Properties

Label 253.1.k.a.87.1
Level $253$
Weight $1$
Character 253.87
Analytic conductor $0.126$
Analytic rank $0$
Dimension $10$
Projective image $D_{11}$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [253,1,Mod(32,253)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(253, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 10]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("253.32");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 253 = 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 253.k (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.126263448196\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{11}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{11} - \cdots)\)

Embedding invariants

Embedding label 87.1
Root \(-0.415415 + 0.909632i\) of defining polynomial
Character \(\chi\) \(=\) 253.87
Dual form 253.1.k.a.32.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.544078 + 0.627899i) q^{3} +(0.841254 + 0.540641i) q^{4} +(0.273100 - 1.89945i) q^{5} +(0.0440780 + 0.306569i) q^{9} +(-0.959493 + 0.281733i) q^{11} +(-0.797176 + 0.234072i) q^{12} +(1.04408 + 1.20493i) q^{15} +(0.415415 + 0.909632i) q^{16} +(1.25667 - 1.45027i) q^{20} +(-0.959493 + 0.281733i) q^{23} +(-2.57385 - 0.755750i) q^{25} +(-0.915415 - 0.588302i) q^{27} +(0.186393 + 0.215109i) q^{31} +(0.345139 - 0.755750i) q^{33} +(-0.128663 + 0.281733i) q^{36} +(-0.239446 - 1.66538i) q^{37} +(-0.959493 - 0.281733i) q^{44} +0.594351 q^{45} -0.284630 q^{47} +(-0.797176 - 0.234072i) q^{48} +(-0.654861 + 0.755750i) q^{49} +(0.698939 + 1.53046i) q^{53} +(0.273100 + 1.89945i) q^{55} +(0.698939 - 1.53046i) q^{59} +(0.226900 + 1.57812i) q^{60} +(-0.142315 + 0.989821i) q^{64} +(-0.797176 - 0.234072i) q^{67} +(0.345139 - 0.755750i) q^{69} +(1.84125 + 0.540641i) q^{71} +(1.87491 - 1.20493i) q^{75} +(1.84125 - 0.540641i) q^{80} +(0.570276 - 0.167448i) q^{81} +(-0.544078 + 0.627899i) q^{89} +(-0.959493 - 0.281733i) q^{92} -0.236479 q^{93} +(0.0405070 - 0.281733i) q^{97} +(-0.128663 - 0.281733i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{3} - q^{4} - 2 q^{5} - 3 q^{9} - q^{11} - 2 q^{12} + 7 q^{15} - q^{16} - 2 q^{20} - q^{23} - 3 q^{25} - 4 q^{27} - 2 q^{31} + 9 q^{33} - 3 q^{36} - 2 q^{37} - q^{44} - 6 q^{45} - 2 q^{47}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/253\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(166\)
\(\chi(n)\) \(-1\) \(e\left(\frac{6}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(3\) −0.544078 + 0.627899i −0.544078 + 0.627899i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(4\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(5\) 0.273100 1.89945i 0.273100 1.89945i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(6\) 0 0
\(7\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(8\) 0 0
\(9\) 0.0440780 + 0.306569i 0.0440780 + 0.306569i
\(10\) 0 0
\(11\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(12\) −0.797176 + 0.234072i −0.797176 + 0.234072i
\(13\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(14\) 0 0
\(15\) 1.04408 + 1.20493i 1.04408 + 1.20493i
\(16\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(17\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(18\) 0 0
\(19\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(20\) 1.25667 1.45027i 1.25667 1.45027i
\(21\) 0 0
\(22\) 0 0
\(23\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(24\) 0 0
\(25\) −2.57385 0.755750i −2.57385 0.755750i
\(26\) 0 0
\(27\) −0.915415 0.588302i −0.915415 0.588302i
\(28\) 0 0
\(29\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(30\) 0 0
\(31\) 0.186393 + 0.215109i 0.186393 + 0.215109i 0.841254 0.540641i \(-0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(32\) 0 0
\(33\) 0.345139 0.755750i 0.345139 0.755750i
\(34\) 0 0
