Properties

Label 2664.1.bw.c.1627.1
Level $2664$
Weight $1$
Character 2664.1627
Analytic conductor $1.330$
Analytic rank $0$
Dimension $8$
Projective image $D_{15}$
CM discriminant -296
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2664,1,Mod(1627,2664)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2664, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2664.1627");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2664 = 2^{3} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2664.bw (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.32950919365\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{15})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{15}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{15} - \cdots)\)

Embedding invariants

Embedding label 1627.1
Root \(0.669131 + 0.743145i\) of defining polynomial
Character \(\chi\) \(=\) 2664.1627
Dual form 2664.1.bw.c.2515.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.809017 - 0.587785i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.309017 - 0.535233i) q^{5} +(0.913545 - 0.406737i) q^{6} +1.00000 q^{8} +(0.309017 + 0.951057i) q^{9} +0.618034 q^{10} +(0.978148 - 1.69420i) q^{11} +(-0.104528 + 0.994522i) q^{12} +(-0.913545 - 1.58231i) q^{13} +(-0.0646021 + 0.614648i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-0.978148 - 0.207912i) q^{18} +(-0.309017 + 0.535233i) q^{20} +(0.978148 + 1.69420i) q^{22} +(0.104528 + 0.181049i) q^{23} +(-0.809017 - 0.587785i) q^{24} +(0.309017 - 0.535233i) q^{25} +1.82709 q^{26} +(0.309017 - 0.951057i) q^{27} +(-0.913545 + 1.58231i) q^{29} +(-0.500000 - 0.363271i) q^{30} +(-0.309017 - 0.535233i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-1.78716 + 0.795697i) q^{33} +(0.669131 - 0.743145i) q^{36} +1.00000 q^{37} +(-0.190983 + 1.81708i) q^{39} +(-0.309017 - 0.535233i) q^{40} +(0.809017 + 1.40126i) q^{41} -1.95630 q^{44} +(0.413545 - 0.459289i) q^{45} -0.209057 q^{46} +(0.913545 - 0.406737i) q^{48} +(-0.500000 - 0.866025i) q^{49} +(0.309017 + 0.535233i) q^{50} +(-0.913545 + 1.58231i) q^{52} +(0.669131 + 0.743145i) q^{54} -1.20906 q^{55} +(-0.913545 - 1.58231i) q^{58} +(0.564602 - 0.251377i) q^{60} +(-0.669131 + 1.15897i) q^{61} +0.618034 q^{62} +1.00000 q^{64} +(-0.564602 + 0.977920i) q^{65} +(0.204489 - 1.94558i) q^{66} +(-0.669131 - 1.15897i) q^{67} +(0.0218524 - 0.207912i) q^{69} +(0.309017 + 0.951057i) q^{72} -1.95630 q^{73} +(-0.500000 + 0.866025i) q^{74} +(-0.564602 + 0.251377i) q^{75} +(-1.47815 - 1.07394i) q^{78} +(0.809017 - 1.40126i) q^{79} +0.618034 q^{80} +(-0.809017 + 0.587785i) q^{81} -1.61803 q^{82} +(0.500000 - 0.866025i) q^{83} +(1.66913 - 0.743145i) q^{87} +(0.978148 - 1.69420i) q^{88} +(0.190983 + 0.587785i) q^{90} +(0.104528 - 0.181049i) q^{92} +(-0.0646021 + 0.614648i) q^{93} +(-0.104528 + 0.994522i) q^{96} +1.00000 q^{98} +(1.91355 + 0.406737i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 2 q^{3} - 4 q^{4} + 2 q^{5} + q^{6} + 8 q^{8} - 2 q^{9} - 4 q^{10} - q^{11} + q^{12} - q^{13} + 2 q^{15} - 4 q^{16} + q^{18} + 2 q^{20} - q^{22} - q^{23} - 2 q^{24} - 2 q^{25} + 2 q^{26}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2664\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1333\) \(1999\) \(2369\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(3\) −0.809017 0.587785i −0.809017 0.587785i
\(4\) −0.500000 0.866025i −0.500000 0.866025i
\(5\) −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i \(-0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(6\) 0.913545 0.406737i 0.913545 0.406737i
\(7\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(8\) 1.00000 1.00000
\(9\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(10\) 0.618034 0.618034
\(11\) 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i \(-0.400000\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(12\) −0.104528 + 0.994522i −0.104528 + 0.994522i
\(13\) −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i \(-0.800000\pi\)
−0.104528 0.994522i \(-0.533333\pi\)
\(14\) 0 0
\(15\) −0.0646021 + 0.614648i −0.0646021 + 0.614648i
\(16\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) −0.978148 0.207912i −0.978148 0.207912i
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −0.309017 + 0.535233i −0.309017 + 0.535233i
\(21\) 0 0
\(22\) 0.978148 + 1.69420i 0.978148 + 1.69420i
\(23\) 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i \(-0.133333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(24\) −0.809017 0.587785i −0.809017 0.587785i
\(25\) 0.309017 0.535233i 0.309017 0.535233i
\(26\) 1.82709 1.82709
\(27\) 0.309017 0.951057i 0.309017 0.951057i
