Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(2600))\).
|
Total |
New |
Old |
Modular forms
| 205632 |
104175 |
101457 |
Cusp forms
| 197569 |
102371 |
95198 |
Eisenstein series
| 8063 |
1804 |
6259 |
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(2600))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label |
\(\chi\) |
Newforms |
Dimension |
\(\chi\) degree |
2600.2.a |
\(\chi_{2600}(1, \cdot)\) |
2600.2.a.a |
1 |
1 |
2600.2.a.b |
1 |
2600.2.a.c |
1 |
2600.2.a.d |
1 |
2600.2.a.e |
1 |
2600.2.a.f |
1 |
2600.2.a.g |
1 |
2600.2.a.h |
1 |
2600.2.a.i |
1 |
2600.2.a.j |
1 |
2600.2.a.k |
1 |
2600.2.a.l |
1 |
2600.2.a.m |
1 |
2600.2.a.n |
2 |
2600.2.a.o |
2 |
2600.2.a.p |
2 |
2600.2.a.q |
2 |
2600.2.a.r |
2 |
2600.2.a.s |
2 |
2600.2.a.t |
2 |
2600.2.a.u |
2 |
2600.2.a.v |
2 |
2600.2.a.w |
2 |
2600.2.a.x |
3 |
2600.2.a.y |
3 |
2600.2.a.z |
4 |
2600.2.a.ba |
4 |
2600.2.a.bb |
5 |
2600.2.a.bc |
5 |
2600.2.d |
\(\chi_{2600}(1249, \cdot)\) |
2600.2.d.a |
2 |
1 |
2600.2.d.b |
2 |
2600.2.d.c |
2 |
2600.2.d.d |
2 |
2600.2.d.e |
2 |
2600.2.d.f |
2 |
2600.2.d.g |
2 |
2600.2.d.h |
4 |
2600.2.d.i |
4 |
2600.2.d.j |
4 |
2600.2.d.k |
4 |
2600.2.d.l |
4 |
2600.2.d.m |
4 |
2600.2.d.n |
4 |
2600.2.d.o |
4 |
2600.2.d.p |
8 |
2600.2.e |
\(\chi_{2600}(701, \cdot)\) |
n/a |
260 |
1 |
2600.2.f |
\(\chi_{2600}(649, \cdot)\) |
2600.2.f.a |
4 |
1 |
2600.2.f.b |
4 |
2600.2.f.c |
6 |
2600.2.f.d |
6 |
2600.2.f.e |
8 |
2600.2.f.f |
8 |
2600.2.f.g |
14 |
2600.2.f.h |
14 |
2600.2.g |
\(\chi_{2600}(1301, \cdot)\) |
n/a |
228 |
1 |
2600.2.j |
\(\chi_{2600}(2549, \cdot)\) |
n/a |
216 |
1 |
2600.2.k |
\(\chi_{2600}(2001, \cdot)\) |
2600.2.k.a |
4 |
1 |
2600.2.k.b |
6 |
2600.2.k.c |
8 |
2600.2.k.d |
14 |
2600.2.k.e |
14 |
2600.2.k.f |
20 |
2600.2.p |
\(\chi_{2600}(1949, \cdot)\) |
n/a |
248 |
1 |
2600.2.q |
\(\chi_{2600}(601, \cdot)\) |
n/a |
134 |
2 |
2600.2.s |
\(\chi_{2600}(151, \cdot)\) |
None |
0 |
2 |
2600.2.t |
\(\chi_{2600}(99, \cdot)\) |
n/a |
496 |
2 |
2600.2.w |
\(\chi_{2600}(57, \cdot)\) |
n/a |
126 |
2 |
2600.2.y |
\(\chi_{2600}(1357, \cdot)\) |
n/a |
496 |
2 |
2600.2.bb |
\(\chi_{2600}(807, \cdot)\) |
None |
0 |
2 |
2600.2.bc |
\(\chi_{2600}(1507, \cdot)\) |
n/a |
496 |
2 |
2600.2.bd |
\(\chi_{2600}(207, \cdot)\) |
None |
0 |
2 |
2600.2.be |
\(\chi_{2600}(443, \cdot)\) |
n/a |
432 |
2 |
2600.2.bh |
\(\chi_{2600}(993, \cdot)\) |
n/a |
126 |
2 |
2600.2.bj |
\(\chi_{2600}(957, \cdot)\) |
n/a |
496 |
2 |
2600.2.bm |
\(\chi_{2600}(1451, \cdot)\) |
n/a |
520 |
2 |
2600.2.bn |
\(\chi_{2600}(1399, \cdot)\) |
None |
0 |
2 |
2600.2.bp |
\(\chi_{2600}(521, \cdot)\) |
n/a |
360 |
4 |
2600.2.bq |
\(\chi_{2600}(1349, \cdot)\) |
n/a |
496 |
2 |
2600.2.bv |
\(\chi_{2600}(1401, \cdot)\) |
n/a |
132 |
2 |
2600.2.bw |
\(\chi_{2600}(549, \cdot)\) |
n/a |
496 |
2 |
2600.2.bz |
\(\chi_{2600}(1101, \cdot)\) |
n/a |
520 |
2 |
2600.2.ca |
\(\chi_{2600}(49, \cdot)\) |
n/a |
128 |
2 |
2600.2.cb |
\(\chi_{2600}(101, \cdot)\) |
n/a |
520 |
2 |
2600.2.cc |
\(\chi_{2600}(1049, \cdot)\) |
n/a |
124 |
2 |
2600.2.ch |