\(35\) 0 0
\(36\) −0.128663 + 0.281733i −0.128663 + 0.281733i
\(37\) −0.239446 1.66538i −0.239446 1.66538i −0.654861 0.755750i \(-0.727273\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(42\) 0 0
\(43\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(44\) −0.959493 0.281733i −0.959493 0.281733i
\(45\) 0.594351 0.594351
\(46\) 0 0
\(47\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(48\) −0.797176 0.234072i −0.797176 0.234072i
\(49\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.698939 + 1.53046i 0.698939 + 1.53046i 0.841254 + 0.540641i \(0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(54\) 0 0
\(55\) 0.273100 + 1.89945i 0.273100 + 1.89945i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.698939 1.53046i 0.698939 1.53046i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(60\) 0.226900 + 1.57812i 0.226900 + 1.57812i
\(61\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(65\) 0 0
\(66\) 0 0
\(67\) −0.797176 0.234072i −0.797176 0.234072i −0.142315 0.989821i \(-0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(68\) 0 0
\(69\) 0.345139 0.755750i 0.345139 0.755750i
\(70\) 0 0
\(71\) 1.84125 + 0.540641i 1.84125 + 0.540641i 1.00000 \(0\)
0.841254 + 0.540641i \(0.181818\pi\)
\(72\) 0 0
\(73\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(74\) 0 0
\(75\) 1.87491 1.20493i 1.87491 1.20493i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(80\) 1.84125 0.540641i 1.84125 0.540641i
\(81\) 0.570276 0.167448i 0.570276 0.167448i
\(82\) 0 0
\(83\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.544078 + 0.627899i −0.544078 + 0.627899i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.959493 0.281733i −0.959493 0.281733i
\(93\) −0.236479 −0.236479
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.0405070 0.281733i 0.0405070 0.281733i −0.959493 0.281733i \(-0.909091\pi\)
1.00000 \(0\)
\(98\) 0 0
\(99\) −0.128663 0.281733i −0.128663 0.281733i
\(100\) −1.75667 2.02730i −1.75667 2.02730i
\(101\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(102\) 0 0
\(103\) 1.25667 0.368991i 1.25667 0.368991i 0.415415 0.909632i \(-0.363636\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(108\) −0.452036 0.989821i −0.452036 0.989821i
\(109\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(110\) 0 0
\(111\) 1.17597 + 0.755750i 1.17597 + 0.755750i
\(112\) 0 0
\(113\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i 0.415415 0.909632i \(-0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(114\) 0 0
\(115\) 0.273100 + 1.89945i 0.273100 + 1.89945i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.841254 0.540641i 0.841254 0.540641i
\(122\) 0 0
\(123\) 0 0
\(124\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i
\(125\) −1.34125 + 2.93694i −1.34125 + 2.93694i
\(126\) 0 0
\(127\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(132\) 0.698939 0.449181i 0.698939 0.449181i
\(133\) 0 0
\(134\) 0 0
\(135\) −1.36745 + 1.57812i −1.36745 + 1.57812i
\(136\) 0 0
\(137\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0.154861 0.178719i 0.154861 0.178719i
\(142\) 0 0
\(143\) 0 0
\(144\) −0.260554 + 0.167448i −0.260554 + 0.167448i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.118239 0.822373i −0.118239 0.822373i
\(148\) 0.698939 1.53046i 0.698939 1.53046i
\(149\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(150\) 0 0
\(151\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.459493 0.295298i 0.459493 0.295298i
\(156\) 0 0
\(157\) 1.68251 + 1.08128i 1.68251 + 1.08128i 0.841254 + 0.540641i \(0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(158\) 0 0
\(159\) −1.34125 0.393828i −1.34125 0.393828i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1.25667 + 0.368991i 1.25667 + 0.368991i 0.841254 0.540641i \(-0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(164\) 0 0