\(28\) 0 0
\(29\) −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i \(0.533333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(30\) −0.500000 0.363271i −0.500000 0.363271i
\(31\) −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i \(-0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(32\) −0.500000 0.866025i −0.500000 0.866025i
\(33\) −1.78716 + 0.795697i −1.78716 + 0.795697i
\(34\) 0 0
\(35\) 0 0
\(36\) 0.669131 0.743145i 0.669131 0.743145i
\(37\) 1.00000 1.00000
\(38\) 0 0
\(39\) −0.190983 + 1.81708i −0.190983 + 1.81708i
\(40\) −0.309017 0.535233i −0.309017 0.535233i
\(41\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(42\) 0 0
\(43\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(44\) −1.95630 −1.95630
\(45\) 0.413545 0.459289i 0.413545 0.459289i
\(46\) −0.209057 −0.209057
\(47\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) 0.913545 0.406737i 0.913545 0.406737i
\(49\) −0.500000 0.866025i −0.500000 0.866025i
\(50\) 0.309017 + 0.535233i 0.309017 + 0.535233i
\(51\) 0 0
\(52\) −0.913545 + 1.58231i −0.913545 + 1.58231i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0.669131 + 0.743145i 0.669131 + 0.743145i
\(55\) −1.20906 −1.20906
\(56\) 0 0
\(57\) 0 0
\(58\) −0.913545 1.58231i −0.913545 1.58231i
\(59\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(60\) 0.564602 0.251377i 0.564602 0.251377i
\(61\) −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i \(0.400000\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(62\) 0.618034 0.618034
\(63\) 0 0
\(64\) 1.00000 1.00000
\(65\) −0.564602 + 0.977920i −0.564602 + 0.977920i
\(66\) 0.204489 1.94558i 0.204489 1.94558i
\(67\) −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i \(-0.933333\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(68\) 0 0
\(69\) 0.0218524 0.207912i 0.0218524 0.207912i
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(73\) −1.95630 −1.95630 −0.978148 0.207912i \(-0.933333\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(74\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(75\) −0.564602 + 0.251377i −0.564602 + 0.251377i
\(76\) 0 0
\(77\) 0 0
\(78\) −1.47815 1.07394i −1.47815 1.07394i
\(79\) 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(80\) 0.618034 0.618034
\(81\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(82\) −1.61803 −1.61803
\(83\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.66913 0.743145i 1.66913 0.743145i
\(88\) 0.978148 1.69420i 0.978148 1.69420i
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(91\) 0 0
\(92\) 0.104528 0.181049i 0.104528 0.181049i
\(93\) −0.0646021 + 0.614648i −0.0646021 + 0.614648i
\(94\) 0 0
\(95\) 0 0
\(96\) −0.104528 + 0.994522i −0.104528 + 0.994522i
\(97\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(98\) 1.00000 1.00000
\(99\) 1.91355 + 0.406737i 1.91355 + 0.406737i
\(100\) −0.618034 −0.618034
\(101\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 0 0
\(103\) −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i \(-0.933333\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(104\) −0.913545 1.58231i −0.913545 1.58231i
\(105\) 0 0
\(106\) 0 0
\(107\) −0.209057 −0.209057 −0.104528 0.994522i \(-0.533333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(108\) −0.978148 + 0.207912i −0.978148 + 0.207912i
\(109\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(110\) 0.604528 1.04707i 0.604528 1.04707i
\(111\) −0.809017 0.587785i −0.809017 0.587785i
\(112\) 0 0
\(113\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(114\) 0 0
\(115\) 0.0646021 0.111894i 0.0646021 0.111894i
\(116\) 1.82709 1.82709
\(117\) 1.22256 1.35779i 1.22256 1.35779i
\(118\) 0 0
\(119\) 0 0
\(120\) −0.0646021 + 0.614648i −0.0646021 + 0.614648i
\(121\) −1.41355 2.44833i −1.41355 2.44833i
\(122\) −0.669131 1.15897i −0.669131 1.15897i
\(123\) 0.169131 1.60917i 0.169131 1.60917i
\(124\) −0.309017 + 0.535233i −0.309017 + 0.535233i
\(125\) −1.00000 −1.00000
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(129\) 0 0
\(130\) −0.564602 0.977920i −0.564602 0.977920i
\(131\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(132\) 1.58268 + 1.14988i 1.58268 + 1.14988i
\(133\) 0 0
\(134\) 1.33826 1.33826
\(135\) −0.604528 + 0.128496i −0.604528 + 0.128496i
\(136\) 0 0
\(137\) −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(138\) 0.169131 + 0.122881i 0.169131 + 0.122881i
\(139\) 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i \(-0.133333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.57433 −3.57433
\(144\) −0.978148 0.207912i −0.978148 0.207912i
\(145\) 1.12920 1.12920
