Properties

Label 261.2.q.a.103.21
Level $261$
Weight $2$
Character 261.103
Analytic conductor $2.084$
Analytic rank $0$
Dimension $336$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [261,2,Mod(7,261)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(261, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([28, 18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("261.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 261.q (of order \(21\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.08409549276\)
Analytic rank: \(0\)
Dimension: \(336\)
Relative dimension: \(28\) over \(\Q(\zeta_{21})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{21}]$

Embedding invariants

Embedding label 103.21
Character \(\chi\) \(=\) 261.103
Dual form 261.2.q.a.223.21

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.110732 + 1.47762i) q^{2} +(0.614444 + 1.61940i) q^{3} +(-0.193426 + 0.0291542i) q^{4} +(1.96037 - 1.33656i) q^{5} +(-2.32481 + 1.08723i) q^{6} +(-1.67633 - 0.252667i) q^{7} +(0.594948 + 2.60664i) q^{8} +(-2.24492 + 1.99006i) q^{9} +(2.19200 + 2.74867i) q^{10} +(1.13878 - 0.351267i) q^{11} +(-0.166062 - 0.295320i) q^{12} +(0.355933 + 0.330258i) q^{13} +(0.187721 - 2.50496i) q^{14} +(3.36896 + 2.35338i) q^{15} +(-4.15957 + 1.28306i) q^{16} +1.19292 q^{17} +(-3.18913 - 3.09676i) q^{18} +(-1.43586 - 1.80051i) q^{19} +(-0.340220 + 0.315678i) q^{20} +(-0.620846 - 2.86991i) q^{21} +(0.645137 + 1.64378i) q^{22} +(0.435612 - 5.81284i) q^{23} +(-3.85563 + 2.56509i) q^{24} +(0.229960 - 0.585928i) q^{25} +(-0.448581 + 0.562503i) q^{26} +(-4.60209 - 2.41263i) q^{27} +0.331612 q^{28} +(0.253576 - 5.37919i) q^{29} +(-3.10435 + 5.23863i) q^{30} +(-5.23916 + 3.57200i) q^{31} +(-0.402859 - 1.02647i) q^{32} +(1.26856 + 1.62831i) q^{33} +(0.132094 + 1.76268i) q^{34} +(-3.62394 + 1.74520i) q^{35} +(0.376206 - 0.450378i) q^{36} +(-0.478456 - 2.09625i) q^{37} +(2.50147 - 2.32102i) q^{38} +(-0.316119 + 0.779324i) q^{39} +(4.65024 + 4.31479i) q^{40} +(5.01438 - 8.68515i) q^{41} +(4.17187 - 1.23516i) q^{42} +(2.20994 + 1.50671i) q^{43} +(-0.210028 + 0.101144i) q^{44} +(-1.74103 + 6.90172i) q^{45} +8.63738 q^{46} +(8.91066 - 2.74857i) q^{47} +(-4.63361 - 5.94764i) q^{48} +(-3.94275 - 1.21618i) q^{49} +(0.891241 + 0.274911i) q^{50} +(0.732983 + 1.93181i) q^{51} +(-0.0784751 - 0.0535034i) q^{52} +(7.23932 + 3.48627i) q^{53} +(3.05535 - 7.06727i) q^{54} +(1.76294 - 2.21066i) q^{55} +(-0.338721 - 4.51992i) q^{56} +(2.03349 - 3.43154i) q^{57} +(7.97646 - 0.220961i) q^{58} +(-4.58870 + 7.94786i) q^{59} +(-0.720255 - 0.356986i) q^{60} +(5.47218 + 0.824798i) q^{61} +(-5.85818 - 7.34593i) q^{62} +(4.26605 - 2.76880i) q^{63} +(-6.37164 + 3.06842i) q^{64} +(1.13917 + 0.171702i) q^{65} +(-2.26554 + 2.05475i) q^{66} +(-10.9252 - 3.36998i) q^{67} +(-0.230741 + 0.0347787i) q^{68} +(9.68097 - 2.86624i) q^{69} +(-2.98002 - 5.16154i) q^{70} +(-1.77020 + 7.75573i) q^{71} +(-6.52298 - 4.66770i) q^{72} +(11.7302 - 5.64896i) q^{73} +(3.04447 - 0.939096i) q^{74} +(1.09015 + 0.0123768i) q^{75} +(0.330225 + 0.306404i) q^{76} +(-1.99773 + 0.301109i) q^{77} +(-1.18655 - 0.380806i) q^{78} +(-4.48885 + 4.16505i) q^{79} +(-6.43941 + 8.07477i) q^{80} +(1.07930 - 8.93505i) q^{81} +(13.3886 + 6.44760i) q^{82} +(-4.51785 + 11.5113i) q^{83} +(0.203757 + 0.537013i) q^{84} +(2.33856 - 1.59441i) q^{85} +(-1.98163 + 3.43229i) q^{86} +(8.86687 - 2.89457i) q^{87} +(1.59314 + 2.75940i) q^{88} +(-5.81851 - 2.80205i) q^{89} +(-10.3909 - 1.80834i) q^{90} +(-0.513218 - 0.643555i) q^{91} +(0.0852103 + 1.13705i) q^{92} +(-9.00367 - 6.28950i) q^{93} +(5.04803 + 12.8622i) q^{94} +(-5.22130 - 1.61056i) q^{95} +(1.41473 - 1.28310i) q^{96} +(1.98904 - 5.06799i) q^{97} +(1.36046 - 5.96055i) q^{98} +(-1.85742 + 3.05481i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 336 q - 5 q^{2} - 10 q^{3} + 21 q^{4} - 9 q^{5} - 40 q^{6} - 5 q^{7} + 2 q^{8} - 6 q^{9} - 28 q^{10} - q^{11} - 22 q^{12} - 5 q^{13} - 9 q^{14} - 26 q^{15} + 21 q^{16} - 60 q^{17} - 90 q^{18} - 20 q^{19}+ \cdots + 196 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/261\mathbb{Z}\right)^\times\).

\(n\) \(118\) \(146\)
\(\chi(n)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.110732 + 1.47762i 0.0782994 + 1.04483i 0.888559 + 0.458762i \(0.151707\pi\)
−0.810260 + 0.586071i \(0.800674\pi\)
\(3\) 0.614444 + 1.61940i 0.354750 + 0.934961i
\(4\) −0.193426 + 0.0291542i −0.0967129 + 0.0145771i
\(5\) 1.96037 1.33656i 0.876704 0.597727i −0.0391519 0.999233i \(-0.512466\pi\)
0.915856 + 0.401506i \(0.131513\pi\)
\(6\) −2.32481 + 1.08723i −0.949101 + 0.443861i
\(7\) −1.67633 0.252667i −0.633595 0.0954990i −0.175611 0.984460i \(-0.556190\pi\)
−0.457984 + 0.888961i \(0.651428\pi\)
\(8\) 0.594948 + 2.60664i 0.210346 + 0.921585i
\(9\) −2.24492 + 1.99006i −0.748305 + 0.663354i
\(10\) 2.19200 + 2.74867i 0.693170 + 0.869207i
\(11\) 1.13878 0.351267i 0.343355 0.105911i −0.118282 0.992980i \(-0.537739\pi\)
0.461637 + 0.887069i \(0.347262\pi\)
\(12\) −0.166062 0.295320i −0.0479379 0.0852516i
\(13\) 0.355933 + 0.330258i 0.0987182 + 0.0915971i 0.727988 0.685590i \(-0.240456\pi\)
−0.629270 + 0.777187i \(0.716646\pi\)
\(14\) 0.187721 2.50496i 0.0501704 0.669478i
\(15\) 3.36896 + 2.35338i 0.869862 + 0.607641i
\(16\) −4.15957 + 1.28306i −1.03989 + 0.320764i
\(17\) 1.19292 0.289326 0.144663 0.989481i \(-0.453790\pi\)
0.144663 + 0.989481i \(0.453790\pi\)
\(18\) −3.18913 3.09676i −0.751686 0.729913i
\(19\) −1.43586 1.80051i −0.329409 0.413065i 0.589355 0.807875i \(-0.299382\pi\)
−0.918763 + 0.394809i \(0.870811\pi\)
\(20\) −0.340220 + 0.315678i −0.0760754 + 0.0705877i
\(21\) −0.620846 2.86991i −0.135480 0.626265i
\(22\) 0.645137 + 1.64378i 0.137544 + 0.350456i
\(23\) 0.435612 5.81284i 0.0908314 1.21206i −0.746508 0.665377i \(-0.768271\pi\)
0.837339 0.546684i \(-0.184110\pi\)
\(24\) −3.85563 + 2.56509i −0.787026 + 0.523597i
\(25\) 0.229960 0.585928i 0.0459920 0.117186i
\(26\) −0.448581 + 0.562503i −0.0879740 + 0.110316i
\(27\) −4.60209 2.41263i −0.885672 0.464312i
\(28\) 0.331612 0.0626689
\(29\) 0.253576 5.37919i 0.0470878 0.998891i
\(30\) −3.10435 + 5.23863i −0.566773 + 0.956438i
\(31\) −5.23916 + 3.57200i −0.940981 + 0.641550i −0.933559 0.358423i \(-0.883315\pi\)
−0.00742132 + 0.999972i \(0.502362\pi\)
\(32\) −0.402859 1.02647i −0.0712161 0.181456i
\(33\) 1.26856 + 1.62831i 0.220828 + 0.283452i
\(34\) 0.132094 + 1.76268i 0.0226540 + 0.302297i
\(35\) −3.62394 + 1.74520i −0.612558 + 0.294992i
\(36\) 0.376206 0.450378i 0.0627010 0.0750630i
\(37\) −0.478456 2.09625i −0.0786576 0.344622i 0.920251 0.391329i \(-0.127984\pi\)
−0.998909 + 0.0467071i \(0.985127\pi\)
\(38\) 2.50147 2.32102i 0.405791 0.376519i
\(39\) −0.316119 + 0.779324i −0.0506195 + 0.124792i
\(40\) 4.65024 + 4.31479i 0.735267 + 0.682228i
\(41\) 5.01438 8.68515i 0.783114 1.35639i −0.147005 0.989136i \(-0.546963\pi\)
0.930119 0.367257i \(-0.119703\pi\)
\(42\) 4.17187 1.23516i 0.643734 0.190590i
\(43\) 2.20994 + 1.50671i 0.337013 + 0.229772i 0.719987 0.693987i \(-0.244148\pi\)
−0.382974 + 0.923759i \(0.625100\pi\)
\(44\) −0.210028 + 0.101144i −0.0316630 + 0.0152481i
\(45\) −1.74103 + 6.90172i −0.259538 + 1.02885i
\(46\) 8.63738 1.27351
\(47\) 8.91066 2.74857i 1.29975 0.400921i 0.433783 0.901017i \(-0.357178\pi\)
0.865970 + 0.500097i \(0.166702\pi\)
\(48\) −4.63361 5.94764i −0.668803 0.858468i
\(49\) −3.94275 1.21618i −0.563251 0.173740i
\(50\) 0.891241 + 0.274911i 0.126040 + 0.0388783i
\(51\) 0.732983 + 1.93181i 0.102638 + 0.270508i
\(52\) −0.0784751 0.0535034i −0.0108825 0.00741959i
\(53\) 7.23932 + 3.48627i 0.994398 + 0.478877i 0.859034 0.511919i \(-0.171065\pi\)
0.135364 + 0.990796i \(0.456780\pi\)
\(54\) 3.05535 7.06727i 0.415780 0.961734i
\(55\) 1.76294 2.21066i 0.237715 0.298085i
\(56\) −0.338721 4.51992i −0.0452635 0.603999i
\(57\) 2.03349 3.43154i 0.269342 0.454519i
\(58\) 7.97646 0.220961i 1.04736 0.0290136i
\(59\) −4.58870 + 7.94786i −0.597398 + 1.03472i 0.395806 + 0.918334i \(0.370465\pi\)
−0.993204 + 0.116389i \(0.962868\pi\)
\(60\) −0.720255 0.356986i −0.0929845 0.0460866i