\(165\) −1.34125 0.861971i −1.34125 0.861971i
\(166\) 0 0
\(167\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(168\) 0 0
\(169\) −0.654861 0.755750i −0.654861 0.755750i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.654861 0.755750i −0.654861 0.755750i
\(177\) 0.580699 + 1.27155i 0.580699 + 1.27155i
\(178\) 0 0
\(179\) 0.186393 1.29639i 0.186393 1.29639i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(180\) 0.500000 + 0.321330i 0.500000 + 0.321330i
\(181\) 0.857685 0.989821i 0.857685 0.989821i −0.142315 0.989821i \(-0.545455\pi\)
1.00000 \(0\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.22871 −3.22871
\(186\) 0 0
\(187\) 0 0
\(188\) −0.239446 0.153882i −0.239446 0.153882i
\(189\) 0 0
\(190\) 0 0
\(191\) 0.345139 + 0.755750i 0.345139 + 0.755750i 1.00000 \(0\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(192\) −0.544078 0.627899i −0.544078 0.627899i
\(193\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(197\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(198\) 0 0
\(199\) −0.544078 0.627899i −0.544078 0.627899i 0.415415 0.909632i \(-0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(200\) 0 0
\(201\) 0.580699 0.373193i 0.580699 0.373193i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −0.128663 0.281733i −0.128663 0.281733i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(212\) −0.239446 + 1.66538i −0.239446 + 1.66538i
\(213\) −1.34125 + 0.861971i −1.34125 + 0.861971i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −0.797176 + 1.74557i −0.797176 + 1.74557i
\(221\) 0 0
\(222\) 0 0
\(223\) −0.544078 1.19136i −0.544078 1.19136i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(224\) 0 0
\(225\) 0.118239 0.822373i 0.118239 0.822373i
\(226\) 0 0
\(227\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(228\) 0 0
\(229\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(234\) 0 0
\(235\) −0.0777324 + 0.540641i −0.0777324 + 0.540641i
\(236\) 1.41542 0.909632i 1.41542 0.909632i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(240\) −0.662317 + 1.45027i −0.662317 + 1.45027i
\(241\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(242\) 0 0
\(243\) 0.246902 0.540641i 0.246902 0.540641i
\(244\) 0 0
\(245\) 1.25667 + 1.45027i 1.25667 + 1.45027i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.61435 0.474017i −1.61435 0.474017i −0.654861 0.755750i \(-0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(252\) 0 0
\(253\) 0.841254 0.540641i 0.841254 0.540641i
\(254\) 0 0
\(255\) 0 0
\(256\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(257\) 1.41542 + 0.909632i 1.41542 + 0.909632i 1.00000 \(0\)
0.415415 + 0.909632i \(0.363636\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(264\) 0 0
\(265\) 3.09792 0.909632i 3.09792 0.909632i
\(266\) 0 0
\(267\) −0.0982369 0.683252i −0.0982369 0.683252i
\(268\) −0.544078 0.627899i −0.544078 0.627899i
\(269\) −0.797176 1.74557i −0.797176 1.74557i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(270\) 0 0
\(271\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.68251 2.68251
\(276\) 0.698939 0.449181i 0.698939 0.449181i
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) −0.0577299 + 0.0666238i −0.0577299 + 0.0666238i
\(280\) 0 0
\(281\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(282\) 0 0
\(283\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(284\) 1.25667 + 1.45027i 1.25667 + 1.45027i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.415415 0.909632i 0.415415 0.909632i
\(290\) 0 0
\(291\) 0.154861 + 0.178719i 0.154861 + 0.178719i
\(292\) 0 0
\(293\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(294\) 0 0
\(295\) −2.71616 1.74557i −2.71616 1.74557i
\(296\) 0 0
\(297\) 1.04408 + 0.306569i 1.04408 + 0.306569i
