\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 6.00000 10.3923i 0.206406 0.357506i
\(846\) 0 0
\(847\) 17.5000 + 6.06218i 0.601307 + 0.208299i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 43.0000 1.47229 0.736146 0.676823i \(-0.236644\pi\)
0.736146 + 0.676823i \(0.236644\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 26.0000 + 45.0333i 0.888143 + 1.53831i 0.842068 + 0.539371i \(0.181338\pi\)
0.0460748 + 0.998938i \(0.485329\pi\)
\(858\) 0 0
\(859\) 8.00000 13.8564i 0.272956 0.472774i −0.696661 0.717400i \(-0.745332\pi\)
0.969618 + 0.244626i \(0.0786652\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −17.0000 + 29.4449i −0.578687 + 1.00231i 0.416944 + 0.908932i \(0.363101\pi\)
−0.995630 + 0.0933825i \(0.970232\pi\)
\(864\) 0 0
\(865\) 2.00000 + 3.46410i 0.0680020 + 0.117783i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 18.0000 0.610608
\(870\) 0 0
\(871\) −2.50000 4.33013i −0.0847093 0.146721i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.500000 + 2.59808i 0.0169031 + 0.0878310i
\(876\) 0 0
\(877\) −1.00000 + 1.73205i −0.0337676 + 0.0584872i −0.882415 0.470471i \(-0.844084\pi\)
0.848648 + 0.528958i \(0.177417\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 52.0000 1.75192 0.875962 0.482380i \(-0.160227\pi\)
0.875962 + 0.482380i \(0.160227\pi\)
\(882\) 0 0
\(883\) 29.0000 0.975928 0.487964 0.872864i \(-0.337740\pi\)
0.487964 + 0.872864i \(0.337740\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1.00000 + 1.73205i −0.0335767 + 0.0581566i −0.882325 0.470640i \(-0.844023\pi\)
0.848749 + 0.528796i \(0.177356\pi\)
\(888\) 0 0
\(889\) 5.50000 + 28.5788i 0.184464 + 0.958503i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −9.00000 15.5885i −0.301174 0.521648i
\(894\) 0 0
\(895\) −10.0000 −0.334263
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −12.5000 + 21.6506i −0.415514 + 0.719691i
\(906\) 0 0
\(907\) 1.50000 + 2.59808i 0.0498067 + 0.0862677i 0.889854 0.456246i \(-0.150806\pi\)
−0.840047 + 0.542513i \(0.817473\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −8.00000 −0.265052 −0.132526 0.991180i \(-0.542309\pi\)
−0.132526 + 0.991180i \(0.542309\pi\)
\(912\) 0 0
\(913\) −6.00000 10.3923i −0.198571 0.343935i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −45.0000 15.5885i −1.48603 0.514776i
\(918\) 0 0
\(919\) −12.5000 + 21.6506i −0.412337 + 0.714189i −0.995145 0.0984214i \(-0.968621\pi\)
0.582808 + 0.812610i \(0.301954\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −14.0000 −0.460816
\(924\) 0 0
\(925\) 3.00000 0.0986394
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −9.00000 + 15.5885i −0.295280 + 0.511441i −0.975050 0.221985i \(-0.928746\pi\)
0.679770 + 0.733426i \(0.262080\pi\)
\(930\) 0 0
\(931\) 3.00000 20.7846i 0.0983210 0.681188i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −5.00000 −0.163343 −0.0816714 0.996659i \(-0.526026\pi\)
−0.0816714 + 0.996659i \(0.526026\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 26.0000 + 45.0333i 0.847576 + 1.46804i 0.883365 + 0.468685i \(0.155272\pi\)
−0.0357896 + 0.999359i \(0.511395\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 19.0000 32.9090i 0.617417 1.06940i −0.372538 0.928017i \(-0.621512\pi\)
0.989955 0.141381i \(-0.0451542\pi\)
\(948\) 0 0
\(949\) −0.500000 0.866025i −0.0162307 0.0281124i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 16.0000 0.518291 0.259145 0.965838i \(-0.416559\pi\)
0.259145 + 0.965838i \(0.416559\pi\)
\(954\) 0 0
\(955\) −11.0000 19.0526i −0.355952 0.616526i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −16.0000 + 13.8564i −0.516667 + 0.447447i
\(960\) 0 0
\(961\) −25.0000 + 43.3013i −0.806452 + 1.39682i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 23.0000 0.740396
\(966\) 0 0
\(967\) 49.0000 1.57573 0.787867 0.615846i \(-0.211185\pi\)
0.787867 + 0.615846i \(0.211185\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 8.00000 13.8564i 0.256732 0.444673i −0.708632 0.705578i \(-0.750687\pi\)
0.965365 + 0.260905i \(0.0840208\pi\)
\(972\) 0 0
\(973\) −4.50000 23.3827i −0.144263 0.749614i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −3.00000 5.19615i −0.0959785 0.166240i 0.814038 0.580812i \(-0.197265\pi\)
−0.910017 + 0.414572i \(0.863931\pi\)
\(978\) 0 0
\(979\) 8.00000 0.255681
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 18.0000 + 31.1769i 0.574111 + 0.994389i 0.996138 + 0.0878058i \(0.0279855\pi\)
−0.422027 + 0.906583i \(0.638681\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −11.5000 19.9186i −0.365310 0.632735i 0.623516 0.781810i \(-0.285704\pi\)
−0.988826 + 0.149076i \(0.952370\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −24.0000 −0.760851
\(996\) 0 0
\(997\) −5.50000 9.52628i −0.174187 0.301700i 0.765693 0.643206i \(-0.222396\pi\)
−0.939880 + 0.341506i \(0.889063\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2520.2.bi.c.1801.1 2
3.2 odd 2 840.2.bg.e.121.1 2
7.4 even 3 inner 2520.2.bi.c.361.1 2
12.11 even 2 1680.2.bg.h.961.1 2
21.2 odd 6 5880.2.a.c.1.1 1
21.5 even 6 5880.2.a.bc.1.1 1
21.11 odd 6 840.2.bg.e.361.1 yes 2
84.11 even 6 1680.2.bg.h.1201.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bg.e.121.1 2 3.2 odd 2
840.2.bg.e.361.1 yes 2 21.11 odd 6
1680.2.bg.h.961.1 2 12.11 even 2
1680.2.bg.h.1201.1 2 84.11 even 6
2520.2.bi.c.361.1 2 7.4 even 3 inner
2520.2.bi.c.1801.1 2 1.1 even 1 trivial
5880.2.a.c.1.1 1 21.2 odd 6
5880.2.a.bc.1.1 1 21.5 even 6