\(61\) 5.47218 + 0.824798i 0.700640 + 0.105605i 0.489696 0.871893i \(-0.337108\pi\)
0.210945 + 0.977498i \(0.432346\pi\)
\(62\) −5.85818 7.34593i −0.743990 0.932934i
\(63\) 4.26605 2.76880i 0.537472 0.348835i
\(64\) −6.37164 + 3.06842i −0.796455 + 0.383553i
\(65\) 1.13917 + 0.171702i 0.141297 + 0.0212970i
\(66\) −2.26554 + 2.05475i −0.278869 + 0.252922i
\(67\) −10.9252 3.36998i −1.33472 0.411708i −0.456401 0.889774i \(-0.650862\pi\)
−0.878324 + 0.478066i \(0.841338\pi\)
\(68\) −0.230741 + 0.0347787i −0.0279815 + 0.00421753i
\(69\) 9.68097 2.86624i 1.16545 0.345054i
\(70\) −2.98002 5.16154i −0.356180 0.616922i
\(71\) −1.77020 + 7.75573i −0.210084 + 0.920436i 0.754425 + 0.656386i \(0.227916\pi\)
−0.964509 + 0.264050i \(0.914942\pi\)
\(72\) −6.52298 4.66770i −0.768740 0.550093i
\(73\) 11.7302 5.64896i 1.37291 0.661160i 0.405437 0.914123i \(-0.367119\pi\)
0.967476 + 0.252963i \(0.0814049\pi\)
\(74\) 3.04447 0.939096i 0.353913 0.109168i
\(75\) 1.09015 + 0.0123768i 0.125880 + 0.00142915i
\(76\) 0.330225 + 0.306404i 0.0378793 + 0.0351469i
\(77\) −1.99773 + 0.301109i −0.227662 + 0.0343146i
\(78\) −1.18655 0.380806i −0.134350 0.0431178i
\(79\) −4.48885 + 4.16505i −0.505035 + 0.468604i −0.891061 0.453884i \(-0.850038\pi\)
0.386026 + 0.922488i \(0.373848\pi\)
\(80\) −6.43941 + 8.07477i −0.719948 + 0.902787i
\(81\) 1.07930 8.93505i 0.119922 0.992783i
\(82\) 13.3886 + 6.44760i 1.47852 + 0.712018i
\(83\) −4.51785 + 11.5113i −0.495899 + 1.26353i 0.435717 + 0.900084i \(0.356495\pi\)
−0.931615 + 0.363446i \(0.881600\pi\)
\(84\) 0.203757 + 0.537013i 0.0222318 + 0.0585930i
\(85\) 2.33856 1.59441i 0.253653 0.172938i
\(86\) −1.98163 + 3.43229i −0.213685 + 0.370113i
\(87\) 8.86687 2.89457i 0.950629 0.310331i
\(88\) 1.59314 + 2.75940i 0.169829 + 0.294153i
\(89\) −5.81851 2.80205i −0.616761 0.297016i 0.0992963 0.995058i \(-0.468341\pi\)
−0.716057 + 0.698041i \(0.754055\pi\)
\(90\) −10.3909 1.80834i −1.09530 0.190615i
\(91\) −0.513218 0.643555i −0.0537999 0.0674629i
\(92\) 0.0852103 + 1.13705i 0.00888379 + 0.118546i
\(93\) −9.00367 6.28950i −0.933637 0.652191i
\(94\) 5.04803 + 12.8622i 0.520665 + 1.32663i
\(95\) −5.22130 1.61056i −0.535694 0.165240i
\(96\) 1.41473 1.28310i 0.144390 0.130956i
\(97\) 1.98904 5.06799i 0.201956 0.514577i −0.793633 0.608397i \(-0.791813\pi\)
0.995589 + 0.0938205i \(0.0299080\pi\)
\(98\) 1.36046 5.96055i 0.137427 0.602106i
\(99\) −1.85742 + 3.05481i −0.186678 + 0.307020i
\(100\) −0.0273979 + 0.120038i −0.00273979 + 0.0120038i
\(101\) −6.93245 4.72646i −0.689805 0.470301i 0.166990 0.985959i \(-0.446595\pi\)
−0.856795 + 0.515658i \(0.827548\pi\)
\(102\) −2.77332 + 1.29698i −0.274599 + 0.128420i
\(103\) 1.68906 + 1.56722i 0.166428 + 0.154423i 0.758990 0.651102i \(-0.225693\pi\)
−0.592562 + 0.805525i \(0.701884\pi\)
\(104\) −0.649101 + 1.12428i −0.0636495 + 0.110244i
\(105\) −5.05288 4.79628i −0.493111 0.468069i
\(106\) −4.34975 + 11.0830i −0.422485 + 1.07647i
\(107\) −1.78529 7.82187i −0.172591 0.756169i −0.984926 0.172978i \(-0.944661\pi\)
0.812335 0.583191i \(-0.198196\pi\)
\(108\) 0.960500 + 0.332495i 0.0924242 + 0.0319944i
\(109\) 3.68797 4.62457i 0.353243 0.442953i −0.573184 0.819427i \(-0.694292\pi\)
0.926427 + 0.376474i \(0.122863\pi\)
\(110\) 3.46172 + 2.36016i 0.330062 + 0.225032i
\(111\) 3.10069 2.06284i 0.294304 0.195796i
\(112\) 7.29701 1.09985i 0.689503 0.103926i
\(113\) 2.97136 + 7.57091i 0.279522 + 0.712212i 0.999828 + 0.0185546i \(0.00590644\pi\)
−0.720305 + 0.693657i \(0.755998\pi\)
\(114\) 5.29568 + 2.62474i 0.495986 + 0.245829i
\(115\) −6.91523 11.9775i −0.644849 1.11691i
\(116\) 0.107778 + 1.04787i 0.0100070 + 0.0972920i
\(117\) −1.45627 0.0330713i −0.134633 0.00305744i
\(118\) −12.2520 5.90026i −1.12789 0.543163i
\(119\) −1.99973 0.301411i −0.183315 0.0276303i
\(120\) −4.13006 + 10.1818i −0.377021 + 0.929467i
\(121\) −7.91519 + 5.39649i −0.719563 + 0.490590i
\(122\) −0.612790 + 8.17711i −0.0554794 + 0.740321i
\(123\) 17.1458 + 2.78374i 1.54598 + 0.251001i
\(124\) 0.909249 0.843660i 0.0816530 0.0757629i
\(125\) 2.30749 + 10.1098i 0.206389 + 0.904247i
\(126\) 4.56361 + 5.99699i 0.406558 + 0.534255i
\(127\) 1.68982 7.40358i 0.149947 0.656961i −0.842951 0.537991i \(-0.819183\pi\)
0.992898 0.118970i \(-0.0379594\pi\)
\(128\) −6.34219 10.9850i −0.560575 0.970945i
\(129\) −1.08209 + 4.50458i −0.0952724 + 0.396606i
\(130\) −0.127567 + 1.70227i −0.0111884 + 0.149299i
\(131\) −0.268374 + 3.58120i −0.0234479 + 0.312891i 0.973131 + 0.230250i \(0.0739544\pi\)
−0.996579 + 0.0826406i \(0.973665\pi\)
\(132\) −0.292844 0.277973i −0.0254888 0.0241944i
\(133\) 1.95205 + 3.38105i 0.169264 + 0.293174i
\(134\) 3.76976 16.5164i 0.325658 1.42680i
\(135\) −12.2464 + 1.42130i −1.05400 + 0.122326i
\(136\) 0.709725 + 3.10951i 0.0608584 + 0.266638i
\(137\) −11.2772 + 10.4637i −0.963479 + 0.893978i −0.994415 0.105543i \(-0.966342\pi\)
0.0309355 + 0.999521i \(0.490151\pi\)
\(138\) 5.30719 + 13.9874i 0.451778 + 1.19068i
\(139\) −0.704840 + 9.40544i −0.0597838 + 0.797759i 0.884061 + 0.467371i \(0.154799\pi\)
−0.943845 + 0.330388i \(0.892820\pi\)
\(140\) 0.650083 0.443219i 0.0549421 0.0374589i
\(141\) 9.92614 + 12.7411i 0.835932 + 1.07299i
\(142\) −11.6560 1.75686i −0.978151 0.147432i
\(143\) 0.521339 + 0.251063i 0.0435965 + 0.0209950i
\(144\) 6.78452 11.1582i 0.565376 0.929847i
\(145\) −6.69250 10.8841i −0.555782 0.903877i
\(146\) 9.64589 + 16.7072i 0.798300 + 1.38270i
\(147\) −0.453123 7.13217i −0.0373730 0.588252i
\(148\) 0.153660 + 0.391520i 0.0126308 + 0.0321827i
\(149\) 3.43803 0.518200i 0.281655 0.0424526i −0.00669566 0.999978i \(-0.502131\pi\)
0.288350 + 0.957525i \(0.406893\pi\)
\(150\) 0.102426 + 1.61219i 0.00836308 + 0.131635i
\(151\) −17.3172 11.8067i −1.40926 0.960816i −0.998802 0.0489351i \(-0.984417\pi\)
−0.410456 0.911881i \(-0.634630\pi\)
\(152\) 3.83901 4.81397i 0.311385 0.390465i
\(153\) −2.67800 + 2.37399i −0.216504 + 0.191925i
\(154\) −0.666137 2.91854i −0.0536788 0.235182i
\(155\) −5.49651 + 14.0049i −0.441490 + 1.12490i
\(156\) 0.0384249 0.159957i 0.00307645 0.0128068i
\(157\) −0.310875 + 0.538451i −0.0248105 + 0.0429731i −0.878164 0.478360i \(-0.841232\pi\)
0.853354 + 0.521333i \(0.174565\pi\)
\(158\) −6.65140 6.17159i −0.529157 0.490986i
\(159\) −1.19751 + 13.8655i −0.0949689 + 1.09960i
\(160\) −2.16169 1.47381i −0.170896 0.116515i
\(161\) −2.19894 + 9.63419i −0.173301 + 0.759281i
\(162\) 13.3221 + 0.605389i 1.04668 + 0.0475638i
\(163\) −2.55690 + 11.2025i −0.200272 + 0.877448i 0.770499 + 0.637441i \(0.220007\pi\)
−0.970771 + 0.240007i \(0.922850\pi\)
\(164\) −0.716700 + 1.82612i −0.0559649 + 0.142596i
\(165\) 4.66317 + 1.49658i 0.363028 + 0.116509i
\(166\) −17.5096 5.40098i −1.35900 0.419197i
\(167\) −1.46458 3.73169i −0.113333 0.288767i 0.862942 0.505303i \(-0.168619\pi\)
−0.976275 + 0.216536i \(0.930524\pi\)
\(168\) 7.11143 3.32576i 0.548659 0.256588i
\(169\) −0.953873 12.7285i −0.0733748 0.979119i
\(170\) 2.61487 + 3.27895i 0.200552 + 0.251484i
\(171\) 6.80651 + 1.18454i 0.520507 + 0.0905843i
\(172\) −0.471387 0.227008i −0.0359429 0.0173092i
\(173\) −0.558065 0.966598i −0.0424289 0.0734891i 0.844031 0.536294i \(-0.180176\pi\)
−0.886460 + 0.462805i \(0.846843\pi\)
\(174\) 5.25892 + 12.7813i 0.398677 + 0.968949i
\(175\) −0.533534 + 0.924108i −0.0403314 + 0.0698560i
\(176\) −4.28614 + 2.92224i −0.323080 + 0.220272i
\(177\) −15.6903 2.54742i −1.17935 0.191476i
\(178\) 3.49606 8.90780i 0.262040 0.667668i
\(179\) 4.03021 + 1.94085i 0.301232 + 0.145066i 0.578394 0.815758i \(-0.303680\pi\)
−0.277162 + 0.960823i \(0.589394\pi\)
\(180\) 0.135546 1.38573i 0.0101030 0.103286i
\(181\) −15.8253 + 19.8442i −1.17628 + 1.47501i −0.328630 + 0.944459i \(0.606587\pi\)
−0.847652 + 0.530552i \(0.821985\pi\)
\(182\) 0.894098 0.829602i 0.0662749 0.0614942i
\(183\) 2.02667 + 9.36844i 0.149816 + 0.692535i
\(184\) 15.4111 2.32285i 1.13612 0.171243i
\(185\) −3.73971 3.46994i −0.274949 0.255115i
\(186\) 8.29647 14.0004i 0.608327 1.02656i
\(187\) 1.35847 0.419034i 0.0993414 0.0306428i
\(188\) −1.64342 + 0.791428i −0.119859 + 0.0577208i
\(189\) 7.10504 + 5.20718i 0.516816 + 0.378766i
\(190\) 1.80162 7.89342i 0.130703 0.572649i
