Properties

Label 2600.2.di
Level $2600$
Weight $2$
Character orbit 2600.di
Rep. character $\chi_{2600}(43,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $992$
Sturm bound $840$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2600.di (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 520 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(840\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2600, [\chi])\).

Total New Old
Modular forms 1728 1024 704
Cusp forms 1632 992 640
Eisenstein series 96 32 64

Trace form

\( 992 q + 6 q^{2} + 4 q^{3} - 12 q^{6} - 24 q^{11} + 36 q^{12} + 12 q^{16} + 8 q^{22} + 8 q^{26} + 40 q^{27} + 6 q^{28} + 36 q^{32} + 12 q^{33} - 68 q^{36} - 24 q^{41} - 44 q^{42} - 28 q^{43} - 12 q^{46}+ \cdots - 66 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2600, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2600, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2600, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(520, [\chi])\)\(^{\oplus 2}\)