\(146\) 0.978148 1.69420i 0.978148 1.69420i
\(147\) −0.104528 + 0.994522i −0.104528 + 0.994522i
\(148\) −0.500000 0.866025i −0.500000 0.866025i
\(149\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(150\) 0.0646021 0.614648i 0.0646021 0.614648i
\(151\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.190983 + 0.330792i −0.190983 + 0.330792i
\(156\) 1.66913 0.743145i 1.66913 0.743145i
\(157\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(158\) 0.809017 + 1.40126i 0.809017 + 1.40126i
\(159\) 0 0
\(160\) −0.309017 + 0.535233i −0.309017 + 0.535233i
\(161\) 0 0
\(162\) −0.104528 0.994522i −0.104528 0.994522i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0.809017 1.40126i 0.809017 1.40126i
\(165\) 0.978148 + 0.710666i 0.978148 + 0.710666i
\(166\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(167\) −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i \(-0.933333\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(168\) 0 0
\(169\) −1.16913 + 2.02499i −1.16913 + 2.02499i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) −0.190983 + 1.81708i −0.190983 + 1.81708i
\(175\) 0 0
\(176\) 0.978148 + 1.69420i 0.978148 + 1.69420i
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) −0.604528 0.128496i −0.604528 0.128496i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 1.22256 0.544320i 1.22256 0.544320i
\(184\) 0.104528 + 0.181049i 0.104528 + 0.181049i
\(185\) −0.309017 0.535233i −0.309017 0.535233i
\(186\) −0.500000 0.363271i −0.500000 0.363271i
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i \(0.400000\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(192\) −0.809017 0.587785i −0.809017 0.587785i
\(193\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) 0 0
\(195\) 1.03158 0.459289i 1.03158 0.459289i
\(196\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) −1.30902 + 1.45381i −1.30902 + 1.45381i
\(199\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(200\) 0.309017 0.535233i 0.309017 0.535233i
\(201\) −0.139886 + 1.33093i −0.139886 + 1.33093i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0.500000 0.866025i 0.500000 0.866025i
\(206\) 1.33826 1.33826
\(207\) −0.139886 + 0.155360i −0.139886 + 0.155360i
\(208\) 1.82709 1.82709
\(209\) 0 0
\(210\) 0 0
\(211\) 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i \(0.266667\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0.104528 0.181049i 0.104528 0.181049i
\(215\) 0 0
\(216\) 0.309017 0.951057i 0.309017 0.951057i
\(217\) 0 0
\(218\) 0.500000 0.866025i 0.500000 0.866025i
\(219\) 1.58268 + 1.14988i 1.58268 + 1.14988i
\(220\) 0.604528 + 1.04707i 0.604528 + 1.04707i
\(221\) 0 0
\(222\) 0.913545 0.406737i 0.913545 0.406737i
\(223\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(224\) 0 0
\(225\) 0.604528 + 0.128496i 0.604528 + 0.128496i
\(226\) 0 0
\(227\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) 0 0
\(229\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(230\) 0.0646021 + 0.111894i 0.0646021 + 0.111894i
\(231\) 0 0
\(232\) −0.913545 + 1.58231i −0.913545 + 1.58231i
\(233\) 1.82709 1.82709 0.913545 0.406737i \(-0.133333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(234\) 0.564602 + 1.73767i 0.564602 + 1.73767i
\(235\) 0 0
\(236\) 0 0
\(237\) −1.47815 + 0.658114i −1.47815 + 0.658114i
\(238\) 0 0
\(239\) 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i \(0.266667\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(240\) −0.500000 0.363271i −0.500000 0.363271i
\(241\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(242\) 2.82709 2.82709
\(243\) 1.00000 1.00000
\(244\) 1.33826 1.33826
\(245\) −0.309017 + 0.535233i −0.309017 + 0.535233i
\(246\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(247\) 0 0
\(248\) −0.309017 0.535233i −0.309017 0.535233i
\(249\) −0.913545 + 0.406737i −0.913545 + 0.406737i
\(250\) 0.500000 0.866025i 0.500000 0.866025i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0.408977 0.408977
\(254\) 0 0
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.500000 0.866025i
\(257\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.12920 1.12920
\(261\) −1.78716 0.379874i −1.78716 0.379874i
\(262\) 0 0
\(263\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) −1.78716 + 0.795697i −1.78716 + 0.795697i
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −0.669131 + 1.15897i −0.669131 + 1.15897i
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0.190983 0.587785i 0.190983 0.587785i
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −0.309017 0.535233i −0.309017 0.535233i
\(275\) −0.604528 1.04707i −0.604528 1.04707i