\(191\) −2.52244 4.36899i −0.182517 0.316129i 0.760220 0.649666i \(-0.225091\pi\)
−0.942737 + 0.333537i \(0.891758\pi\)
\(192\) −8.88402 8.43287i −0.641149 0.608590i
\(193\) 6.66412 1.00445i 0.479694 0.0723022i 0.0952554 0.995453i \(-0.469633\pi\)
0.384438 + 0.923151i \(0.374395\pi\)
\(194\) 7.70880 + 2.37785i 0.553459 + 0.170720i
\(195\) 0.421902 + 1.95027i 0.0302130 + 0.139662i
\(196\) 0.798087 + 0.120292i 0.0570062 + 0.00859230i
\(197\) 19.2638 9.27695i 1.37249 0.660955i 0.405104 0.914271i \(-0.367235\pi\)
0.967384 + 0.253315i \(0.0815210\pi\)
\(198\) −4.71951 2.40629i −0.335401 0.171008i
\(199\) 1.45204 + 1.82080i 0.102932 + 0.129073i 0.830629 0.556826i \(-0.187981\pi\)
−0.727697 + 0.685899i \(0.759409\pi\)
\(200\) 1.66412 + 0.250825i 0.117671 + 0.0177360i
\(201\) −1.25558 19.7629i −0.0885621 1.39397i
\(202\) 6.21626 10.7669i 0.437374 0.757554i
\(203\) −1.78422 + 8.95325i −0.125228 + 0.628395i
\(204\) −0.198098 0.352293i −0.0138697 0.0246655i
\(205\) −1.77818 23.7281i −0.124193 1.65724i
\(206\) −2.12871 + 2.66932i −0.148314 + 0.185980i
\(207\) 10.5900 + 13.9162i 0.736056 + 0.967245i
\(208\) −1.90427 0.917048i −0.132037 0.0635858i
\(209\) −2.26759 1.54602i −0.156852 0.106940i
\(210\) 6.52755 7.99732i 0.450444 0.551868i
\(211\) −21.1657 6.52875i −1.45711 0.449458i −0.537824 0.843057i \(-0.680753\pi\)
−0.919282 + 0.393600i \(0.871230\pi\)
\(212\) −1.50191 0.463278i −0.103152 0.0318181i
\(213\) −13.6473 + 1.89881i −0.935099 + 0.130104i
\(214\) 11.3600 3.50411i 0.776556 0.239536i
\(215\) 6.34612 0.432802
\(216\) 3.55086 13.4314i 0.241605 0.913888i
\(217\) 9.68511 4.66410i 0.657468 0.316620i
\(218\) 7.24171 + 4.93731i 0.490470 + 0.334397i
\(219\) 16.3555 + 15.5249i 1.10520 + 1.04907i
\(220\) −0.276548 + 0.478996i −0.0186449 + 0.0322939i
\(221\) 0.424600 + 0.393971i 0.0285617 + 0.0265014i
\(222\) 3.39143 + 4.35320i 0.227618 + 0.292168i
\(223\) 12.9835 12.0469i 0.869440 0.806723i −0.112943 0.993602i \(-0.536028\pi\)
0.982383 + 0.186879i \(0.0598372\pi\)
\(224\) 0.415972 + 1.82249i 0.0277933 + 0.121770i
\(225\) 0.649794 + 1.77299i 0.0433196 + 0.118200i
\(226\) −10.8579 + 5.22888i −0.722255 + 0.347820i
\(227\) −1.33636 17.8325i −0.0886976 1.18359i −0.846967 0.531646i \(-0.821574\pi\)
0.758269 0.651941i \(-0.226045\pi\)
\(228\) −0.293285 + 0.723034i −0.0194233 + 0.0478841i
\(229\) 9.89805 + 25.2198i 0.654082 + 1.66657i 0.741962 + 0.670442i \(0.233896\pi\)
−0.0878801 + 0.996131i \(0.528009\pi\)
\(230\) 16.9325 11.5444i 1.11649 0.761212i
\(231\) −1.71511 3.05011i −0.112846 0.200682i
\(232\) 14.1725 2.53936i 0.930468 0.166717i
\(233\) 7.98911 0.523384 0.261692 0.965151i \(-0.415719\pi\)
0.261692 + 0.965151i \(0.415719\pi\)
\(234\) −0.112390 2.15548i −0.00734714 0.140908i
\(235\) 13.7946 17.2978i 0.899858 1.12839i
\(236\) 0.655859 1.67110i 0.0426928 0.108779i
\(237\) −9.50303 4.71006i −0.617288 0.305951i
\(238\) 0.223936 2.98821i 0.0145156 0.193697i
\(239\) 10.1683 + 25.9084i 0.657734 + 1.67588i 0.734310 + 0.678814i \(0.237506\pi\)
−0.0765764 + 0.997064i \(0.524399\pi\)
\(240\) −17.0329 5.46649i −1.09947 0.352861i
\(241\) −14.4134 + 13.3737i −0.928449 + 0.861474i −0.990628 0.136591i \(-0.956386\pi\)
0.0621790 + 0.998065i \(0.480195\pi\)
\(242\) −8.85040 11.0981i −0.568925 0.713410i
\(243\) 15.1326 3.74228i 0.970756 0.240067i
\(244\) −1.08251 −0.0693004
\(245\) −9.35475 + 2.88556i −0.597653 + 0.184352i
\(246\) −2.21471 + 25.6432i −0.141205 + 1.63495i
\(247\) 0.0835626 1.11507i 0.00531696 0.0709499i
\(248\) −12.4279 11.5314i −0.789174 0.732247i
\(249\) −21.4174 0.243158i −1.35727 0.0154095i
\(250\) −14.6829 + 4.52907i −0.928627 + 0.286443i
\(251\) −4.18896 5.25280i −0.264405 0.331554i 0.631851 0.775090i \(-0.282295\pi\)
−0.896257 + 0.443536i \(0.853724\pi\)
\(252\) −0.744442 + 0.659930i −0.0468954 + 0.0415717i
\(253\) −1.54579 6.77256i −0.0971832 0.425787i
\(254\) 11.1268 + 1.67709i 0.698155 + 0.105230i
\(255\) 4.01890 + 2.80740i 0.251673 + 0.175806i
\(256\) 3.84301 2.62012i 0.240188 0.163757i
\(257\) −29.6252 + 4.46528i −1.84797 + 0.278536i −0.977069 0.212924i \(-0.931701\pi\)
−0.870900 + 0.491460i \(0.836463\pi\)
\(258\) −6.77586 1.10011i −0.421846 0.0684897i
\(259\) 0.272399 + 3.63491i 0.0169260 + 0.225862i
\(260\) −0.225351 −0.0139757
\(261\) 10.1357 + 12.5805i 0.627383 + 0.778711i
\(262\) −5.32135 −0.328754
\(263\) 2.06945 + 27.6149i 0.127608 + 1.70281i 0.582965 + 0.812497i \(0.301892\pi\)
−0.455358 + 0.890309i \(0.650489\pi\)
\(264\) −3.48968 + 4.27543i −0.214775 + 0.263135i
\(265\) 18.8514 2.84139i 1.15803 0.174545i
\(266\) −4.77974 + 3.25877i −0.293065 + 0.199808i
\(267\) 0.962485 11.1442i 0.0589031 0.682014i
\(268\) 2.21146 + 0.333324i 0.135087 + 0.0203610i
\(269\) −2.45630 10.7618i −0.149763 0.656156i −0.992950 0.118535i \(-0.962180\pi\)
0.843186 0.537621i \(-0.180677\pi\)
\(270\) −3.45620 17.9381i −0.210338 1.09168i
\(271\) 9.47793 + 11.8849i 0.575743 + 0.721959i 0.981380 0.192075i \(-0.0615218\pi\)
−0.405637 + 0.914034i \(0.632950\pi\)
\(272\) −4.96203 + 1.53058i −0.300867 + 0.0928053i
\(273\) 0.726830 1.22653i 0.0439897 0.0742333i
\(274\) −16.7101 15.5048i −1.00950 0.936676i
\(275\) 0.0560564 0.748021i 0.00338033 0.0451073i
\(276\) −1.78899 + 0.836645i −0.107684 + 0.0503601i
\(277\) 13.2145 4.07612i 0.793980 0.244910i 0.128876 0.991661i \(-0.458863\pi\)
0.665105 + 0.746750i \(0.268387\pi\)
\(278\) −13.9757 −0.838206
\(279\) 4.65297 18.4451i 0.278566 1.10428i
\(280\) −6.70515 8.40799i −0.400709 0.502474i
\(281\) 22.9015 21.2495i 1.36619 1.26764i 0.436303 0.899800i \(-0.356288\pi\)
0.929889 0.367840i \(-0.119903\pi\)
\(282\) −17.7273 + 16.0779i −1.05564 + 0.957424i
\(283\) 1.59227 + 4.05703i 0.0946504 + 0.241165i 0.970356 0.241680i \(-0.0776985\pi\)
−0.875706 + 0.482846i \(0.839603\pi\)
\(284\) 0.116289 1.55177i 0.00690047 0.0920804i
\(285\) −0.600061 9.44498i −0.0355445 0.559472i
\(286\) −0.313247 + 0.798139i −0.0185227 + 0.0471950i
\(287\) −10.6002 + 13.2923i −0.625711 + 0.784617i
\(288\) 2.94712 + 1.50262i 0.173661 + 0.0885427i
\(289\) −15.5769 −0.916291
\(290\) 15.3415 11.0942i 0.900883 0.651472i
\(291\) 9.42927 + 0.107053i 0.552753 + 0.00627557i
\(292\) −2.10423 + 1.43464i −0.123141 + 0.0839558i
\(293\) 0.320927 + 0.817709i 0.0187488 + 0.0477711i 0.939942 0.341335i \(-0.110879\pi\)
−0.921193 + 0.389106i \(0.872784\pi\)
\(294\) 10.4884 1.45930i 0.611698 0.0851082i
\(295\) 1.62723 + 21.7138i 0.0947408 + 1.26423i
\(296\) 5.17951 2.49432i 0.301053 0.144979i
\(297\) −6.08824 1.13090i −0.353276 0.0656214i
\(298\) 1.14640 + 5.02271i 0.0664092 + 0.290958i
\(299\) 2.07478 1.92512i 0.119988 0.111333i
\(300\) −0.211224 + 0.0293885i −0.0121950 + 0.00169675i
\(301\) −3.32391 3.08414i −0.191587 0.177767i
\(302\) 15.5282 26.8956i 0.893547 1.54767i
\(303\) 3.39443 14.1306i 0.195005 0.811780i
\(304\) 8.28271 + 5.64706i 0.475046 + 0.323881i
\(305\) 11.8299 5.69697i 0.677377 0.326208i
\(306\) −3.80438 3.69419i −0.217482 0.211183i
\(307\) −15.1308 −0.863559 −0.431779 0.901979i \(-0.642114\pi\)
−0.431779 + 0.901979i \(0.642114\pi\)
\(308\) 0.377634 0.116485i 0.0215177 0.00663732i
\(309\) −1.50012 + 3.69823i −0.0853388 + 0.210385i
\(310\) −21.3025 6.57094i −1.20990 0.373204i
\(311\) 26.0429 + 8.03317i 1.47676 + 0.455519i 0.925478 0.378801i \(-0.123664\pi\)
0.551279 + 0.834321i \(0.314140\pi\)
\(312\) −2.21949 0.360349i −0.125654 0.0204008i
\(313\) −9.07926 6.19014i −0.513190 0.349887i 0.278871 0.960329i \(-0.410040\pi\)
−0.792062 + 0.610441i \(0.790992\pi\)
\(314\) −0.830048 0.399730i −0.0468423 0.0225581i
\(315\) 4.66239 11.1297i 0.262696 0.627087i
\(316\) 0.746831 0.936496i 0.0420125 0.0526820i
\(317\) −1.64869 22.0002i −0.0925996 1.23566i −0.829054 0.559169i \(-0.811120\pi\)
0.736454 0.676487i \(-0.236499\pi\)
\(318\) −20.6205 0.234110i −1.15634 0.0131283i
\(319\) −1.60077 6.21479i −0.0896257 0.347961i
\(320\) −8.38966 + 14.5313i −0.468996 + 0.812325i
\(321\) 11.5698 7.69721i 0.645762 0.429616i
\(322\) −14.4791 2.18238i −0.806891 0.121619i
\(323\) −1.71286 2.14786i −0.0953063 0.119510i
\(324\) 0.0517310 + 1.75973i 0.00287395 + 0.0977630i
\(325\) 0.275358 0.132605i 0.0152741 0.00735562i