\(298\) 0 0
\(299\) 0 0
\(300\) 2.22871 2.22871
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(308\) 0 0
\(309\) −0.452036 + 0.989821i −0.452036 + 0.989821i
\(310\) 0 0
\(311\) −1.61435 + 0.474017i −1.61435 + 0.474017i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(312\) 0 0
\(313\) 0.273100 + 1.89945i 0.273100 + 1.89945i 0.415415 + 0.909632i \(0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.0405070 0.281733i 0.0405070 0.281733i −0.959493 0.281733i \(-0.909091\pi\)
1.00000 \(0\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.84125 + 0.540641i 1.84125 + 0.540641i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.570276 + 0.167448i 0.570276 + 0.167448i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.273100 + 1.89945i 0.273100 + 1.89945i 0.415415 + 0.909632i \(0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(332\) 0 0
\(333\) 0.500000 0.146813i 0.500000 0.146813i
\(334\) 0 0
\(335\) −0.662317 + 1.45027i −0.662317 + 1.45027i
\(336\) 0 0
\(337\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(338\) 0 0
\(339\) −0.198939 + 0.127850i −0.198939 + 0.127850i
\(340\) 0 0
\(341\) −0.239446 0.153882i −0.239446 0.153882i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −1.34125 0.861971i −1.34125 0.861971i
\(346\) 0 0
\(347\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(348\) 0 0
\(349\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.857685 + 0.989821i 0.857685 + 0.989821i 1.00000 \(0\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(354\) 0 0
\(355\) 1.52977 3.34973i 1.52977 3.34973i
\(356\) −0.797176 + 0.234072i −0.797176 + 0.234072i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(360\) 0 0
\(361\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(362\) 0 0
\(363\) −0.118239 + 0.822373i −0.118239 + 0.822373i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(368\) −0.654861 0.755750i −0.654861 0.755750i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −0.198939 0.127850i −0.198939 0.127850i
\(373\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(374\) 0 0
\(375\) −1.11435 2.44009i −1.11435 2.44009i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −1.61435 + 0.474017i −1.61435 + 0.474017i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.857685 + 0.989821i 0.857685 + 0.989821i 1.00000 \(0\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0.186393 0.215109i 0.186393 0.215109i
\(389\) 1.25667 + 0.368991i 1.25667 + 0.368991i 0.841254 0.540641i \(-0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0.0440780 0.306569i 0.0440780 0.306569i
\(397\) −1.61435 + 1.03748i −1.61435 + 1.03748i −0.654861 + 0.755750i \(0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.381761 2.65520i −0.381761 2.65520i
\(401\) −0.118239 + 0.258908i −0.118239 + 0.258908i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −0.162317 1.12894i −0.162317 1.12894i
\(406\) 0 0
\(407\) 0.698939 + 1.53046i 0.698939 + 1.53046i
\(408\) 0 0
\(409\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(410\) 0 0
\(411\) 0.712591 0.822373i 0.712591 0.822373i
\(412\) 1.25667 + 0.368991i 1.25667 + 0.368991i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0.186393 1.29639i 0.186393 1.29639i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(420\) 0 0
\(421\) −0.797176 1.74557i −0.797176 1.74557i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(422\) 0 0
\(423\) −0.0125459 0.0872586i −0.0125459 0.0872586i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(432\) 0.154861 1.07708i 0.154861 1.07708i
\(433\) −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i \(-0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(440\) 0 0
\(441\) −0.260554 0.167448i −0.260554 0.167448i
\(442\) 0 0