\(276\) −0.190983 + 0.0850311i −0.190983 + 0.0850311i
\(277\) 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i \(-0.400000\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(278\) −0.209057 −0.209057
\(279\) 0.413545 0.459289i 0.413545 0.459289i
\(280\) 0 0
\(281\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(282\) 0 0
\(283\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 1.78716 3.09546i 1.78716 3.09546i
\(287\) 0 0
\(288\) 0.669131 0.743145i 0.669131 0.743145i
\(289\) 1.00000 1.00000
\(290\) −0.564602 + 0.977920i −0.564602 + 0.977920i
\(291\) 0 0
\(292\) 0.978148 + 1.69420i 0.978148 + 1.69420i
\(293\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(294\) −0.809017 0.587785i −0.809017 0.587785i
\(295\) 0 0
\(296\) 1.00000 1.00000
\(297\) −1.30902 1.45381i −1.30902 1.45381i
\(298\) 0 0
\(299\) 0.190983 0.330792i 0.190983 0.330792i
\(300\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.827091 0.827091
\(306\) 0 0
\(307\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(308\) 0 0
\(309\) −0.139886 + 1.33093i −0.139886 + 1.33093i
\(310\) −0.190983 0.330792i −0.190983 0.330792i
\(311\) −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i \(-0.800000\pi\)
−0.104528 0.994522i \(-0.533333\pi\)
\(312\) −0.190983 + 1.81708i −0.190983 + 1.81708i
\(313\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −1.61803 −1.61803
\(317\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 0 0
\(319\) 1.78716 + 3.09546i 1.78716 + 3.09546i
\(320\) −0.309017 0.535233i −0.309017 0.535233i
\(321\) 0.169131 + 0.122881i 0.169131 + 0.122881i
\(322\) 0 0
\(323\) 0 0
\(324\) 0.913545 + 0.406737i 0.913545 + 0.406737i
\(325\) −1.12920 −1.12920
\(326\) 0 0
\(327\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(328\) 0.809017 + 1.40126i 0.809017 + 1.40126i
\(329\) 0 0
\(330\) −1.10453 + 0.491768i −1.10453 + 0.491768i
\(331\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) −1.00000 −1.00000
\(333\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(334\) 1.33826 1.33826
\(335\) −0.413545 + 0.716282i −0.413545 + 0.716282i
\(336\) 0 0
\(337\) 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i \(0.266667\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(338\) −1.16913 2.02499i −1.16913 2.02499i
\(339\) 0 0
\(340\) 0 0
\(341\) −1.20906 −1.20906
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −0.118034 + 0.0525521i −0.118034 + 0.0525521i
\(346\) 0 0
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) −1.47815 1.07394i −1.47815 1.07394i
\(349\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(350\) 0 0
\(351\) −1.78716 + 0.379874i −1.78716 + 0.379874i
\(352\) −1.95630 −1.95630
\(353\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0.413545 0.459289i 0.413545 0.459289i
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) −0.295511 + 2.81160i −0.295511 + 2.81160i
\(364\) 0 0
\(365\) 0.604528 + 1.04707i 0.604528 + 1.04707i
\(366\) −0.139886 + 1.33093i −0.139886 + 1.33093i
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) −0.209057 −0.209057
\(369\) −1.08268 + 1.20243i −1.08268 + 1.20243i
\(370\) 0.618034 0.618034
\(371\) 0 0
\(372\) 0.564602 0.251377i 0.564602 0.251377i
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(376\) 0 0
\(377\) 3.33826 3.33826
\(378\) 0 0
\(379\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −0.669131 1.15897i −0.669131 1.15897i
\(383\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(384\) 0.913545 0.406737i 0.913545 0.406737i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(390\) −0.118034 + 1.12302i −0.118034 + 1.12302i
\(391\) 0 0
\(392\) −0.500000 0.866025i −0.500000 0.866025i
\(393\) 0 0
\(394\) 0 0
\(395\) −1.00000 −1.00000
\(396\) −0.604528 1.86055i −0.604528 1.86055i
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(399\) 0 0
\(400\) 0.309017 + 0.535233i 0.309017 + 0.535233i
\(401\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(402\) −1.08268 0.786610i −1.08268 0.786610i
\(403\) −0.564602 + 0.977920i −0.564602 + 0.977920i
\(404\) 0 0
\(405\) 0.564602 + 0.251377i 0.564602 + 0.251377i
\(406\) 0 0
\(407\) 0.978148 1.69420i 0.978148 1.69420i
\(408\) 0 0
\(409\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(410\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(411\) 0.564602 0.251377i 0.564602 0.251377i
\(412\) −0.669131 + 1.15897i −0.669131 + 1.15897i
\(413\) 0 0
\(414\) −0.0646021 0.198825i −0.0646021 0.198825i
\(415\) −0.618034 −0.618034
\(416\) −0.913545 + 1.58231i −0.913545 + 1.58231i
\(417\) 0.0218524 0.207912i 0.0218524 0.207912i
\(418\) 0 0
\(419\) −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i \(-0.800000\pi\)
