Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [261,2,Mod(2,261)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(261, base_ring=CyclotomicField(84))
chi = DirichletCharacter(H, H._module([14, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("261.2");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 261 = 3^{2} \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 261.x (of order \(84\), degree \(24\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.08409549276\) |
Analytic rank: | \(0\) |
Dimension: | \(672\) |
Relative dimension: | \(28\) over \(\Q(\zeta_{84})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{84}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −2.20170 | − | 1.62493i | 0.491207 | + | 1.66094i | 1.61758 | + | 5.24407i | 0.577008 | − | 1.47019i | 1.61742 | − | 4.45507i | −1.61063 | − | 0.496813i | 3.15227 | − | 9.00866i | −2.51743 | + | 1.63173i | −3.65936 | + | 2.29933i |
2.2 | −2.09871 | − | 1.54892i | 0.154284 | − | 1.72517i | 1.41592 | + | 4.59031i | 0.316022 | − | 0.805210i | −2.99594 | + | 3.38165i | 0.806416 | + | 0.248746i | 2.41541 | − | 6.90284i | −2.95239 | − | 0.532331i | −1.91044 | + | 1.20041i |
2.3 | −1.87887 | − | 1.38667i | −1.39195 | + | 1.03077i | 1.01780 | + | 3.29961i | −0.932500 | + | 2.37597i | 4.04463 | − | 0.00651310i | 0.824688 | + | 0.254382i | 1.12065 | − | 3.20264i | 0.875028 | − | 2.86955i | 5.04674 | − | 3.17108i |
2.4 | −1.81062 | − | 1.33630i | −1.71999 | − | 0.204042i | 0.903135 | + | 2.92789i | 1.51600 | − | 3.86270i | 2.84158 | + | 2.66786i | 2.72479 | + | 0.840488i | 0.790819 | − | 2.26003i | 2.91673 | + | 0.701902i | −7.90661 | + | 4.96805i |
2.5 | −1.79882 | − | 1.32759i | 1.58696 | − | 0.693948i | 0.883741 | + | 2.86502i | −1.11921 | + | 2.85170i | −3.77592 | − | 0.858538i | −0.451867 | − | 0.139383i | 0.737082 | − | 2.10646i | 2.03687 | − | 2.20253i | 5.79913 | − | 3.64384i |
2.6 | −1.45392 | − | 1.07304i | 1.56552 | + | 0.741045i | 0.372954 | + | 1.20909i | 0.540145 | − | 1.37627i | −1.48097 | − | 2.75729i | 3.98072 | + | 1.22789i | −0.438482 | + | 1.25311i | 1.90171 | + | 2.32024i | −2.26212 | + | 1.42138i |
2.7 | −1.29500 | − | 0.955756i | 1.12961 | + | 1.31300i | 0.174054 | + | 0.564270i | −0.633409 | + | 1.61390i | −0.207940 | − | 2.77998i | −4.42538 | − | 1.36505i | −0.749268 | + | 2.14128i | −0.447956 | + | 2.96637i | 2.36276 | − | 1.48462i |
2.8 | −1.20822 | − | 0.891704i | 0.979461 | − | 1.42852i | 0.0751402 | + | 0.243598i | 1.10182 | − | 2.80739i | −2.45721 | + | 0.852566i | −2.93685 | − | 0.905898i | −0.865489 | + | 2.47342i | −1.08131 | − | 2.79835i | −3.83459 | + | 2.40943i |
2.9 | −1.13935 | − | 0.840879i | −1.68635 | − | 0.395264i | 0.00153258 | + | 0.00496850i | 0.00108456 | − | 0.00276341i | 1.58897 | + | 1.86836i | −2.00585 | − | 0.618723i | −0.932952 | + | 2.66622i | 2.68753 | + | 1.33310i | −0.00355938 | + | 0.00223651i |
2.10 | −1.13739 | − | 0.839433i | −0.756704 | − | 1.55801i | −0.000498633 | − | 0.00161653i | −1.18474 | + | 3.01866i | −0.447178 | + | 2.40727i | 4.21652 | + | 1.30062i | −0.934565 | + | 2.67083i | −1.85480 | + | 2.35791i | 3.88147 | − | 2.43889i |
2.11 | −0.810991 | − | 0.598538i | −0.370120 | + | 1.69204i | −0.290053 | − | 0.940327i | 1.04194 | − | 2.65481i | 1.31292 | − | 1.15070i | −1.09049 | − | 0.336372i | −0.993399 | + | 2.83897i | −2.72602 | − | 1.25252i | −2.43401 | + | 1.52939i |