\(443\) −1.61435 + 1.03748i −1.61435 + 1.03748i −0.654861 + 0.755750i \(0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(444\) 0.580699 + 1.27155i 0.580699 + 1.27155i
\(445\) 1.04408 + 1.20493i 1.04408 + 1.20493i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.273100 0.0801894i 0.273100 0.0801894i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0.186393 + 0.215109i 0.186393 + 0.215109i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) −0.797176 + 1.74557i −0.797176 + 1.74557i
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0.186393 0.215109i 0.186393 0.215109i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(464\) 0 0
\(465\) −0.0645824 + 0.449181i −0.0645824 + 0.449181i
\(466\) 0 0
\(467\) −0.118239 0.258908i −0.118239 0.258908i 0.841254 0.540641i \(-0.181818\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −1.59435 + 0.468144i −1.59435 + 0.468144i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −0.438384 + 0.281733i −0.438384 + 0.281733i
\(478\) 0 0
\(479\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 1.00000 1.00000
\(485\) −0.524075 0.153882i −0.524075 0.153882i
\(486\) 0 0
\(487\) 0.698939 + 0.449181i 0.698939 + 0.449181i 0.841254 0.540641i \(-0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(488\) 0 0
\(489\) −0.915415 + 0.588302i −0.915415 + 0.588302i
\(490\) 0 0
\(491\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −0.570276 + 0.167448i −0.570276 + 0.167448i
\(496\) −0.118239 + 0.258908i −0.118239 + 0.258908i
\(497\) 0 0
\(498\) 0 0
\(499\) 0.345139 + 0.755750i 0.345139 + 0.755750i 1.00000 \(0\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(500\) −2.71616 + 1.74557i −2.71616 + 1.74557i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.830830 0.830830
\(508\) 0 0
\(509\) −0.544078 + 0.627899i −0.544078 + 0.627899i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −0.357685 2.48775i −0.357685 2.48775i
\(516\) 0 0
\(517\) 0.273100 0.0801894i 0.273100 0.0801894i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.10181 1.27155i −1.10181 1.27155i −0.959493 0.281733i \(-0.909091\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(522\) 0 0
\(523\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0.830830 0.830830
\(529\) 0.841254 0.540641i 0.841254 0.540641i
\(530\) 0 0
\(531\) 0.500000 + 0.146813i 0.500000 + 0.146813i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0.712591 + 0.822373i 0.712591 + 0.822373i
\(538\) 0 0
\(539\) 0.415415 0.909632i 0.415415 0.909632i
\(540\) −2.00357 + 0.588302i −2.00357 + 0.588302i
\(541\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(542\) 0 0
\(543\) 0.154861 + 1.07708i 0.154861 + 1.07708i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(548\) −1.10181 0.708089i −1.10181 0.708089i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 1.75667 2.02730i 1.75667 2.02730i
\(556\) 0 0
\(557\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(564\) 0.226900 0.0666238i 0.226900 0.0666238i
\(565\) 0.226900 0.496841i 0.226900 0.496841i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(570\) 0 0
\(571\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(572\) 0 0
\(573\) −0.662317 0.194474i −0.662317 0.194474i
\(574\) 0 0
\(575\) 2.68251 2.68251
\(576\) −0.309721 −0.309721
\(577\) −1.61435 0.474017i −1.61435 0.474017i −0.654861 0.755750i \(-0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.10181 1.27155i −1.10181 1.27155i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −0.797176 + 0.234072i −0.797176 + 0.234072i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(588\) 0.345139 0.755750i 0.345139 0.755750i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 1.41542 0.909632i 1.41542 0.909632i
\(593\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.690279 0.690279
\(598\) 0 0
\(599\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(600\) 0 0