\(326\) −16.8361 2.53764i −0.932468 0.140547i
\(327\) 9.75508 + 3.13076i 0.539457 + 0.173131i
\(328\) 25.6223 + 7.90344i 1.41476 + 0.436395i
\(329\) −15.6317 + 2.35610i −0.861804 + 0.129896i
\(330\) −1.69501 + 7.05610i −0.0933073 + 0.388425i
\(331\) 2.87814 + 4.98509i 0.158197 + 0.274005i 0.934219 0.356701i \(-0.116099\pi\)
−0.776022 + 0.630706i \(0.782765\pi\)
\(332\) 0.538266 2.35830i 0.0295412 0.129428i
\(333\) 5.24576 + 3.75375i 0.287466 + 0.205704i
\(334\) 5.35183 2.57730i 0.292839 0.141024i
\(335\) −25.9216 + 7.99575i −1.41625 + 0.436855i
\(336\) 6.26470 + 11.1410i 0.341768 + 0.607791i
\(337\) −5.36741 4.98023i −0.292381 0.271290i 0.520319 0.853972i \(-0.325813\pi\)
−0.812701 + 0.582682i \(0.802003\pi\)
\(338\) 18.7023 2.81892i 1.01727 0.153329i
\(339\) −10.4346 + 9.46374i −0.566730 + 0.514000i
\(340\) −0.405855 + 0.376578i −0.0220106 + 0.0204228i
\(341\) −4.71152 + 5.90807i −0.255143 + 0.319940i
\(342\) −0.996602 + 10.1886i −0.0538901 + 0.550935i
\(343\) 16.9938 + 8.18377i 0.917578 + 0.441882i
\(344\) −2.61266 + 6.65694i −0.140865 + 0.358918i
\(345\) 15.1474 18.5581i 0.815509 0.999133i
\(346\) 1.36646 0.931640i 0.0734616 0.0500853i
\(347\) −3.89554 + 6.74728i −0.209124 + 0.362213i −0.951439 0.307838i \(-0.900394\pi\)
0.742315 + 0.670051i \(0.233728\pi\)
\(348\) −1.63069 + 0.818392i −0.0874143 + 0.0438704i
\(349\) 18.2339 + 31.5820i 0.976037 + 1.69055i 0.676470 + 0.736471i \(0.263509\pi\)
0.299568 + 0.954075i \(0.403158\pi\)
\(350\) −1.42456 0.686030i −0.0761457 0.0366699i
\(351\) −0.841244 2.37861i −0.0449023 0.126961i
\(352\) −0.819333 1.02741i −0.0436706 0.0547612i
\(353\) 1.67018 + 22.2870i 0.0888945 + 1.18621i 0.846095 + 0.533032i \(0.178948\pi\)
−0.757200 + 0.653183i \(0.773433\pi\)
\(354\) 2.02670 23.4663i 0.107718 1.24722i
\(355\) 6.89575 + 17.5701i 0.365988 + 0.932523i
\(356\) 1.20714 + 0.372354i 0.0639784 + 0.0197347i
\(357\) −0.740619 3.42357i −0.0391977 0.181194i
\(358\) −2.42155 + 6.17001i −0.127983 + 0.326095i
\(359\) −0.288932 + 1.26589i −0.0152492 + 0.0668113i −0.981980 0.188985i \(-0.939480\pi\)
0.966731 + 0.255796i \(0.0823375\pi\)
\(360\) −19.0261 0.432074i −1.00276 0.0227723i
\(361\) 3.04775 13.3531i 0.160408 0.702793i
\(362\) −31.0745 21.1863i −1.63324 1.11353i
\(363\) −13.6025 9.50203i −0.713947 0.498727i
\(364\) 0.118032 + 0.109518i 0.00618656 + 0.00574028i
\(365\) 15.4453 26.7521i 0.808446 1.40027i
\(366\) −13.6185 + 4.03203i −0.711852 + 0.210757i
\(367\) −10.6835 + 27.2212i −0.557677 + 1.42094i 0.322627 + 0.946526i \(0.395434\pi\)
−0.880304 + 0.474410i \(0.842661\pi\)
\(368\) 5.64624 + 24.7378i 0.294331 + 1.28955i
\(369\) 6.02715 + 29.4764i 0.313761 + 1.53448i
\(370\) 4.71314 5.91009i 0.245024 0.307251i
\(371\) −11.2547 7.67330i −0.584313 0.398378i
\(372\) 1.92491 + 0.954056i 0.0998018 + 0.0494655i
\(373\) −3.70840 + 0.558952i −0.192014 + 0.0289414i −0.244345 0.969688i \(-0.578573\pi\)
0.0523312 + 0.998630i \(0.483335\pi\)
\(374\) 0.769597 + 1.96090i 0.0397949 + 0.101396i
\(375\) −14.9540 + 9.94866i −0.772220 + 0.513747i
\(376\) 12.4659 + 21.5916i 0.642880 + 1.11350i
\(377\) 1.86678 1.83089i 0.0961439 0.0942956i
\(378\) −6.90745 + 11.0751i −0.355281 + 0.569643i
\(379\) 20.5471 + 9.89498i 1.05544 + 0.508271i 0.879386 0.476110i \(-0.157954\pi\)
0.176050 + 0.984381i \(0.443668\pi\)
\(380\) 1.05689 + 0.159300i 0.0542172 + 0.00817193i
\(381\) 13.0277 1.81259i 0.667427 0.0928620i
\(382\) 6.17637 4.21098i 0.316011 0.215452i
\(383\) −1.11689 + 14.9038i −0.0570702 + 0.761549i 0.893108 + 0.449842i \(0.148520\pi\)
−0.950178 + 0.311707i \(0.899099\pi\)
\(384\) 13.8922 17.0202i 0.708932 0.868559i
\(385\) −3.51384 + 3.26037i −0.179082 + 0.166164i
\(386\) 2.22213 + 9.73578i 0.113103 + 0.495538i
\(387\) −7.95960 + 1.01548i −0.404609 + 0.0516198i
\(388\) −0.236978 + 1.03827i −0.0120307 + 0.0527101i
\(389\) −14.6790 25.4248i −0.744255 1.28909i −0.950542 0.310596i \(-0.899471\pi\)
0.206287 0.978492i \(-0.433862\pi\)
\(390\) −2.83504 + 0.839367i −0.143558 + 0.0425030i
\(391\) 0.519650 6.93425i 0.0262798 0.350680i
\(392\) 0.824403 11.0009i 0.0416386 0.555629i
\(393\) −5.96429 + 1.76584i −0.300859 + 0.0890750i
\(394\) 15.8409 + 27.4372i 0.798052 + 1.38227i
\(395\) −3.23299 + 14.1646i −0.162669 + 0.712700i
\(396\) 0.270213 0.645031i 0.0135787 0.0324140i
\(397\) 4.65684 + 20.4029i 0.233720 + 1.02399i 0.946525 + 0.322632i \(0.104567\pi\)
−0.712805 + 0.701363i \(0.752575\pi\)
\(398\) −2.52965 + 2.34718i −0.126800 + 0.117653i
\(399\) −4.27585 + 5.23862i −0.214060 + 0.262259i
\(400\) −0.204755 + 2.73226i −0.0102377 + 0.136613i
\(401\) −23.2359 + 15.8420i −1.16035 + 0.791110i −0.981253 0.192722i \(-0.938268\pi\)
−0.179092 + 0.983832i \(0.557316\pi\)
\(402\) 29.0630 4.04366i 1.44953 0.201679i
\(403\) −3.04447 0.458880i −0.151656 0.0228585i
\(404\) 1.47871 + 0.712109i 0.0735686 + 0.0354288i
\(405\) −9.82639 18.9585i −0.488277 0.942058i
\(406\) −13.4270 1.64498i −0.666373 0.0816390i
\(407\) −1.28120 2.21910i −0.0635067 0.109997i
\(408\) −4.59945 + 3.05995i −0.227707 + 0.151490i
\(409\) 0.0789584 + 0.201183i 0.00390424 + 0.00994785i 0.932813 0.360362i \(-0.117347\pi\)
−0.928908 + 0.370310i \(0.879252\pi\)
\(410\) 34.8642 5.25493i 1.72182 0.259522i
\(411\) −23.8742 11.8330i −1.17763 0.583677i
\(412\) −0.372398 0.253897i −0.0183468 0.0125086i
\(413\) 9.70036 12.1639i 0.477323 0.598545i
\(414\) −19.3902 + 17.1889i −0.952976 + 0.844790i
\(415\) 6.52886 + 28.6048i 0.320489 + 1.40415i
\(416\) 0.195608 0.498402i 0.00959049 0.0244362i
\(417\) −15.6643 + 4.63770i −0.767082 + 0.227109i
\(418\) 2.03332 3.52182i 0.0994530 0.172258i
\(419\) 5.40755 + 5.01748i 0.264176 + 0.245120i 0.801128 0.598493i \(-0.204234\pi\)
−0.536951 + 0.843613i \(0.680424\pi\)
\(420\) 1.11719 + 0.780411i 0.0545133 + 0.0380802i
\(421\) 7.81819 + 5.33035i 0.381035 + 0.259785i 0.738657 0.674081i \(-0.235460\pi\)
−0.357622 + 0.933866i \(0.616413\pi\)
\(422\) 7.30327 31.9977i 0.355517 1.55762i
\(423\) −14.5338 + 23.9031i −0.706659 + 1.16221i
\(424\) −4.78043 + 20.9444i −0.232158 + 1.01715i
\(425\) 0.274324 0.698965i 0.0133067 0.0339048i
\(426\) −4.31691 19.9552i −0.209155 0.966835i
\(427\) −8.96480 2.76527i −0.433837 0.133821i
\(428\) 0.573362 + 1.46090i 0.0277145 + 0.0706154i
\(429\) −0.0862387 + 0.998521i −0.00416364 + 0.0482090i
\(430\) 0.702719 + 9.37713i 0.0338881 + 0.452205i
\(431\) −9.29129 11.6509i −0.447546 0.561205i 0.505969 0.862552i \(-0.331135\pi\)
−0.953514 + 0.301347i \(0.902564\pi\)
\(432\) 22.2382 + 4.13078i 1.06994 + 0.198742i
\(433\) 31.8592 + 15.3426i 1.53105 + 0.737317i 0.994320 0.106435i \(-0.0339435\pi\)
0.536734 + 0.843751i \(0.319658\pi\)
\(434\) 7.96420 + 13.7944i 0.382294 + 0.662153i
\(435\) 13.5136 17.5255i 0.647927 0.840285i
\(436\) −0.578522 + 1.00203i −0.0277062 + 0.0479885i
\(437\) −11.0916 + 7.56209i −0.530581 + 0.361744i
\(438\) −21.1287 + 25.8862i −1.00957 + 1.23689i
\(439\) 11.3866 29.0125i 0.543451 1.38469i −0.350516 0.936557i \(-0.613994\pi\)
0.893967 0.448134i \(-0.147911\pi\)
\(440\) 6.81124 + 3.28012i 0.324713 + 0.156374i
\(441\) 11.2714 5.11611i 0.536734 0.243624i
\(442\) −0.535121 + 0.671021i −0.0254531 + 0.0319172i
\(443\) 6.74435 6.25784i 0.320434 0.297319i −0.503512 0.863988i \(-0.667959\pi\)
0.823945 + 0.566670i \(0.191768\pi\)
\(444\) −0.539612 + 0.489405i −0.0256088 + 0.0232261i
\(445\) −15.1515 + 2.28373i −0.718252 + 0.108259i
\(446\) 19.2384 + 17.8507i 0.910967 + 0.845253i
\(447\) 2.95165 + 5.24915i 0.139608 + 0.248276i
\(448\) 11.4563 3.53380i 0.541259 0.166956i
\(449\) 20.3897 9.81916i 0.962249 0.463395i 0.114285 0.993448i \(-0.463542\pi\)
0.847964 + 0.530053i \(0.177828\pi\)
\(450\) −2.54785 + 1.15647i −0.120107 + 0.0545166i
\(451\) 2.65946 11.6519i 0.125229 0.548665i
\(452\) −0.795463 1.37778i −0.0374154 0.0648054i
\(453\) 8.47929 35.2981i 0.398392 1.65845i
\(454\) 26.2017 3.94927i 1.22970 0.185348i
\(455\) −1.86625 0.575661i −0.0874910 0.0269874i
\(456\) 10.1546 + 3.25898i 0.475533 + 0.152616i
\(457\) 5.50164 + 0.829239i 0.257356 + 0.0387902i 0.276453 0.961027i \(-0.410841\pi\)
−0.0190970 + 0.999818i \(0.506079\pi\)
\(458\) −36.1692 + 17.4182i −1.69008 + 0.813897i