\(\chi_{2600}(441, \cdot)\) |
n/a |
424 |
4 |
2600.2.ci |
\(\chi_{2600}(469, \cdot)\) |
n/a |
1440 |
4 |
2600.2.cj |
\(\chi_{2600}(389, \cdot)\) |
n/a |
1664 |
4 |
2600.2.cm |
\(\chi_{2600}(181, \cdot)\) |
n/a |
1664 |
4 |
2600.2.cn |
\(\chi_{2600}(209, \cdot)\) |
n/a |
360 |
4 |
2600.2.cs |
\(\chi_{2600}(261, \cdot)\) |
n/a |
1440 |
4 |
2600.2.ct |
\(\chi_{2600}(129, \cdot)\) |
n/a |
416 |
4 |
2600.2.cv |
\(\chi_{2600}(799, \cdot)\) |
None |
0 |
4 |
2600.2.cw |
\(\chi_{2600}(851, \cdot)\) |
n/a |
1040 |
4 |
2600.2.cz |
\(\chi_{2600}(93, \cdot)\) |
n/a |
992 |
4 |
2600.2.db |
\(\chi_{2600}(657, \cdot)\) |
n/a |
252 |
4 |
2600.2.dc |
\(\chi_{2600}(107, \cdot)\) |
n/a |
992 |
4 |
2600.2.dd |
\(\chi_{2600}(407, \cdot)\) |
None |
0 |
4 |
2600.2.di |
\(\chi_{2600}(43, \cdot)\) |
n/a |
992 |
4 |
2600.2.dj |
\(\chi_{2600}(607, \cdot)\) |
None |
0 |
4 |
2600.2.dk |
\(\chi_{2600}(293, \cdot)\) |
n/a |
992 |
4 |
2600.2.dm |
\(\chi_{2600}(193, \cdot)\) |
n/a |
252 |
4 |
2600.2.dp |
\(\chi_{2600}(899, \cdot)\) |
n/a |
992 |
4 |
2600.2.dq |
\(\chi_{2600}(951, \cdot)\) |
None |
0 |
4 |
2600.2.ds |
\(\chi_{2600}(81, \cdot)\) |
n/a |
832 |
8 |
2600.2.du |
\(\chi_{2600}(239, \cdot)\) |
None |
0 |
8 |
2600.2.dv |
\(\chi_{2600}(291, \cdot)\) |
n/a |
3328 |
8 |
2600.2.dx |
\(\chi_{2600}(317, \cdot)\) |
n/a |
3328 |
8 |
2600.2.dz |
\(\chi_{2600}(73, \cdot)\) |
n/a |
840 |
8 |
2600.2.ed |
\(\chi_{2600}(27, \cdot)\) |
n/a |
2880 |
8 |
2600.2.ee |
\(\chi_{2600}(103, \cdot)\) |
None |
0 |
8 |
2600.2.ef |
\(\chi_{2600}(363, \cdot)\) |
n/a |
3328 |
8 |
2600.2.eg |
\(\chi_{2600}(183, \cdot)\) |
None |
0 |
8 |
2600.2.ek |
\(\chi_{2600}(213, \cdot)\) |
n/a |
3328 |
8 |
2600.2.em |
\(\chi_{2600}(177, \cdot)\) |
n/a |
840 |
8 |
2600.2.eo |
\(\chi_{2600}(619, \cdot)\) |
n/a |
3328 |
8 |
2600.2.ep |
\(\chi_{2600}(31, \cdot)\) |
None |
0 |
8 |
2600.2.er |
\(\chi_{2600}(329, \cdot)\) |
n/a |
832 |
8 |
2600.2.es |
\(\chi_{2600}(61, \cdot)\) |
n/a |
3328 |
8 |
2600.2.ex |
\(\chi_{2600}(9, \cdot)\) |
n/a |
848 |
8 |
2600.2.ey |
\(\chi_{2600}(381, \cdot)\) |
n/a |
3328 |
8 |
2600.2.fb |
\(\chi_{2600}(69, \cdot)\) |
n/a |
3328 |
8 |
2600.2.fc |
\(\chi_{2600}(29, \cdot)\) |
n/a |
3328 |
8 |
2600.2.fd |
\(\chi_{2600}(121, \cdot)\) |
n/a |
848 |
8 |
2600.2.fh |
\(\chi_{2600}(71, \cdot)\) |
None |
0 |
16 |
2600.2.fi |
\(\chi_{2600}(19, \cdot)\) |
n/a |
6656 |
16 |
2600.2.fk |
\(\chi_{2600}(137, \cdot)\) |
n/a |
1680 |
16 |
2600.2.fm |
\(\chi_{2600}(37, \cdot)\) |
n/a |
6656 |
16 |
2600.2.fo |
\(\chi_{2600}(87, \cdot)\) |
None |
0 |
16 |
2600.2.fp |
\(\chi_{2600}(147, \cdot)\) |
n/a |
6656 |
16 |
2600.2.fu |
\(\chi_{2600}(23, \cdot)\) |
None |
0 |
16 |
2600.2.fv |
\(\chi_{2600}(3, \cdot)\) |
n/a |
6656 |
16 |
2600.2.fx |
\(\chi_{2600}(33, \cdot)\) |
n/a |
1680 |
16 |
2600.2.fz |
\(\chi_{2600}(197, \cdot)\) |
n/a |
6656 |
16 |
2600.2.gb |
\(\chi_{2600}(11, \cdot)\) |
n/a |
6656 |
16 |
2600.2.gc |
\(\chi_{2600}(119, \cdot)\) |
None |
0 |
16 |
"n/a" means that newforms for that character have not been added to the database yet