\(601\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(602\) 0 0
\(603\) 0.0366213 0.254707i 0.0366213 0.254707i
\(604\) 0 0
\(605\) −0.797176 1.74557i −0.797176 1.74557i
\(606\) 0 0
\(607\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.698939 + 0.449181i 0.698939 + 0.449181i 0.841254 0.540641i \(-0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(618\) 0 0
\(619\) 1.84125 + 0.540641i 1.84125 + 0.540641i 1.00000 \(0\)
0.841254 + 0.540641i \(0.181818\pi\)
\(620\) 0.546200 0.546200
\(621\) 1.04408 + 0.306569i 1.04408 + 0.306569i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 2.95561 + 1.89945i 2.95561 + 1.89945i
\(626\) 0 0
\(627\) 0 0
\(628\) 0.830830 + 1.81926i 0.830830 + 1.81926i
\(629\) 0 0
\(630\) 0 0
\(631\) −0.118239 + 0.258908i −0.118239 + 0.258908i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) −0.915415 1.05645i −0.915415 1.05645i
\(637\) 0 0
\(638\) 0 0
\(639\) −0.0845850 + 0.588302i −0.0845850 + 0.588302i
\(640\) 0 0
\(641\) −1.10181 + 1.27155i −1.10181 + 1.27155i −0.142315 + 0.989821i \(0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(642\) 0 0
\(643\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0.857685 0.989821i 0.857685 0.989821i −0.142315 0.989821i \(-0.545455\pi\)
1.00000 \(0\)
\(648\) 0 0
\(649\) −0.239446 + 1.66538i −0.239446 + 1.66538i
\(650\) 0 0
\(651\) 0 0
\(652\) 0.857685 + 0.989821i 0.857685 + 0.989821i
\(653\) 0.186393 + 1.29639i 0.186393 + 1.29639i 0.841254 + 0.540641i \(0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(660\) −0.662317 1.45027i −0.662317 1.45027i
\(661\) −1.10181 + 0.708089i −1.10181 + 0.708089i −0.959493 0.281733i \(-0.909091\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 1.04408 + 0.306569i 1.04408 + 0.306569i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(674\) 0 0
\(675\) 1.91153 + 2.20602i 1.91153 + 2.20602i
\(676\) −0.142315 0.989821i −0.142315 0.989821i
\(677\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −0.544078 1.19136i −0.544078 1.19136i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(684\) 0 0
\(685\) −0.357685 + 2.48775i −0.357685 + 2.48775i
\(686\) 0 0
\(687\) 0.154861 0.178719i 0.154861 0.178719i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −0.142315 0.989821i −0.142315 0.989821i
\(705\) −0.297176 0.342959i −0.297176 0.342959i
\(706\) 0 0
\(707\) 0 0
\(708\) −0.198939 + 1.38365i −0.198939 + 1.38365i
\(709\) 0.698939 + 0.449181i 0.698939 + 0.449181i 0.841254 0.540641i \(-0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.239446 0.153882i −0.239446 0.153882i
\(714\) 0 0
\(715\) 0 0
\(716\) 0.857685 0.989821i 0.857685 0.989821i
\(717\) 0 0
\(718\) 0 0
\(719\) 0.698939 0.449181i 0.698939 0.449181i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(720\) 0.246902 + 0.540641i 0.246902 + 0.540641i
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 1.25667 0.368991i 1.25667 0.368991i
\(725\) 0 0
\(726\) 0 0
\(727\) −0.239446 1.66538i −0.239446 1.66538i −0.654861 0.755750i \(-0.727273\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(728\) 0 0
\(729\) 0.452036 + 0.989821i 0.452036 + 0.989821i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(734\) 0 0
\(735\) −1.59435 −1.59435
\(736\) 0 0
\(737\) 0.830830 0.830830
\(738\) 0 0
\(739\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(740\) −2.71616 1.74557i −2.71616 1.74557i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −1.30972 1.51150i −1.30972 1.51150i −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(752\) −0.118239 0.258908i −0.118239 0.258908i
\(753\) 1.17597 0.755750i 1.17597 0.755750i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.25667 + 0.368991i 1.25667 + 0.368991i 0.841254 0.540641i \(-0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(758\) 0 0