−0.104528 0.994522i \(-0.533333\pi\)
\(420\) 0 0
\(421\) 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i \(-0.800000\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(422\) −1.95630 −1.95630
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0.104528 + 0.181049i 0.104528 + 0.181049i
\(429\) 2.89169 + 2.10094i 2.89169 + 2.10094i
\(430\) 0 0
\(431\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(432\) 0.669131 + 0.743145i 0.669131 + 0.743145i
\(433\) −0.209057 −0.209057 −0.104528 0.994522i \(-0.533333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(434\) 0 0
\(435\) −0.913545 0.663730i −0.913545 0.663730i
\(436\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(437\) 0 0
\(438\) −1.78716 + 0.795697i −1.78716 + 0.795697i
\(439\) 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i \(-0.800000\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(440\) −1.20906 −1.20906
\(441\) 0.669131 0.743145i 0.669131 0.743145i
\(442\) 0 0
\(443\) −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i \(0.400000\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(444\) −0.104528 + 0.994522i −0.104528 + 0.994522i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −0.413545 + 0.459289i −0.413545 + 0.459289i
\(451\) 3.16535 3.16535
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) −0.129204 −0.129204
\(461\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(462\) 0 0
\(463\) −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i \(-0.800000\pi\)
−0.104528 0.994522i \(-0.533333\pi\)
\(464\) −0.913545 1.58231i −0.913545 1.58231i
\(465\) 0.348943 0.155360i 0.348943 0.155360i
\(466\) −0.913545 + 1.58231i −0.913545 + 1.58231i
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) −1.78716 0.379874i −1.78716 0.379874i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0.169131 1.60917i 0.169131 1.60917i
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −1.95630 −1.95630
\(479\) 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(480\) 0.564602 0.251377i 0.564602 0.251377i
\(481\) −0.913545 1.58231i −0.913545 1.58231i
\(482\) 0 0
\(483\) 0 0
\(484\) −1.41355 + 2.44833i −1.41355 + 2.44833i
\(485\) 0 0
\(486\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(487\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(488\) −0.669131 + 1.15897i −0.669131 + 1.15897i
\(489\) 0 0
\(490\) −0.309017 0.535233i −0.309017 0.535233i
\(491\) 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i \(-0.133333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(492\) −1.47815 + 0.658114i −1.47815 + 0.658114i
\(493\) 0 0
\(494\) 0 0
\(495\) −0.373619 1.14988i −0.373619 1.14988i
\(496\) 0.618034 0.618034
\(497\) 0 0
\(498\) 0.104528 0.994522i 0.104528 0.994522i
\(499\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(500\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(501\) −0.139886 + 1.33093i −0.139886 + 1.33093i
\(502\) 0 0
\(503\) 1.33826 1.33826 0.669131 0.743145i \(-0.266667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −0.204489 + 0.354185i −0.204489 + 0.354185i
\(507\) 2.13611 0.951057i 2.13611 0.951057i
\(508\) 0 0
\(509\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) −0.413545 + 0.716282i −0.413545 + 0.716282i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −0.564602 + 0.977920i −0.564602 + 0.977920i
\(521\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) 1.22256 1.35779i 1.22256 1.35779i
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0.204489 1.94558i 0.204489 1.94558i
\(529\) 0.478148 0.828176i 0.478148 0.828176i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.47815 2.56023i 1.47815 2.56023i
\(534\) 0 0
\(535\) 0.0646021 + 0.111894i 0.0646021 + 0.111894i
\(536\) −0.669131 1.15897i −0.669131 1.15897i
\(537\) 0 0
\(538\) 0 0
\(539\) −1.95630 −1.95630
\(540\) 0.413545 + 0.459289i 0.413545 + 0.459289i
\(541\) 1.33826 1.33826 0.669131 0.743145i \(-0.266667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.309017 + 0.535233i 0.309017 + 0.535233i
\(546\) 0 0
\(547\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(548\) 0.618034 0.618034
\(549\) −1.30902 0.278240i −1.30902 0.278240i
\(550\) 1.20906 1.20906
\(551\) 0 0
\(552\) 0.0218524 0.207912i 0.0218524 0.207912i
\(553\) 0 0
\(554\) 0.978148 + 1.69420i 0.978148 + 1.69420i
\(555\) −0.0646021 + 0.614648i −0.0646021 + 0.614648i
\(556\) 0.104528 0.181049i 0.104528 0.181049i
\(557\) 1.33826 1.33826 0.669131 0.743145i \(-0.266667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(558\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(572\) 1.78716 + 3.09546i 1.78716 + 3.09546i
