Properties

Label 2664.1.bw.d
Level $2664$
Weight $1$
Character orbit 2664.bw
Analytic conductor $1.330$
Analytic rank $0$
Dimension $8$
Projective image $D_{15}$
CM discriminant -296
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2664,1,Mod(1627,2664)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2664, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2664.1627");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2664 = 2^{3} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2664.bw (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.32950919365\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{15})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{15}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{15} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{30}^{10} q^{2} + \zeta_{30}^{12} q^{3} - \zeta_{30}^{5} q^{4} + ( - \zeta_{30}^{14} + \zeta_{30}^{11}) q^{5} + \zeta_{30}^{7} q^{6} - q^{8} - \zeta_{30}^{9} q^{9} + ( - \zeta_{30}^{9} + \zeta_{30}^{6}) q^{10} + \cdots + (\zeta_{30}^{8} + 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 2 q^{3} - 4 q^{4} - 2 q^{5} - q^{6} - 8 q^{8} - 2 q^{9} - 4 q^{10} - q^{11} + q^{12} + q^{13} - 2 q^{15} - 4 q^{16} - q^{18} - 2 q^{20} + q^{22} + q^{23} + 2 q^{24} - 2 q^{25} + 2 q^{26}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2664\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1333\) \(1999\) \(2369\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-\zeta_{30}^{5}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1627.1
0.669131 + 0.743145i
−0.978148 0.207912i
−0.104528 0.994522i
0.913545 0.406737i
−0.978148 + 0.207912i
0.669131 0.743145i
0.913545 + 0.406737i
−0.104528 + 0.994522i
0.500000 0.866025i −0.809017 0.587785i −0.500000 0.866025i 0.309017 + 0.535233i −0.913545 + 0.406737i 0 −1.00000 0.309017 + 0.951057i 0.618034
1627.2 0.500000 0.866025i −0.809017 + 0.587785i −0.500000 0.866025i 0.309017 + 0.535233i 0.104528 + 0.994522i 0 −1.00000 0.309017 0.951057i 0.618034
1627.3 0.500000 0.866025i 0.309017 0.951057i −0.500000 0.866025i −0.809017 1.40126i −0.669131 0.743145i 0 −1.00000 −0.809017 0.587785i −1.61803
1627.4 0.500000 0.866025i 0.309017 + 0.951057i −0.500000 0.866025i −0.809017 1.40126i 0.978148 + 0.207912i 0 −1.00000 −0.809017 + 0.587785i −1.61803
2515.1 0.500000 + 0.866025i −0.809017 0.587785i −0.500000 + 0.866025i 0.309017 0.535233i 0.104528 0.994522i 0 −1.00000 0.309017 + 0.951057i 0.618034
2515.2 0.500000 + 0.866025i −0.809017 + 0.587785i −0.500000 + 0.866025i 0.309017 0.535233i −0.913545 0.406737i 0 −1.00000 0.309017 0.951057i 0.618034
2515.3 0.500000 + 0.866025i 0.309017 0.951057i −0.500000 + 0.866025i −0.809017 + 1.40126i 0.978148 0.207912i 0 −1.00000 −0.809017 0.587785i −1.61803
2515.4 0.500000 + 0.866025i 0.309017 + 0.951057i −0.500000 + 0.866025i −0.809017 + 1.40126i −0.669131 + 0.743145i 0 −1.00000 −0.809017 + 0.587785i −1.61803
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1627.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
296.h odd 2 1 CM by \(\Q(\sqrt{-74}) \)
9.c even 3 1 inner
2664.bw odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2664.1.bw.d yes 8
8.d odd 2 1 2664.1.bw.c 8
9.c even 3 1 inner 2664.1.bw.d yes 8
37.b even 2 1 2664.1.bw.c 8
72.p odd 6 1 2664.1.bw.c 8
296.h odd 2 1 CM 2664.1.bw.d yes 8
333.q even 6 1 2664.1.bw.c 8
2664.bw odd 6 1 inner 2664.1.bw.d yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2664.1.bw.c 8 8.d odd 2 1
2664.1.bw.c 8 37.b even 2 1
2664.1.bw.c 8 72.p odd 6 1
2664.1.bw.c 8 333.q even 6 1
2664.1.bw.d yes 8 1.a even 1 1 trivial
2664.1.bw.d yes 8 9.c even 3 1 inner
2664.1.bw.d yes 8 296.h odd 2 1 CM
2664.1.bw.d yes 8 2664.bw odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + T_{5}^{3} + 2T_{5}^{2} - T_{5} + 1 \) acting on \(S_{1}^{\mathrm{new}}(2664, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$3$ \( (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{4} + T^{3} + 2 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} + T^{7} + 5 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{8} - T^{7} + 5 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} - T^{7} + 5 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{8} - T^{7} + 5 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( (T^{4} + T^{3} + 2 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$37$ \( (T + 1)^{8} \) Copy content Toggle raw display
$41$ \( (T^{4} - T^{3} + 2 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( T^{8} - T^{7} + 5 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{8} + T^{7} + 5 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( (T^{4} - T^{3} - 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + T^{3} + 2 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less