\(759\) −0.118239 + 0.822373i −0.118239 + 0.822373i
\(760\) 0 0
\(761\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −0.118239 + 0.822373i −0.118239 + 0.822373i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −0.118239 0.822373i −0.118239 0.822373i
\(769\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(770\) 0 0
\(771\) −1.34125 + 0.393828i −1.34125 + 0.393828i
\(772\) 0 0
\(773\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i 1.00000 \(0\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(774\) 0 0
\(775\) −0.317178 0.694523i −0.317178 0.694523i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −1.91899 −1.91899
\(782\) 0 0
\(783\) 0 0
\(784\) −0.959493 0.281733i −0.959493 0.281733i
\(785\) 2.51334 2.90055i 2.51334 2.90055i
\(786\) 0 0
\(787\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −1.11435 + 2.44009i −1.11435 + 2.44009i
\(796\) −0.118239 0.822373i −0.118239 0.822373i
\(797\) −0.544078 0.627899i −0.544078 0.627899i 0.415415 0.909632i \(-0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −0.216476 0.139121i −0.216476 0.139121i
\(802\) 0 0
\(803\) 0 0
\(804\) 0.690279 0.690279
\(805\) 0 0
\(806\) 0 0
\(807\) 1.52977 + 0.449181i 1.52977 + 0.449181i
\(808\) 0 0
\(809\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(810\) 0 0
\(811\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.04408 2.28621i 1.04408 2.28621i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(822\) 0 0
\(823\) −0.239446 + 1.66538i −0.239446 + 1.66538i 0.415415 + 0.909632i \(0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(824\) 0 0
\(825\) −1.45949 + 1.68434i −1.45949 + 1.68434i
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0.0440780 0.306569i 0.0440780 0.306569i
\(829\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −0.0440780 0.306569i −0.0440780 0.306569i
\(838\) 0 0
\(839\) 0.273100 0.0801894i 0.273100 0.0801894i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(840\) 0 0
\(841\) 0.415415 0.909632i 0.415415 0.909632i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.61435 + 1.03748i −1.61435 + 1.03748i
\(846\) 0 0
\(847\) 0 0
\(848\) −1.10181 + 1.27155i −1.10181 + 1.27155i
\(849\) 0 0
\(850\) 0 0
\(851\) 0.698939 + 1.53046i 0.698939 + 1.53046i
\(852\) −1.59435 −1.59435
\(853\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(858\) 0 0
\(859\) −0.544078 0.627899i −0.544078 0.627899i 0.415415 0.909632i \(-0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.84125 0.540641i 1.84125 0.540641i 0.841254 0.540641i \(-0.181818\pi\)
1.00000 \(0\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0.345139 + 0.755750i 0.345139 + 0.755750i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0.0881559 0.0881559
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −1.61435 + 1.03748i −1.61435 + 1.03748i
\(881\) −0.544078 1.19136i −0.544078 1.19136i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(882\) 0 0
\(883\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i 1.00000 \(0\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(884\) 0 0
\(885\) 2.57385 0.755750i 2.57385 0.755750i
\(886\) 0 0
\(887\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −0.500000 + 0.321330i −0.500000 + 0.321330i
\(892\) 0.186393 1.29639i 0.186393 1.29639i
\(893\) 0 0
\(894\) 0 0
\(895\) −2.41153 0.708089i −2.41153 0.708089i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0.544078 0.627899i 0.544078 0.627899i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.64589 1.89945i −1.64589 1.89945i
\(906\) 0 0
\(907\) −0.797176 + 1.74557i −0.797176 + 1.74557i −0.142315 + 0.989821i \(0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0.186393 + 1.29639i 0.186393 + 1.29639i 0.841254 + 0.540641i \(0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −0.239446 0.153882i −0.239446 0.153882i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −0.642315 + 4.46740i −0.642315 + 4.46740i