\(573\) 1.22256 0.544320i 1.22256 0.544320i
\(574\) 0 0
\(575\) 0.129204 0.129204
\(576\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(579\) 0 0
\(580\) −0.564602 0.977920i −0.564602 0.977920i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −1.95630 −1.95630
\(585\) −1.10453 0.234775i −1.10453 0.234775i
\(586\) 0 0
\(587\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(588\) 0.913545 0.406737i 0.913545 0.406737i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(593\) −1.95630 −1.95630 −0.978148 0.207912i \(-0.933333\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(594\) 1.91355 0.406737i 1.91355 0.406737i
\(595\) 0 0
\(596\) 0 0
\(597\) −1.61803 1.17557i −1.61803 1.17557i
\(598\) 0.190983 + 0.330792i 0.190983 + 0.330792i
\(599\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(600\) −0.564602 + 0.251377i −0.564602 + 0.251377i
\(601\) −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(602\) 0 0
\(603\) 0.895472 0.994522i 0.895472 0.994522i
\(604\) 0 0
\(605\) −0.873619 + 1.51315i −0.873619 + 1.51315i
\(606\) 0 0
\(607\) 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i \(-0.133333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −0.413545 + 0.716282i −0.413545 + 0.716282i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0.809017 1.40126i 0.809017 1.40126i
\(615\) −0.913545 + 0.406737i −0.913545 + 0.406737i
\(616\) 0 0
\(617\) 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i \(-0.133333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(618\) −1.08268 0.786610i −1.08268 0.786610i
\(619\) −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(620\) 0.381966 0.381966
\(621\) 0.204489 0.0434654i 0.204489 0.0434654i
\(622\) 1.82709 1.82709
\(623\) 0 0
\(624\) −1.47815 1.07394i −1.47815 1.07394i
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1.82709 1.82709 0.913545 0.406737i \(-0.133333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(632\) 0.809017 1.40126i 0.809017 1.40126i
\(633\) 0.204489 1.94558i 0.204489 1.94558i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −0.913545 + 1.58231i −0.913545 + 1.58231i
\(638\) −3.57433 −3.57433
\(639\) 0 0
\(640\) 0.618034 0.618034
\(641\) 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i \(-0.800000\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(642\) −0.190983 + 0.0850311i −0.190983 + 0.0850311i
\(643\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.82709 1.82709 0.913545 0.406737i \(-0.133333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(648\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(649\) 0 0
\(650\) 0.564602 0.977920i 0.564602 0.977920i
\(651\) 0 0
\(652\) 0 0
\(653\) 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i \(-0.133333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(654\) −0.913545 + 0.406737i −0.913545 + 0.406737i
\(655\) 0 0
\(656\) −1.61803 −1.61803
\(657\) −0.604528 1.86055i −0.604528 1.86055i
\(658\) 0 0
\(659\) 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(660\) 0.126381 1.20243i 0.126381 1.20243i
\(661\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0.500000 0.866025i 0.500000 0.866025i
\(665\) 0 0
\(666\) −0.978148 0.207912i −0.978148 0.207912i
\(667\) −0.381966 −0.381966
\(668\) −0.669131 + 1.15897i −0.669131 + 1.15897i
\(669\) 0 0
\(670\) −0.413545 0.716282i −0.413545 0.716282i
\(671\) 1.30902 + 2.26728i 1.30902 + 2.26728i
\(672\) 0 0
\(673\) 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i \(-0.800000\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(674\) −1.95630 −1.95630
\(675\) −0.413545 0.459289i −0.413545 0.459289i
\(676\) 2.33826 2.33826
\(677\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0.604528 1.04707i 0.604528 1.04707i
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0.381966 0.381966
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0.0135055 0.128496i 0.0135055 0.128496i
\(691\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.0646021 0.111894i 0.0646021 0.111894i
\(696\) 1.66913 0.743145i 1.66913 0.743145i
\(697\) 0 0
\(698\) 0 0
\(699\) −1.47815 1.07394i −1.47815 1.07394i
\(700\) 0 0
\(701\) −1.95630 −1.95630 −0.978148 0.207912i \(-0.933333\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(702\) 0.564602 1.73767i 0.564602 1.73767i
\(703\) 0 0
\(704\) 0.978148 1.69420i 0.978148 1.69420i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i \(-0.400000\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(710\) 0 0
\(711\) 1.58268 + 0.336408i 1.58268 + 0.336408i
\(712\) 0 0
\(713\) 0.0646021 0.111894i 0.0646021 0.111894i
\(714\) 0 0