\(459\) −5.48992 2.87808i −0.256247 0.134337i
\(460\) 1.68678 + 2.11516i 0.0786465 + 0.0986196i
\(461\) 22.8053 + 3.43735i 1.06215 + 0.160093i 0.656798 0.754067i \(-0.271911\pi\)
0.405353 + 0.914160i \(0.367149\pi\)
\(462\) 4.31697 2.87202i 0.200844 0.133618i
\(463\) 5.18095 8.97367i 0.240779 0.417042i −0.720157 0.693811i \(-0.755930\pi\)
0.960936 + 0.276769i \(0.0892637\pi\)
\(464\) 5.84704 + 22.7005i 0.271442 + 1.05384i
\(465\) −26.0568 0.295831i −1.20836 0.0137188i
\(466\) 0.884651 + 11.8048i 0.0409807 + 0.546849i
\(467\) −1.99525 + 2.50196i −0.0923291 + 0.115777i −0.825850 0.563890i \(-0.809304\pi\)
0.733521 + 0.679667i \(0.237876\pi\)
\(468\) 0.282645 0.0360597i 0.0130653 0.00166686i
\(469\) 17.4628 + 8.40964i 0.806357 + 0.388321i
\(470\) 27.0870 + 18.4676i 1.24943 + 0.851849i
\(471\) −1.06298 0.172583i −0.0489797 0.00795219i
\(472\) −23.4472 7.23251i −1.07925 0.332903i
\(473\) 3.04590 + 0.939536i 0.140051 + 0.0431999i
\(474\) 5.90737 14.5634i 0.271334 0.668918i
\(475\) −1.38516 + 0.427265i −0.0635555 + 0.0196043i
\(476\) 0.395587 0.0181317
\(477\) −23.1896 + 6.58032i −1.06178 + 0.301292i
\(478\) −37.1568 + 17.8938i −1.69951 + 0.818441i
\(479\) −18.7634 12.7927i −0.857322 0.584512i 0.0529153 0.998599i \(-0.483149\pi\)
−0.910237 + 0.414087i \(0.864101\pi\)
\(480\) 1.05846 4.40621i 0.0483118 0.201115i
\(481\) 0.522005 0.904139i 0.0238014 0.0412252i
\(482\) −21.3572 19.8166i −0.972793 0.902620i
\(483\) −16.9527 + 2.35871i −0.771377 + 0.107325i
\(484\) 1.37367 1.27458i 0.0624396 0.0579355i
\(485\) −2.87441 12.5936i −0.130520 0.571846i
\(486\) 7.20532 + 21.9458i 0.326840 + 0.995480i
\(487\) −6.54678 + 3.15276i −0.296663 + 0.142865i −0.576295 0.817242i \(-0.695502\pi\)
0.279632 + 0.960107i \(0.409788\pi\)
\(488\) 1.10571 + 14.7547i 0.0500532 + 0.667913i
\(489\) −19.7124 + 2.74268i −0.891427 + 0.124028i
\(490\) −5.29962 13.5032i −0.239412 0.610013i
\(491\) 34.8781 23.7795i 1.57403 1.07315i 0.615507 0.788131i \(-0.288951\pi\)
0.958521 0.285023i \(-0.0920011\pi\)
\(492\) −3.39760 0.0385739i −0.153175 0.00173905i
\(493\) 0.302495 6.41694i 0.0136237 0.289005i
\(494\) 1.65689 0.0745471
\(495\) 0.441695 + 8.47111i 0.0198527 + 0.380748i
\(496\) 17.2096 21.5801i 0.772732 0.968975i
\(497\) 4.92705 12.5539i 0.221009 0.563121i
\(498\) −2.01230 31.6736i −0.0901731 1.41933i
\(499\) 2.56688 34.2527i 0.114909 1.53336i −0.580210 0.814467i \(-0.697030\pi\)
0.695120 0.718894i \(-0.255351\pi\)
\(500\) −0.741072 1.88822i −0.0331417 0.0844438i
\(501\) 5.14320 4.66466i 0.229781 0.208402i
\(502\) 7.29776 6.77133i 0.325715 0.302219i
\(503\) 1.68384 + 2.11147i 0.0750786 + 0.0941456i 0.817952 0.575286i \(-0.195109\pi\)
−0.742874 + 0.669431i \(0.766538\pi\)
\(504\) 9.75532 + 9.47276i 0.434537 + 0.421950i
\(505\) −19.9074 −0.885866
\(506\) 9.83608 3.03403i 0.437267 0.134879i
\(507\) 20.0265 9.36569i 0.889409 0.415945i
\(508\) −0.111009 + 1.48131i −0.00492521 + 0.0657224i
\(509\) −28.1110 26.0832i −1.24600 1.15612i −0.981444 0.191748i \(-0.938584\pi\)
−0.264555 0.964371i \(-0.585225\pi\)
\(510\) −3.70324 + 6.24926i −0.163982 + 0.276722i
\(511\) −21.0910 + 6.50571i −0.933011 + 0.287796i
\(512\) −11.5201 14.4457i −0.509120 0.638417i
\(513\) 2.26397 + 11.7503i 0.0999568 + 0.518789i
\(514\) −9.87842 43.2802i −0.435719 1.90901i
\(515\) 5.40586 + 0.814802i 0.238211 + 0.0359045i
\(516\) 0.0779758 0.902848i 0.00343269 0.0397457i
\(517\) 9.18180 6.26004i 0.403815 0.275316i
\(518\) −5.34083 + 0.805001i −0.234663 + 0.0353697i
\(519\) 1.22241 1.49765i 0.0536578 0.0657396i
\(520\) 0.230181 + 3.07156i 0.0100941 + 0.134697i
\(521\) −3.67935 −0.161195 −0.0805977 0.996747i \(-0.525683\pi\)
−0.0805977 + 0.996747i \(0.525683\pi\)
\(522\) −17.4668 + 16.3697i −0.764499 + 0.716482i
\(523\) −24.6642 −1.07849 −0.539244 0.842149i \(-0.681290\pi\)
−0.539244 + 0.842149i \(0.681290\pi\)
\(524\) −0.0524967 0.700520i −0.00229333 0.0306024i
\(525\) −1.82433 0.296192i −0.0796202 0.0129269i
\(526\) −40.5750 + 6.11570i −1.76915 + 0.266657i
\(527\) −6.24990 + 4.26111i −0.272250 + 0.185617i
\(528\) −7.36587 5.14542i −0.320558 0.223926i
\(529\) −10.8562 1.63631i −0.472010 0.0711440i
\(530\) 6.28593 + 27.5404i 0.273043 + 1.19628i
\(531\) −5.51550 26.9741i −0.239352 1.17058i
\(532\) −0.476149 0.597072i −0.0206437 0.0258863i
\(533\) 4.65313 1.43530i 0.201549 0.0621697i
\(534\) 16.5734 + 0.188163i 0.717203 + 0.00814261i
\(535\) −13.9542 12.9476i −0.603293 0.559774i
\(536\) 2.28438 30.4830i 0.0986703 1.31666i
\(537\) −0.666668 + 7.71906i −0.0287688 + 0.333102i
\(538\) 15.6298 4.82114i 0.673847 0.207854i
\(539\) −4.91713 −0.211796
\(540\) 2.32734 0.631950i 0.100153 0.0271948i
\(541\) −2.13649 2.67908i −0.0918549 0.115182i 0.733780 0.679387i \(-0.237754\pi\)
−0.825635 + 0.564205i \(0.809183\pi\)
\(542\) −16.5119 + 15.3208i −0.709246 + 0.658084i
\(543\) −41.8595 13.4342i −1.79636 0.576519i
\(544\) −0.480579 1.22449i −0.0206046 0.0524998i
\(545\) 1.04878 13.9950i 0.0449250 0.599482i
\(546\) 1.89283 + 0.938158i 0.0810057 + 0.0401495i
\(547\) 15.7297 40.0787i 0.672555 1.71364i −0.0275680 0.999620i \(-0.508776\pi\)
0.700123 0.714022i \(-0.253128\pi\)
\(548\) 1.87624 2.35274i 0.0801492 0.100504i
\(549\) −13.9260 + 9.03838i −0.594346 + 0.385749i
\(550\) 1.11149 0.0473943
\(551\) −10.0494 + 7.26719i −0.428118 + 0.309593i
\(552\) 13.2309 + 23.5295i 0.563145 + 1.00148i
\(553\) 8.57718 5.84783i 0.364739 0.248675i
\(554\) 7.48621 + 19.0745i 0.318058 + 0.810400i
\(555\) 3.32139 8.18818i 0.140985 0.347569i
\(556\) −0.137874 1.83980i −0.00584717 0.0780250i
\(557\) 5.53572 2.66586i 0.234556 0.112956i −0.312914 0.949781i \(-0.601305\pi\)
0.547470 + 0.836825i \(0.315591\pi\)
\(558\) 27.7700 + 4.83284i 1.17560 + 0.204590i
\(559\) 0.288989 + 1.26614i 0.0122229 + 0.0535521i
\(560\) 12.8348 11.9090i 0.542371 0.503247i
\(561\) 1.51329 + 1.94244i 0.0638911 + 0.0820099i
\(562\) 33.9346 + 31.4867i 1.43144 + 1.32819i
\(563\) 8.03249 13.9127i 0.338529 0.586350i −0.645627 0.763653i \(-0.723404\pi\)
0.984156 + 0.177303i \(0.0567373\pi\)
\(564\) −2.29143 2.17506i −0.0964865 0.0915867i
\(565\) 15.9439 + 10.8704i 0.670767 + 0.457321i
\(566\) −5.81842 + 2.80200i −0.244566 + 0.117777i
\(567\) −4.06685 + 14.7054i −0.170792 + 0.617570i
\(568\) −21.2695 −0.892450
\(569\) 8.95112 2.76105i 0.375250 0.115749i −0.101392 0.994847i \(-0.532330\pi\)
0.476643 + 0.879097i \(0.341854\pi\)
\(570\) 13.8896 1.93252i 0.581771 0.0809444i
\(571\) −35.1012 10.8273i −1.46894 0.453108i −0.545913 0.837842i \(-0.683817\pi\)
−0.923028 + 0.384734i \(0.874293\pi\)
\(572\) −0.108160 0.0333629i −0.00452239 0.00139497i
\(573\) 5.52525 6.76934i 0.230820 0.282793i
\(574\) −20.8146 14.1912i −0.868786 0.592328i
\(575\) −3.30573 1.59196i −0.137859 0.0663892i
\(576\) 8.19745 19.5683i 0.341560 0.815347i
\(577\) −16.5313 + 20.7296i −0.688208 + 0.862985i −0.996081 0.0884420i \(-0.971811\pi\)
0.307874 + 0.951427i \(0.400383\pi\)
\(578\) −1.72487 23.0167i −0.0717450 0.957370i
\(579\) 5.72135 + 10.1747i 0.237771 + 0.422846i
\(580\) 1.61182 + 1.91016i 0.0669272 + 0.0793149i
\(581\) 10.4820 18.1553i 0.434865 0.753208i
\(582\) 0.885938 + 13.9447i 0.0367233 + 0.578026i
\(583\) 9.46861 + 1.42716i 0.392150 + 0.0591071i
\(584\) 21.7036 + 27.2155i 0.898102 + 1.12618i
\(585\) −2.89904 + 1.88156i −0.119861 + 0.0777931i
\(586\) −1.17272 + 0.564754i −0.0484448 + 0.0233298i
\(587\) 25.1115 + 3.78495i 1.03646 + 0.156222i 0.645166 0.764043i \(-0.276788\pi\)
0.391297 + 0.920264i \(0.372026\pi\)
\(588\) 0.295579 + 1.36633i 0.0121895 + 0.0563467i
\(589\) 13.9541 + 4.30427i 0.574969 + 0.177354i
\(590\) −31.9045 + 4.80883i −1.31349 + 0.197976i
\(591\) 26.8596 + 25.4956i 1.10486 + 1.04875i
\(592\) 4.67978 + 8.10561i 0.192338 + 0.333139i
\(593\) 1.83226 8.02767i 0.0752421 0.329657i −0.923272 0.384146i \(-0.874496\pi\)
0.998514 + 0.0544891i \(0.0173530\pi\)
\(594\) 0.996871 9.12131i 0.0409021 0.374252i
\(595\) −4.32307 + 2.08188i −0.177229 + 0.0853488i
\(596\) −0.649896 + 0.200467i −0.0266208 + 0.00821143i
\(597\) −2.05641 + 3.47021i −0.0841631 + 0.142026i
\(598\) 3.07433 + 2.85256i 0.125719 + 0.116650i