\(926\) 0 0
\(927\) 0.168513 + 0.368991i 0.168513 + 0.368991i
\(928\) 0 0
\(929\) −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0.580699 1.27155i 0.580699 1.27155i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(938\) 0 0
\(939\) −1.34125 0.861971i −1.34125 0.861971i
\(940\) −0.357685 + 0.412791i −0.357685 + 0.412791i
\(941\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 1.68251 1.68251
\(945\) 0 0
\(946\) 0 0
\(947\) −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i \(-0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0.154861 + 0.178719i 0.154861 + 0.178719i
\(952\) 0 0
\(953\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(954\) 0 0
\(955\) 1.52977 0.449181i 1.52977 0.449181i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −1.34125 + 0.861971i −1.34125 + 0.861971i
\(961\) 0.130785 0.909632i 0.130785 0.909632i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0.186393 1.29639i 0.186393 1.29639i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(972\) 0.500000 0.321330i 0.500000 0.321330i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.25667 0.368991i 1.25667 0.368991i 0.415415 0.909632i \(-0.363636\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(978\) 0 0
\(979\) 0.345139 0.755750i 0.345139 0.755750i
\(980\) 0.273100 + 1.89945i 0.273100 + 1.89945i
\(981\) 0 0
\(982\) 0 0
\(983\) 1.41542 0.909632i 1.41542 0.909632i 0.415415 0.909632i \(-0.363636\pi\)
1.00000 \(0\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 1.84125 + 0.540641i 1.84125 + 0.540641i 1.00000 \(0\)
0.841254 + 0.540641i \(0.181818\pi\)
\(992\) 0 0
\(993\) −1.34125 0.861971i −1.34125 0.861971i
\(994\) 0 0
\(995\) −1.34125 + 0.861971i −1.34125 + 0.861971i
\(996\) 0 0
\(997\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(998\) 0 0
\(999\) −0.760554 + 1.66538i −0.760554 + 1.66538i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 253.1.k.a.87.1 yes 10
3.2 odd 2 2277.1.be.a.1099.1 10
11.2 odd 10 2783.1.dh.a.524.1 40
11.3 even 5 2783.1.dh.a.1927.1 40
11.4 even 5 2783.1.dh.a.2272.1 40
11.5 even 5 2783.1.dh.a.1812.1 40
11.6 odd 10 2783.1.dh.a.1812.1 40
11.7 odd 10 2783.1.dh.a.2272.1 40
11.8 odd 10 2783.1.dh.a.1927.1 40
11.9 even 5 2783.1.dh.a.524.1 40
11.10 odd 2 CM 253.1.k.a.87.1 yes 10
23.9 even 11 inner 253.1.k.a.32.1 10
33.32 even 2 2277.1.be.a.1099.1 10
69.32 odd 22 2277.1.be.a.1297.1 10
253.9 even 55 2783.1.dh.a.1734.1 40
253.32 odd 22 inner 253.1.k.a.32.1 10
253.101 odd 110 2783.1.dh.a.1734.1 40
253.124 even 55 2783.1.dh.a.354.1 40
253.147 even 55 2783.1.dh.a.699.1 40
253.170 even 55 2783.1.dh.a.239.1 40
253.193 odd 110 2783.1.dh.a.239.1 40
253.216 odd 110 2783.1.dh.a.699.1 40
253.239 odd 110 2783.1.dh.a.354.1 40
759.32 even 22 2277.1.be.a.1297.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.1.k.a.32.1 10 23.9 even 11 inner
253.1.k.a.32.1 10 253.32 odd 22 inner
253.1.k.a.87.1 yes 10 1.1 even 1 trivial
253.1.k.a.87.1 yes 10 11.10 odd 2 CM
2277.1.be.a.1099.1 10 3.2 odd 2
2277.1.be.a.1099.1 10 33.32 even 2
2277.1.be.a.1297.1 10 69.32 odd 22
2277.1.be.a.1297.1 10 759.32 even 22
2783.1.dh.a.239.1 40 253.170 even 55
2783.1.dh.a.239.1 40 253.193 odd 110
2783.1.dh.a.354.1 40 253.124 even 55
2783.1.dh.a.354.1 40 253.239 odd 110
2783.1.dh.a.524.1 40 11.2 odd 10
2783.1.dh.a.524.1 40 11.9 even 5
2783.1.dh.a.699.1 40 253.147 even 55
2783.1.dh.a.699.1 40 253.216 odd 110
2783.1.dh.a.1734.1 40 253.9 even 55
2783.1.dh.a.1734.1 40 253.101 odd 110
2783.1.dh.a.1812.1 40 11.5 even 5
2783.1.dh.a.1812.1 40 11.6 odd 10
2783.1.dh.a.1927.1 40 11.3 even 5
2783.1.dh.a.1927.1 40 11.8 odd 10
2783.1.dh.a.2272.1 40 11.4 even 5
2783.1.dh.a.2272.1 40 11.7 odd 10