\(715\) 1.10453 + 1.91310i 1.10453 + 1.91310i
\(716\) 0 0
\(717\) 0.204489 1.94558i 0.204489 1.94558i
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(721\) 0 0
\(722\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(723\) 0 0
\(724\) 0 0
\(725\) 0.564602 + 0.977920i 0.564602 + 0.977920i
\(726\) −2.28716 1.66172i −2.28716 1.66172i
\(727\) 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i \(-0.400000\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(728\) 0 0
\(729\) −0.809017 0.587785i −0.809017 0.587785i
\(730\) −1.20906 −1.20906
\(731\) 0 0
\(732\) −1.08268 0.786610i −1.08268 0.786610i
\(733\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(734\) 0 0
\(735\) 0.564602 0.251377i 0.564602 0.251377i
\(736\) 0.104528 0.181049i 0.104528 0.181049i
\(737\) −2.61803 −2.61803
\(738\) −0.500000 1.53884i −0.500000 1.53884i
\(739\) −1.95630 −1.95630 −0.978148 0.207912i \(-0.933333\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(740\) −0.309017 + 0.535233i −0.309017 + 0.535233i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(744\) −0.0646021 + 0.614648i −0.0646021 + 0.614648i
\(745\) 0 0
\(746\) 0 0
\(747\) 0.978148 + 0.207912i 0.978148 + 0.207912i
\(748\) 0 0
\(749\) 0 0
\(750\) −0.913545 + 0.406737i −0.913545 + 0.406737i
\(751\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −1.66913 + 2.89102i −1.66913 + 2.89102i
\(755\) 0 0
\(756\) 0 0
\(757\) 1.33826 1.33826 0.669131 0.743145i \(-0.266667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(758\) 0.809017 1.40126i 0.809017 1.40126i
\(759\) −0.330869 0.240391i −0.330869 0.240391i
\(760\) 0 0
\(761\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 1.33826 1.33826
\(765\) 0 0
\(766\) −1.00000 −1.00000
\(767\) 0 0
\(768\) −0.104528 + 0.994522i −0.104528 + 0.994522i
\(769\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) −0.381966 −0.381966
\(776\) 0 0
\(777\) 0 0
\(778\) 0.809017 + 1.40126i 0.809017 + 1.40126i
\(779\) 0 0
\(780\) −0.913545 0.663730i −0.913545 0.663730i
\(781\) 0 0
\(782\) 0 0
\(783\) 1.22256 + 1.35779i 1.22256 + 1.35779i
\(784\) 1.00000 1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0.500000 0.866025i 0.500000 0.866025i
\(791\) 0 0
\(792\) 1.91355 + 0.406737i 1.91355 + 0.406737i
\(793\) 2.44512 2.44512
\(794\) 0 0
\(795\) 0 0
\(796\) −1.00000 1.73205i −1.00000 1.73205i
\(797\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.618034 −0.618034
\(801\) 0 0
\(802\) 0 0
\(803\) −1.91355 + 3.31436i −1.91355 + 3.31436i
\(804\) 1.22256 0.544320i 1.22256 0.544320i
\(805\) 0 0
\(806\) −0.564602 0.977920i −0.564602 0.977920i
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(811\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0.978148 + 1.69420i 0.978148 + 1.69420i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) −1.00000 −1.00000
\(821\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(822\) −0.0646021 + 0.614648i −0.0646021 + 0.614648i
\(823\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(824\) −0.669131 1.15897i −0.669131 1.15897i
\(825\) −0.126381 + 1.20243i −0.126381 + 1.20243i
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0.204489 + 0.0434654i 0.204489 + 0.0434654i
\(829\) −0.209057 −0.209057 −0.104528 0.994522i \(-0.533333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(830\) 0.309017 0.535233i 0.309017 0.535233i
\(831\) −1.78716 + 0.795697i −1.78716 + 0.795697i
\(832\) −0.913545 1.58231i −0.913545 1.58231i
\(833\) 0 0
\(834\) 0.169131 + 0.122881i 0.169131 + 0.122881i
\(835\) −0.413545 + 0.716282i −0.413545 + 0.716282i
\(836\) 0 0
\(837\) −0.604528 + 0.128496i −0.604528 + 0.128496i
\(838\) 1.82709 1.82709
\(839\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(840\) 0 0
\(841\) −1.16913 2.02499i −1.16913 2.02499i
\(842\) 0.104528 + 0.181049i 0.104528 + 0.181049i
\(843\) 0 0
\(844\) 0.978148 1.69420i 0.978148 1.69420i
\(845\) 1.44512 1.44512
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.104528 + 0.181049i 0.104528 + 0.181049i
\(852\) 0 0
\(853\) −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −0.209057 −0.209057
\(857\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(858\) −3.26531 + 1.45381i −3.26531 + 1.45381i
\(859\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0.500000 0.866025i 0.500000 0.866025i
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) −0.978148 + 0.207912i −0.978148 + 0.207912i
\(865\) 0 0
\(866\) 0.104528 0.181049i 0.104528 0.181049i
\(867\) −0.809017 0.587785i −0.809017 0.587785i
\(868\) 0 0
\(869\) −1.58268 2.74128i −1.58268 2.74128i
\(870\) 1.03158 0.459289i 1.03158 0.459289i