\(599\) −26.4568 + 3.98772i −1.08099 + 0.162934i −0.665304 0.746572i \(-0.731698\pi\)
−0.415691 + 0.909506i \(0.636460\pi\)
\(600\) 0.616320 + 2.84899i 0.0251612 + 0.116309i
\(601\) 9.14414 8.48452i 0.372997 0.346091i −0.471293 0.881977i \(-0.656213\pi\)
0.844291 + 0.535886i \(0.180022\pi\)
\(602\) 4.18911 5.25297i 0.170735 0.214095i
\(603\) 31.2326 14.1765i 1.27189 0.577312i
\(604\) 3.69382 + 1.77885i 0.150299 + 0.0723803i
\(605\) −8.30399 + 21.1582i −0.337605 + 0.860204i
\(606\) 21.2554 + 3.45096i 0.863442 + 0.140186i
\(607\) −5.57311 + 3.79968i −0.226206 + 0.154224i −0.671120 0.741349i \(-0.734186\pi\)
0.444914 + 0.895573i \(0.353234\pi\)
\(608\) −1.26972 + 2.19922i −0.0514939 + 0.0891900i
\(609\) −15.5952 + 2.61191i −0.631950 + 0.105840i
\(610\) 9.72788 + 16.8492i 0.393870 + 0.682204i
\(611\) 4.07934 + 1.96451i 0.165032 + 0.0794754i
\(612\) 0.448783 0.537265i 0.0181410 0.0217177i
\(613\) −17.1169 21.4639i −0.691346 0.866921i 0.304998 0.952353i \(-0.401344\pi\)
−0.996344 + 0.0854323i \(0.972773\pi\)
\(614\) −1.67546 22.3575i −0.0676161 0.902274i
\(615\) 37.3327 17.4592i 1.50540 0.704023i
\(616\) −1.97343 5.02821i −0.0795117 0.202592i
\(617\) 20.8069 + 6.41808i 0.837654 + 0.258382i 0.683762 0.729705i \(-0.260343\pi\)
0.153893 + 0.988088i \(0.450819\pi\)
\(618\) −5.63068 1.80709i −0.226499 0.0726918i
\(619\) 15.2485 38.8526i 0.612890 1.56162i −0.200371 0.979720i \(-0.564215\pi\)
0.813261 0.581898i \(-0.197690\pi\)
\(620\) 0.654865 2.86915i 0.0263000 0.115228i
\(621\) −16.0290 + 25.7002i −0.643221 + 1.03131i
\(622\) −8.98616 + 39.3709i −0.360312 + 1.57863i
\(623\) 9.04579 + 6.16731i 0.362412 + 0.247088i
\(624\) 0.315000 3.64725i 0.0126101 0.146007i
\(625\) 20.3429 + 18.8755i 0.813717 + 0.755019i
\(626\) 8.14128 14.1011i 0.325391 0.563594i
\(627\) 1.11031 4.62207i 0.0443415 0.184588i
\(628\) 0.0444331 0.113214i 0.00177307 0.00451772i
\(629\) −0.570759 2.50066i −0.0227577 0.0997078i
\(630\) 16.9617 + 5.65680i 0.675770 + 0.225372i
\(631\) 16.2775 20.4114i 0.647999 0.812564i −0.343979 0.938977i \(-0.611775\pi\)
0.991978 + 0.126413i \(0.0403464\pi\)
\(632\) −13.5274 9.22282i −0.538091 0.366864i
\(633\) −2.43248 38.2873i −0.0966823 1.52178i
\(634\) 32.3253 4.87226i 1.28380 0.193502i
\(635\) −6.58264 16.7723i −0.261224 0.665588i
\(636\) −0.172608 2.71685i −0.00684435 0.107730i
\(637\) −1.00171 1.73500i −0.0396890 0.0687434i
\(638\) 9.00582 3.05349i 0.356544 0.120889i
\(639\) −11.4605 20.9338i −0.453369 0.828127i
\(640\) −27.1151 13.0579i −1.07182 0.516161i
\(641\) 28.3698 + 4.27606i 1.12054 + 0.168894i 0.683080 0.730343i \(-0.260640\pi\)
0.437461 + 0.899238i \(0.355878\pi\)
\(642\) 12.6547 + 16.2434i 0.499440 + 0.641074i
\(643\) 38.8484 26.4864i 1.53203 1.04452i 0.554892 0.831923i \(-0.312760\pi\)
0.977140 0.212599i \(-0.0681927\pi\)
\(644\) 0.144454 1.92761i 0.00569230 0.0759585i
\(645\) 3.89934 + 10.2769i 0.153536 + 0.404653i
\(646\) 2.98405 2.76879i 0.117406 0.108937i
\(647\) 1.36263 + 5.97008i 0.0535706 + 0.234708i 0.994624 0.103549i \(-0.0330198\pi\)
−0.941054 + 0.338257i \(0.890163\pi\)
\(648\) 23.9326 2.50256i 0.940159 0.0983097i
\(649\) −2.43370 + 10.6627i −0.0955310 + 0.418549i
\(650\) 0.226431 + 0.392189i 0.00888134 + 0.0153829i
\(651\) 13.5040 + 12.8182i 0.529264 + 0.502386i
\(652\) 0.167970 2.24140i 0.00657820 0.0877799i
\(653\) 1.49435 19.9406i 0.0584782 0.780338i −0.888466 0.458941i \(-0.848229\pi\)
0.946945 0.321396i \(-0.104152\pi\)
\(654\) −3.54586 + 14.7609i −0.138654 + 0.577198i
\(655\) 4.26037 + 7.37917i 0.166466 + 0.288328i
\(656\) −9.71409 + 42.5602i −0.379272 + 1.66170i
\(657\) −15.0915 + 36.0252i −0.588775 + 1.40548i
\(658\) −5.21234 22.8368i −0.203198 0.890270i
\(659\) 32.6701 30.3134i 1.27265 1.18084i 0.298629 0.954369i \(-0.403471\pi\)
0.974017 0.226473i \(-0.0727196\pi\)
\(660\) −0.945609 0.153526i −0.0368078 0.00597600i
\(661\) −2.11516 + 28.2249i −0.0822703 + 1.09782i 0.791399 + 0.611300i \(0.209353\pi\)
−0.873669 + 0.486520i \(0.838266\pi\)
\(662\) −7.04735 + 4.80480i −0.273903 + 0.186744i
\(663\) −0.377104 + 0.929671i −0.0146455 + 0.0361054i
\(664\) −32.6937 4.92778i −1.26876 0.191235i
\(665\) 8.34571 + 4.01908i 0.323633 + 0.155853i
\(666\) −4.96573 + 8.16689i −0.192418 + 0.316460i
\(667\) −31.1579 3.81723i −1.20644 0.147804i
\(668\) 0.392082 + 0.679106i 0.0151701 + 0.0262754i
\(669\) 27.4865 + 13.6233i 1.06269 + 0.526708i
\(670\) −14.6850 37.4168i −0.567331 1.44554i
\(671\) 6.52133 0.982933i 0.251753 0.0379457i
\(672\) −2.69575 + 1.79345i −0.103991 + 0.0691837i
\(673\) 0.0744191 + 0.0507381i 0.00286865 + 0.00195581i 0.564754 0.825260i \(-0.308971\pi\)
−0.561885 + 0.827215i \(0.689924\pi\)
\(674\) 6.76452 8.48244i 0.260560 0.326731i
\(675\) −2.47193 + 2.14168i −0.0951445 + 0.0824334i
\(676\) 0.555595 + 2.43422i 0.0213690 + 0.0936238i
\(677\) −4.17246 + 10.6313i −0.160361 + 0.408593i −0.988359 0.152138i \(-0.951384\pi\)
0.827999 + 0.560730i \(0.189480\pi\)
\(678\) −15.1392 14.3704i −0.581418 0.551892i
\(679\) −4.61481 + 7.99309i −0.177100 + 0.306746i
\(680\) 5.54736 + 5.14720i 0.212732 + 0.197386i
\(681\) 28.0569 13.1212i 1.07514 0.502806i
\(682\) −9.25157 6.30761i −0.354261 0.241531i
\(683\) −6.89006 + 30.1873i −0.263641 + 1.15509i 0.653627 + 0.756817i \(0.273246\pi\)
−0.917268 + 0.398270i \(0.869611\pi\)
\(684\) −1.35109 0.0306826i −0.0516602 0.00117318i
\(685\) −8.12216 + 35.5855i −0.310332 + 1.35965i
\(686\) −10.2107 + 26.0165i −0.389847 + 0.993314i
\(687\) −34.7592 + 31.5251i −1.32615 + 1.20276i
\(688\) −11.1256 3.43180i −0.424160 0.130836i
\(689\) 1.42535 + 3.63173i 0.0543014 + 0.138358i
\(690\) 29.0990 + 20.3271i 1.10778 + 0.773838i
\(691\) −1.61314 21.5259i −0.0613669 0.818884i −0.939954 0.341302i \(-0.889132\pi\)
0.878587 0.477582i \(-0.158487\pi\)
\(692\) 0.136125 + 0.170695i 0.00517468 + 0.00648885i
\(693\) 3.88551 4.65157i 0.147598 0.176699i
\(694\) −10.4012 5.00897i −0.394826 0.190138i
\(695\) 11.1892 + 19.3802i 0.424429 + 0.735133i
\(696\) 12.8204 + 21.3906i 0.485957 + 0.810808i
\(697\) 5.98175 10.3607i 0.226575 0.392439i
\(698\) −44.6470 + 30.4398i −1.68991 + 1.15216i
\(699\) 4.90887 + 12.9376i 0.185670 + 0.489344i
\(700\) 0.0762576 0.194301i 0.00288226 0.00734389i
\(701\) −17.6626 8.50585i −0.667106 0.321261i 0.0695013 0.997582i \(-0.477859\pi\)
−0.736608 + 0.676320i \(0.763573\pi\)
\(702\) 3.42152 1.50642i 0.129137 0.0568563i
\(703\) −3.08733 + 3.87138i −0.116441 + 0.146012i
\(704\) −6.17806 + 5.73241i −0.232845 + 0.216048i
\(705\) 36.4881 + 11.7104i 1.37422 + 0.441038i
\(706\) −32.7466 + 4.93576i −1.23244 + 0.185760i
\(707\) 10.4269 + 9.67473i 0.392143 + 0.363856i
\(708\) 3.10917 + 0.0352993i 0.116850 + 0.00132663i
\(709\) −31.7711 + 9.80007i −1.19319 + 0.368049i −0.826844 0.562431i \(-0.809866\pi\)
−0.366342 + 0.930480i \(0.619390\pi\)
\(710\) −25.1982 + 12.1348i −0.945673 + 0.455412i
\(711\) 1.78839 18.2833i 0.0670699 0.685676i
\(712\) 3.84221 16.8338i 0.143993 0.630874i
\(713\) 18.4812 + 32.0104i 0.692127 + 1.19880i
\(714\) 4.97671 1.47345i 0.186249 0.0551424i
\(715\) 1.35758 0.204622i 0.0507705 0.00765243i
\(716\) −0.836130 0.257912i −0.0312476 0.00963862i
\(717\) −35.7083 + 32.3859i −1.33355 + 1.20947i
\(718\) −1.90250 0.286755i −0.0710006 0.0107016i
\(719\) 20.1130 9.68591i 0.750088 0.361223i −0.0194614 0.999811i \(-0.506195\pi\)
0.769549 + 0.638587i \(0.220481\pi\)
\(720\) −1.61336 30.9420i −0.0601264 1.15314i
\(721\) −2.43544 3.05395i −0.0907007 0.113735i
\(722\) 20.0682 + 3.02479i 0.746861 + 0.112571i
\(723\) −30.5136 15.1237i −1.13481 0.562456i
\(724\) 2.48247 4.29976i 0.0922602 0.159799i
\(725\) −3.09351 1.38558i −0.114890 0.0514590i
\(726\) 12.5341 21.1515i 0.465185 0.785005i
\(727\) 1.78256 + 23.7866i 0.0661116 + 0.882197i 0.927398 + 0.374077i \(0.122040\pi\)
−0.861286 + 0.508120i \(0.830340\pi\)
\(728\) 1.37218 1.72065i 0.0508562 0.0637717i
\(729\) 15.3584 + 22.2063i 0.568829 + 0.822456i
\(730\) 41.2396 + 19.8600i 1.52635 + 0.735050i
\(731\) 2.63629 + 1.79739i 0.0975066 + 0.0664788i
\(732\) −0.665140 1.75301i −0.0245843 0.0647931i
\(733\) −3.76516 1.16140i −0.139069 0.0428973i 0.224439 0.974488i \(-0.427945\pi\)
−0.363508 + 0.931591i \(0.618421\pi\)