2.12 | −0.583916 | − | 0.430950i | −1.28220 | + | 1.16446i | −0.434270 | − | 1.40787i | −0.323698 | + | 0.824768i | 1.25052 | − | 0.127381i | −0.374294 | − | 0.115454i | −0.832527 | + | 2.37922i | 0.288078 | − | 2.98614i | 0.544446 | − | 0.342098i |
2.13 | −0.397396 | − | 0.293291i | 1.36641 | − | 1.06438i | −0.517607 | − | 1.67804i | 0.0814783 | − | 0.207603i | −0.855182 | + | 0.0222244i | 2.51455 | + | 0.775634i | −0.612714 | + | 1.75104i | 0.734172 | − | 2.90878i | −0.0932674 | + | 0.0586038i |
2.14 | −0.202514 | − | 0.149462i | 0.356874 | + | 1.69489i | −0.570837 | − | 1.85061i | −1.37930 | + | 3.51439i | 0.181050 | − | 0.396578i | 2.32547 | + | 0.717312i | −0.327254 | + | 0.935237i | −2.74528 | + | 1.20972i | 0.804596 | − | 0.505561i |
2.15 | −0.0309399 | − | 0.0228347i | −1.45710 | − | 0.936412i | −0.589074 | − | 1.90973i | 0.319150 | − | 0.813182i | 0.0236998 | + | 0.0622449i | −1.11047 | − | 0.342536i | −0.0507833 | + | 0.145130i | 1.24626 | + | 2.72889i | −0.0284432 | + | 0.0178721i |
2.16 | 0.0255759 | + | 0.0188759i | 0.0530423 | − | 1.73124i | −0.589213 | − | 1.91018i | −1.13734 | + | 2.89789i | 0.0340352 | − | 0.0432768i | −4.48793 | − | 1.38434i | 0.0419840 | − | 0.119983i | −2.99437 | − | 0.183658i | −0.0837888 | + | 0.0526480i |
2.17 | 0.253664 | + | 0.187213i | 1.71133 | + | 0.267109i | −0.560213 | − | 1.81617i | 0.760941 | − | 1.93885i | 0.384097 | + | 0.388139i | −2.32357 | − | 0.716725i | 0.406156 | − | 1.16073i | 2.85731 | + | 0.914223i | 0.556000 | − | 0.349358i |
2.18 | 0.547220 | + | 0.403867i | 0.593978 | + | 1.62702i | −0.453169 | − | 1.46914i | 0.745589 | − | 1.89973i | −0.332062 | + | 1.13022i | 2.64496 | + | 0.815862i | 0.794609 | − | 2.27086i | −2.29438 | + | 1.93283i | 1.17524 | − | 0.738451i |
2.19 | 0.762374 | + | 0.562658i | −1.70238 | − | 0.319240i | −0.324880 | − | 1.05323i | −0.663401 | + | 1.69032i | −1.11823 | − | 1.20124i | 3.32276 | + | 1.02494i | 0.970824 | − | 2.77446i | 2.79617 | + | 1.08693i | −1.45683 | + | 0.915387i |
2.20 | 0.912527 | + | 0.673475i | 1.72940 | − | 0.0957406i | −0.210374 | − | 0.682017i | −1.48285 | + | 3.77823i | 1.64261 | + | 1.07734i | 0.633936 | + | 0.195543i | 1.01651 | − | 2.90503i | 2.98167 | − | 0.331148i | −3.89768 | + | 2.44908i |
See next 80 embeddings (of 672 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.d | odd | 6 | 1 | inner |
29.f | odd | 28 | 1 | inner |
261.x | even | 84 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 261.2.x.a | ✓ | 672 |
3.b | odd | 2 | 1 | 783.2.be.a | 672 | ||
9.c | even | 3 | 1 | 783.2.be.a | 672 | ||
9.d | odd | 6 | 1 | inner | 261.2.x.a | ✓ | 672 |
29.f | odd | 28 | 1 | inner | 261.2.x.a | ✓ | 672 |
87.k | even | 28 | 1 | 783.2.be.a | 672 | ||
261.w | odd | 84 | 1 | 783.2.be.a | 672 | ||
261.x | even | 84 | 1 | inner | 261.2.x.a | ✓ | 672 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
261.2.x.a | ✓ | 672 | 1.a | even | 1 | 1 | trivial |
261.2.x.a | ✓ | 672 | 9.d | odd | 6 | 1 | inner |
261.2.x.a | ✓ | 672 | 29.f | odd | 28 | 1 | inner |
261.2.x.a | ✓ | 672 | 261.x | even | 84 | 1 | inner |
783.2.be.a | 672 | 3.b | odd | 2 | 1 | ||
783.2.be.a | 672 | 9.c | even | 3 | 1 | ||
783.2.be.a | 672 | 87.k | even | 28 | 1 | ||
783.2.be.a | 672 | 261.w | odd | 84 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(261, [\chi])\).