\(871\) −1.22256 + 2.11754i −1.22256 + 2.11754i
\(872\) −1.00000 −1.00000
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0.204489 1.94558i 0.204489 1.94558i
\(877\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(878\) 0.104528 + 0.181049i 0.104528 + 0.181049i
\(879\) 0 0
\(880\) 0.604528 1.04707i 0.604528 1.04707i
\(881\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(882\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −0.669131 1.15897i −0.669131 1.15897i
\(887\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) −0.809017 0.587785i −0.809017 0.587785i
\(889\) 0 0
\(890\) 0 0
\(891\) 0.204489 + 1.94558i 0.204489 + 1.94558i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −0.348943 + 0.155360i −0.348943 + 0.155360i
\(898\) 0 0
\(899\) 1.12920 1.12920
\(900\) −0.190983 0.587785i −0.190983 0.587785i
\(901\) 0 0
\(902\) −1.58268 + 2.74128i −1.58268 + 2.74128i
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(912\) 0 0
\(913\) −0.978148 1.69420i −0.978148 1.69420i
\(914\) 0 0
\(915\) −0.669131 0.486152i −0.669131 0.486152i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(920\) 0.0646021 0.111894i 0.0646021 0.111894i
\(921\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(922\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(923\) 0 0
\(924\) 0 0
\(925\) 0.309017 0.535233i 0.309017 0.535233i
\(926\) 1.82709 1.82709
\(927\) 0.895472 0.994522i 0.895472 0.994522i
\(928\) 1.82709 1.82709
\(929\) 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i \(-0.400000\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(930\) −0.0399263 + 0.379874i −0.0399263 + 0.379874i
\(931\) 0 0
\(932\) −0.913545 1.58231i −0.913545 1.58231i
\(933\) −0.190983 + 1.81708i −0.190983 + 1.81708i
\(934\) 0 0
\(935\) 0 0
\(936\) 1.22256 1.35779i 1.22256 1.35779i
\(937\) 1.82709 1.82709 0.913545 0.406737i \(-0.133333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(942\) 0 0
\(943\) −0.169131 + 0.292943i −0.169131 + 0.292943i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(948\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(949\) 1.78716 + 3.09546i 1.78716 + 3.09546i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.95630 −1.95630 −0.978148 0.207912i \(-0.933333\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(954\) 0 0
\(955\) 0.827091 0.827091
\(956\) 0.978148 1.69420i 0.978148 1.69420i
\(957\) 0.373619 3.55475i 0.373619 3.55475i
\(958\) 0.809017 + 1.40126i 0.809017 + 1.40126i
\(959\) 0 0
\(960\) −0.0646021 + 0.614648i −0.0646021 + 0.614648i
\(961\) 0.309017 0.535233i 0.309017 0.535233i
\(962\) 1.82709 1.82709
\(963\) −0.0646021 0.198825i −0.0646021 0.198825i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i \(-0.933333\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(968\) −1.41355 2.44833i −1.41355 2.44833i
\(969\) 0 0
\(970\) 0 0
\(971\) 1.33826 1.33826 0.669131 0.743145i \(-0.266667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(972\) −0.500000 0.866025i −0.500000 0.866025i
\(973\) 0 0
\(974\) 0.500000 0.866025i 0.500000 0.866025i
\(975\) 0.913545 + 0.663730i 0.913545 + 0.663730i
\(976\) −0.669131 1.15897i −0.669131 1.15897i
\(977\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.618034 0.618034
\(981\) −0.309017 0.951057i −0.309017 0.951057i
\(982\) −0.209057 −0.209057
\(983\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(984\) 0.169131 1.60917i 0.169131 1.60917i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 1.18264 + 0.251377i 1.18264 + 0.251377i
\(991\) 1.82709 1.82709 0.913545 0.406737i \(-0.133333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(992\) −0.309017 + 0.535233i −0.309017 + 0.535233i
\(993\) 0 0
\(994\) 0 0
\(995\) −0.618034 1.07047i −0.618034 1.07047i
\(996\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(997\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(998\) 0 0
\(999\) 0.309017 0.951057i 0.309017 0.951057i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2664.1.bw.c.1627.1 8
8.3 odd 2 2664.1.bw.d.1627.1 yes 8
9.4 even 3 inner 2664.1.bw.c.2515.2 yes 8
37.36 even 2 2664.1.bw.d.1627.1 yes 8
72.67 odd 6 2664.1.bw.d.2515.2 yes 8
296.147 odd 2 CM 2664.1.bw.c.1627.1 8
333.184 even 6 2664.1.bw.d.2515.2 yes 8
2664.2515 odd 6 inner 2664.1.bw.c.2515.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2664.1.bw.c.1627.1 8 1.1 even 1 trivial
2664.1.bw.c.1627.1 8 296.147 odd 2 CM
2664.1.bw.c.2515.2 yes 8 9.4 even 3 inner
2664.1.bw.c.2515.2 yes 8 2664.2515 odd 6 inner
2664.1.bw.d.1627.1 yes 8 8.3 odd 2
2664.1.bw.d.1627.1 yes 8 37.36 even 2
2664.1.bw.d.2515.2 yes 8 72.67 odd 6
2664.1.bw.d.2515.2 yes 8 333.184 even 6