\(734\) −41.4055 12.7719i −1.52831 0.471420i
\(735\) −10.4208 13.3761i −0.384379 0.493384i
\(736\) −6.14219 + 1.89461i −0.226404 + 0.0698364i
\(737\) −13.6252 −0.501889
\(738\) −42.8874 + 12.1698i −1.57871 + 0.447976i
\(739\) 6.74041 3.24601i 0.247950 0.119406i −0.305781 0.952102i \(-0.598918\pi\)
0.553732 + 0.832695i \(0.313203\pi\)
\(740\) 0.824520 + 0.562148i 0.0303100 + 0.0206650i
\(741\) 1.85708 0.549824i 0.0682216 0.0201983i
\(742\) 10.0919 17.4797i 0.370487 0.641702i
\(743\) 8.90875 + 8.26611i 0.326830 + 0.303254i 0.826472 0.562978i \(-0.190344\pi\)
−0.499641 + 0.866232i \(0.666535\pi\)
\(744\) 11.0377 27.2112i 0.404663 0.997611i
\(745\) 6.04722 5.61100i 0.221553 0.205571i
\(746\) −1.23655 5.41770i −0.0452735 0.198356i
\(747\) −12.7660 34.8327i −0.467084 1.27446i
\(748\) −0.250547 + 0.120657i −0.00916091 + 0.00441166i
\(749\) 1.01642 + 13.5632i 0.0371391 + 0.495587i
\(750\) −16.3562 20.9946i −0.597244 0.766614i
\(751\) 1.45323 + 3.70278i 0.0530292 + 0.135116i 0.954934 0.296820i \(-0.0959260\pi\)
−0.901904 + 0.431936i \(0.857831\pi\)
\(752\) −33.5379 + 22.8658i −1.22300 + 0.833828i
\(753\) 5.93249 10.0112i 0.216192 0.364827i
\(754\) 2.91206 + 2.55564i 0.106051 + 0.0930710i
\(755\) −49.7286 −1.80981
\(756\) −1.52611 0.800060i −0.0555040 0.0290979i
\(757\) 20.2010 25.3313i 0.734219 0.920681i −0.264829 0.964295i \(-0.585316\pi\)
0.999048 + 0.0436138i \(0.0138871\pi\)
\(758\) −12.3458 + 31.4565i −0.448418 + 1.14255i
\(759\) 10.0177 6.66462i 0.363619 0.241910i
\(760\) 1.09174 14.5682i 0.0396015 0.528445i
\(761\) −0.382102 0.973581i −0.0138512 0.0352923i 0.923781 0.382922i \(-0.125082\pi\)
−0.937632 + 0.347629i \(0.886987\pi\)
\(762\) 4.12090 + 19.0492i 0.149284 + 0.690078i
\(763\) −7.35074 + 6.82049i −0.266115 + 0.246918i
\(764\) 0.615279 + 0.771535i 0.0222600 + 0.0279132i
\(765\) −2.07691 + 8.23320i −0.0750909 + 0.297672i
\(766\) −22.1458 −0.800159
\(767\) −4.25812 + 1.31346i −0.153752 + 0.0474261i
\(768\) 6.60434 + 4.61345i 0.238313 + 0.166474i
\(769\) −3.70329 + 49.4170i −0.133544 + 1.78202i 0.381015 + 0.924569i \(0.375575\pi\)
−0.514559 + 0.857455i \(0.672045\pi\)
\(770\) −5.20667 4.83108i −0.187635 0.174100i
\(771\) −25.4341 45.2314i −0.915987 1.62897i
\(772\) −1.25973 + 0.388575i −0.0453386 + 0.0139851i
\(773\) 7.84108 + 9.83240i 0.282024 + 0.353647i 0.902585 0.430511i \(-0.141667\pi\)
−0.620561 + 0.784158i \(0.713095\pi\)
\(774\) −2.38187 11.6488i −0.0856147 0.418707i
\(775\) 0.888138 + 3.89119i 0.0319029 + 0.139776i
\(776\) 14.3938 + 2.16951i 0.516707 + 0.0778810i
\(777\) −5.71900 + 2.67457i −0.205168 + 0.0959497i
\(778\) 35.9426 24.5053i 1.28861 0.878557i
\(779\) −22.8376 + 3.44222i −0.818243 + 0.123330i
\(780\) −0.138465 0.364933i −0.00495786 0.0130667i
\(781\) 0.708471 + 9.45389i 0.0253511 + 0.338287i
\(782\) 10.3037 0.368460
\(783\) −14.1450 + 24.1437i −0.505501 + 0.862826i
\(784\) 17.9606 0.641449
\(785\) 0.110241 + 1.47107i 0.00393468 + 0.0525046i
\(786\) −3.26968 8.61740i −0.116625 0.307373i
\(787\) −2.05042 + 0.309051i −0.0730897 + 0.0110165i −0.185485 0.982647i \(-0.559386\pi\)
0.112396 + 0.993664i \(0.464148\pi\)
\(788\) −3.45565 + 2.35602i −0.123102 + 0.0839298i
\(789\) −43.4480 + 20.3191i −1.54679 + 0.723378i
\(790\) −21.2879 3.20863i −0.757389 0.114158i
\(791\) −3.06808 13.4421i −0.109088 0.477948i
\(792\) −9.06785 3.02417i −0.322212 0.107459i
\(793\) 1.67533 + 2.10080i 0.0594929 + 0.0746017i
\(794\) −29.6320 + 9.14028i −1.05160 + 0.324376i
\(795\) 16.1845 + 28.7820i 0.574004 + 1.02079i
\(796\) −0.333946 0.309856i −0.0118364 0.0109826i
\(797\) 2.47153 32.9802i 0.0875460 1.16822i −0.764454 0.644678i \(-0.776991\pi\)
0.852000 0.523542i \(-0.175390\pi\)
\(798\) −8.21414 5.73798i −0.290777 0.203122i
\(799\) 10.6297 3.27883i 0.376052 0.115997i
\(800\) −0.694078 −0.0245394
\(801\) 18.6383 5.28885i 0.658553 0.186872i
\(802\) −25.9813 32.5795i −0.917432 1.15042i
\(803\) 11.3738 10.5533i 0.401373 0.372419i
\(804\) 0.819035 + 3.78605i 0.0288851 + 0.133524i
\(805\) 8.56592 + 21.8256i 0.301909 + 0.769251i
\(806\) 0.340928 4.54937i 0.0120087 0.160245i
\(807\) 15.9183 10.5902i 0.560352 0.372794i
\(808\) 8.19573 20.8824i 0.288325 0.734639i
\(809\) −7.95699 + 9.97774i −0.279753 + 0.350799i −0.901779 0.432198i \(-0.857738\pi\)
0.622026 + 0.782996i \(0.286310\pi\)
\(810\) 26.9254 16.6190i 0.946061 0.583930i
\(811\) 30.1273 1.05791 0.528957 0.848649i \(-0.322583\pi\)
0.528957 + 0.848649i \(0.322583\pi\)
\(812\) 0.0840888 1.78381i 0.00295094 0.0625993i
\(813\) −13.4228 + 22.6512i −0.470759 + 0.794412i
\(814\) 3.13711 2.13885i 0.109956 0.0749666i
\(815\) 9.96033 + 25.3785i 0.348895 + 0.888971i
\(816\) −5.52752 7.09506i −0.193502 0.248377i
\(817\) −0.460313 6.14246i −0.0161043 0.214897i
\(818\) −0.288528 + 0.138948i −0.0100881 + 0.00485819i
\(819\) 2.43285 + 0.423391i 0.0850106 + 0.0147945i
\(820\) 1.03572 + 4.53779i 0.0361689 + 0.158466i
\(821\) 27.8261 25.8188i 0.971137 0.901084i −0.0239871 0.999712i \(-0.507636\pi\)
0.995124 + 0.0986286i \(0.0314456\pi\)
\(822\) 14.8409 36.5872i 0.517637 1.27613i
\(823\) −20.8518 19.3477i −0.726850 0.674418i 0.227274 0.973831i \(-0.427019\pi\)
−0.954124 + 0.299413i \(0.903209\pi\)
\(824\) −3.08026 + 5.33517i −0.107306 + 0.185860i
\(825\) 1.24579 0.368839i 0.0433728 0.0128413i
\(826\) 19.0477 + 12.9865i 0.662753 + 0.451857i
\(827\) −36.3103 + 17.4861i −1.26263 + 0.608052i −0.940870 0.338768i \(-0.889990\pi\)
−0.321764 + 0.946820i \(0.604276\pi\)
\(828\) −2.45410 2.38301i −0.0852857 0.0828154i
\(829\) −4.92548 −0.171069 −0.0855345 0.996335i \(-0.527260\pi\)
−0.0855345 + 0.996335i \(0.527260\pi\)
\(830\) −41.5439 + 12.8146i −1.44201 + 0.444801i
\(831\) 14.7204 + 18.8950i 0.510646 + 0.655459i
\(832\) −3.28125 1.01213i −0.113757 0.0350894i
\(833\) −4.70339 1.45080i −0.162963 0.0502674i
\(834\) −8.58728 22.6322i −0.297353 0.783690i
\(835\) −7.85874 5.35800i −0.271963 0.185421i
\(836\) 0.483683 + 0.232929i 0.0167285 + 0.00805603i
\(837\) 32.7290 3.79847i 1.13128 0.131294i
\(838\) −6.81511 + 8.54588i −0.235424 + 0.295213i
\(839\) 1.36443 + 18.2070i 0.0471053 + 0.628577i 0.969934 + 0.243367i \(0.0782519\pi\)
−0.922829 + 0.385210i \(0.874129\pi\)
\(840\) 9.49596 16.0246i 0.327642 0.552900i
\(841\) −28.8714 2.72806i −0.995565 0.0940711i
\(842\) −7.01048 + 12.1425i −0.241597 + 0.418459i
\(843\) 48.4832 + 24.0301i 1.66985 + 0.827641i
\(844\) 4.28433 + 0.645759i 0.147473 + 0.0222279i
\(845\) −18.8824 23.6778i −0.649574 0.814540i
\(846\) −36.9289 18.8286i −1.26964 0.647340i
\(847\) 14.6320 7.04641i 0.502762 0.242118i
\(848\) −34.5855 5.21293i −1.18767 0.179013i
\(849\) −5.59159 + 5.07134i −0.191903 + 0.174048i
\(850\) 1.06318 + 0.327947i 0.0364667 + 0.0112485i
\(851\) −12.3936 + 1.86803i −0.424847 + 0.0640353i
\(852\) 2.58438 0.765156i 0.0885396 0.0262138i
\(853\) 18.2432 + 31.5981i 0.624634 + 1.08190i 0.988612 + 0.150490i \(0.0480851\pi\)
−0.363978 + 0.931408i \(0.618582\pi\)
\(854\) 3.09332 13.5527i 0.105851 0.463765i
\(855\) 14.9265 6.77515i 0.510475 0.231705i
\(856\) 19.3266 9.30721i 0.660570 0.318114i
\(857\) −11.6319 + 3.58796i −0.397337 + 0.122562i −0.486983 0.873411i \(-0.661903\pi\)
0.0896459 + 0.995974i \(0.471426\pi\)
\(858\) −1.48498 0.0168594i −0.0506964 0.000575571i
\(859\) −27.1627 25.2033i −0.926778 0.859925i 0.0636472 0.997972i \(-0.479727\pi\)
−0.990426 + 0.138048i \(0.955917\pi\)
\(860\) −1.22750 + 0.185016i −0.0418575 + 0.00630900i
\(861\) −28.0387 8.99865i −0.955557 0.306673i
\(862\) 16.1867 15.0191i 0.551322 0.511552i
\(863\) 4.52326 5.67199i 0.153974 0.193077i −0.698862 0.715257i \(-0.746310\pi\)
0.852835 + 0.522180i \(0.174881\pi\)
\(864\) −0.622501 + 5.69585i −0.0211779 + 0.193777i
\(865\) −2.38593 1.14900i −0.0811240 0.0390673i
\(866\) −19.1426 + 48.7745i −0.650492 + 1.65743i
\(867\) −9.57117 25.2253i −0.325054 0.856696i
\(868\) −1.73737 + 1.18452i −0.0589702 + 0.0402052i
\(869\) −3.64877 + 6.31986i −0.123776 + 0.214386i
\(870\) 27.3924 + 18.0273i 0.928689 + 0.611181i
\(871\) −2.77568 4.80762i −0.0940503 0.162900i
\(872\) 14.2487 + 6.86182i 0.482522 + 0.232370i
\(873\) 5.62040 + 15.3355i 0.190222 + 0.519029i
