Defining parameters
Level: | \( N \) | \(=\) | \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2600.gc (of order \(60\) and degree \(16\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 1300 \) |
Character field: | \(\Q(\zeta_{60})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(840\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2600, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 6848 | 0 | 6848 |
Cusp forms | 6592 | 0 | 6592 |
Eisenstein series | 256 | 0 | 256 |
Decomposition of \(S_{2}^{\mathrm{old}}(2600, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2600, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(1300, [\chi])\)\(^{\oplus 2}\)