\(874\) −12.4021 15.5517i −0.419506 0.526044i
\(875\) −1.31372 17.5304i −0.0444120 0.592636i
\(876\) −3.61618 2.52608i −0.122180 0.0853484i
\(877\) 16.2748 + 41.4674i 0.549560 + 1.40026i 0.888251 + 0.459359i \(0.151921\pi\)
−0.338691 + 0.940898i \(0.609984\pi\)
\(878\) 44.1302 + 13.6124i 1.48932 + 0.459395i
\(879\) −1.12701 + 1.02215i −0.0380130 + 0.0344762i
\(880\) −4.49668 + 11.4573i −0.151583 + 0.386227i
\(881\) −2.77395 + 12.1535i −0.0934569 + 0.409461i −0.999918 0.0128285i \(-0.995916\pi\)
0.906461 + 0.422290i \(0.138774\pi\)
\(882\) 8.80775 + 16.0883i 0.296573 + 0.541722i
\(883\) −6.36852 + 27.9023i −0.214318 + 0.938987i 0.747277 + 0.664513i \(0.231361\pi\)
−0.961594 + 0.274474i \(0.911496\pi\)
\(884\) −0.0936145 0.0638253i −0.00314860 0.00214668i
\(885\) −34.1635 + 15.9771i −1.14839 + 0.537063i
\(886\) 9.99350 + 9.27261i 0.335738 + 0.311519i
\(887\) 9.19224 15.9214i 0.308645 0.534589i −0.669421 0.742883i \(-0.733458\pi\)
0.978066 + 0.208294i \(0.0667911\pi\)
\(888\) 7.22182 + 6.85508i 0.242348 + 0.230041i
\(889\) −4.70334 + 11.9839i −0.157745 + 0.401927i
\(890\) −5.05223 22.1353i −0.169351 0.741976i
\(891\) −1.90951 10.5542i −0.0639710 0.353578i
\(892\) −2.16013 + 2.70871i −0.0723264 + 0.0906944i
\(893\) −17.7433 12.0972i −0.593756 0.404816i
\(894\) −7.42938 + 4.94266i −0.248476 + 0.165307i
\(895\) 10.4948 1.58183i 0.350801 0.0528747i
\(896\) 7.85608 + 20.0170i 0.262453 + 0.668720i
\(897\) 4.39238 + 2.17703i 0.146657 + 0.0726889i
\(898\) 16.7667 + 29.0408i 0.559513 + 0.969105i
\(899\) 17.8859 + 29.0882i 0.596529 + 0.970146i
\(900\) −0.177377 0.323998i −0.00591257 0.0107999i
\(901\) 8.63593 + 4.15885i 0.287705 + 0.138551i
\(902\) 17.5115 + 2.63943i 0.583068 + 0.0878834i
\(903\) 2.95209 7.27777i 0.0982396 0.242189i
\(904\) −17.9668 + 12.2496i −0.597567 + 0.407414i
\(905\) −4.50038 + 60.0534i −0.149598 + 1.99624i
\(906\) 53.0960 + 8.62050i 1.76400 + 0.286397i
\(907\) 21.4042 19.8602i 0.710714 0.659446i −0.239553 0.970883i \(-0.577001\pi\)
0.950267 + 0.311437i \(0.100810\pi\)
\(908\) 0.778381 + 3.41031i 0.0258315 + 0.113175i
\(909\) 24.9687 3.18550i 0.828161 0.105656i
\(910\) 0.643952 2.82134i 0.0213468 0.0935265i
\(911\) −27.1866 47.0886i −0.900732 1.56011i −0.826546 0.562869i \(-0.809697\pi\)
−0.0741863 0.997244i \(-0.523636\pi\)
\(912\) −4.05558 + 16.8828i −0.134294 + 0.559046i
\(913\) −1.10130 + 14.6958i −0.0364477 + 0.486360i
\(914\) −0.616089 + 8.22113i −0.0203784 + 0.271931i
\(915\) 16.4945 + 15.6568i 0.545291 + 0.517599i
\(916\) −2.64980 4.58959i −0.0875519 0.151644i
\(917\) 1.35473 5.93548i 0.0447372 0.196007i
\(918\) 3.64479 8.43069i 0.120296 0.278254i
\(919\) 7.51745 + 32.9361i 0.247978 + 1.08646i 0.933547 + 0.358455i \(0.116696\pi\)
−0.685569 + 0.728007i \(0.740447\pi\)
\(920\) 27.1069 25.1515i 0.893687 0.829221i
\(921\) −9.29702 24.5028i −0.306347 0.807394i
\(922\) −2.55380 + 34.0782i −0.0841051 + 1.12230i
\(923\) −3.19146 + 2.17590i −0.105048 + 0.0716207i
\(924\) 0.420670 + 0.539967i 0.0138390 + 0.0177636i
\(925\) −1.33828 0.201713i −0.0440023 0.00663228i
\(926\) 13.8333 + 6.66179i 0.454592 + 0.218920i
\(927\) −6.91066 0.156938i −0.226976 0.00515451i
\(928\) −5.62373 + 1.90677i −0.184608 + 0.0625928i
\(929\) −1.93749 3.35583i −0.0635670 0.110101i 0.832490 0.554039i \(-0.186914\pi\)
−0.896057 + 0.443938i \(0.853581\pi\)
\(930\) −2.44820 38.5347i −0.0802796 1.26360i
\(931\) 3.47150 + 8.84523i 0.113774 + 0.289891i
\(932\) −1.54530 + 0.232917i −0.0506180 + 0.00762943i
\(933\) 2.99299 + 47.1098i 0.0979862 + 1.54231i
\(934\) −3.91788 2.67116i −0.128197 0.0874032i
\(935\) 2.10305 2.63714i 0.0687770 0.0862437i
\(936\) −0.780203 3.81565i −0.0255017 0.124719i
\(937\) −5.28133 23.1390i −0.172533 0.755919i −0.984950 0.172841i \(-0.944705\pi\)
0.812416 0.583078i \(-0.198152\pi\)
\(938\) −10.4925 + 26.7345i −0.342593 + 0.872913i
\(939\) 4.44561 18.5065i 0.145077 0.603935i
\(940\) −2.16392 + 3.74801i −0.0705792 + 0.122247i
\(941\) 22.9557 + 21.2998i 0.748335 + 0.694354i 0.959064 0.283191i \(-0.0913931\pi\)
−0.210728 + 0.977545i \(0.567584\pi\)
\(942\) 0.137305 1.58979i 0.00447363 0.0517982i
\(943\) −48.3011 32.9311i −1.57290 1.07238i
\(944\) 8.88945 38.9472i 0.289327 1.26762i
\(945\) 20.8882 + 0.711695i 0.679493 + 0.0231514i
\(946\) −1.05099 + 4.60471i −0.0341708 + 0.149712i
\(947\) −4.93282 + 12.5686i −0.160295 + 0.408425i −0.988345 0.152229i \(-0.951355\pi\)
0.828050 + 0.560654i \(0.189450\pi\)
\(948\) 1.97545 + 0.633993i 0.0641596 + 0.0205911i
\(949\) 6.04077 + 1.86333i 0.196092 + 0.0604863i
\(950\) −0.784715 1.99942i −0.0254595 0.0648698i
\(951\) 34.6142 16.1878i 1.12244 0.524926i
\(952\) −0.404067 5.39190i −0.0130959 0.174752i
\(953\) −35.1253 44.0458i −1.13782 1.42678i −0.888806 0.458283i \(-0.848465\pi\)
−0.249015 0.968500i \(-0.580107\pi\)
\(954\) −12.2910 33.5366i −0.397936 1.08579i
\(955\) −10.7843 5.19345i −0.348972 0.168056i
\(956\) −2.72215 4.71491i −0.0880408 0.152491i
\(957\) 9.08065 6.41093i 0.293536 0.207236i
\(958\) 16.8250 29.1417i 0.543590 0.941525i
\(959\) 21.5483 14.6914i 0.695829 0.474409i
\(960\) −28.6870 4.65753i −0.925869 0.150321i
\(961\) 3.36405 8.57145i 0.108518 0.276498i
\(962\) 1.39377 + 0.671206i 0.0449371 + 0.0216406i
\(963\) 19.5738 + 14.0066i 0.630758 + 0.451356i
\(964\) 2.39802 3.00703i 0.0772351 0.0968498i
\(965\) 11.7216 10.8761i 0.377333 0.350114i
\(966\) −5.36248 24.7885i −0.172535 0.797556i
\(967\) 3.55025 0.535114i 0.114168 0.0172081i −0.0917096 0.995786i \(-0.529233\pi\)
0.205878 + 0.978578i \(0.433995\pi\)
\(968\) −18.7758 17.4214i −0.603477 0.559945i
\(969\) 2.42579 4.09356i 0.0779277 0.131504i
\(970\) 18.2902 5.64179i 0.587264 0.181147i
\(971\) 2.49414 1.20111i 0.0800408 0.0385456i −0.393435 0.919352i \(-0.628713\pi\)
0.473476 + 0.880807i \(0.342999\pi\)
\(972\) −2.81793 + 1.16503i −0.0903851 + 0.0373684i
\(973\) 3.55799 15.5886i 0.114064 0.499747i
\(974\) −5.38351 9.32451i −0.172499 0.298777i
\(975\) 0.383933 + 0.364436i 0.0122957 + 0.0116713i
\(976\) −23.8202 + 3.59031i −0.762465 + 0.114923i
\(977\) 30.7808 + 9.49460i 0.984764 + 0.303759i 0.744994 0.667071i \(-0.232452\pi\)
0.239769 + 0.970830i \(0.422928\pi\)
\(978\) −6.23542 28.8237i −0.199387 0.921680i
\(979\) −7.61027 1.14706i −0.243225 0.0366603i
\(980\) 1.72532 0.830872i 0.0551134 0.0265412i
\(981\) 0.924000 + 17.7211i 0.0295011 + 0.565790i
\(982\) 38.9991 + 48.9033i 1.24451 + 1.56057i
\(983\) 14.2991 + 2.15525i 0.456071 + 0.0687417i 0.373061 0.927807i \(-0.378308\pi\)
0.0830106 + 0.996549i \(0.473546\pi\)
\(984\) 2.94466 + 46.3490i 0.0938724 + 1.47755i
\(985\) 25.3650 43.9334i 0.808195 1.39984i
\(986\) 9.51527 0.263589i 0.303028 0.00839439i
\(987\) −13.4203 23.8663i −0.427173 0.759673i
\(988\) 0.0163457 + 0.218119i 0.000520027 + 0.00693927i
\(989\) 9.72096 12.1897i 0.309109 0.387610i
\(990\) −12.4681 + 1.59068i −0.396263 + 0.0505551i
\(991\) 5.73753 + 2.76305i 0.182259 + 0.0877712i 0.522788 0.852463i \(-0.324892\pi\)
−0.340529 + 0.940234i \(0.610606\pi\)
\(992\) 5.77719 + 3.93882i 0.183426 + 0.125058i
\(993\) −6.30440 + 7.72393i −0.200064 + 0.245111i
\(994\) 19.0955 + 5.89017i 0.605672 + 0.186825i
\(995\) 5.28014 + 1.62871i 0.167392 + 0.0516335i
\(996\) 4.14976 0.577374i 0.131490 0.0182948i
\(997\) −20.7028 + 6.38595i −0.655663 + 0.202245i −0.604698 0.796455i \(-0.706706\pi\)
−0.0509653 + 0.998700i \(0.516230\pi\)
\(998\) 50.8965 1.61110
\(999\) −2.85559 + 10.8015i −0.0903470 + 0.341743i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 261.2.q.a.103.21 yes 336
3.2 odd 2 783.2.u.a.712.8 336
9.2 odd 6 783.2.u.a.451.8 336
9.7 even 3 inner 261.2.q.a.16.21 336
29.20 even 7 inner 261.2.q.a.49.21 yes 336
87.20 odd 14 783.2.u.a.658.8 336
261.20 odd 42 783.2.u.a.397.8 336
261.223 even 21 inner 261.2.q.a.223.21 yes 336
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
261.2.q.a.16.21 336 9.7 even 3 inner
261.2.q.a.49.21 yes 336 29.20 even 7 inner
261.2.q.a.103.21 yes 336 1.1 even 1 trivial
261.2.q.a.223.21 yes 336 261.223 even 21 inner
783.2.u.a.397.8 336 261.20 odd 42
783.2.u.a.451.8 336 9.2 odd 6
783.2.u.a.658.8 336 87.20 odd 14
783.2.u.a.712.8 336 3.2 odd 2