Properties

Label 2695.1.ck.b.1759.1
Level $2695$
Weight $1$
Character 2695.1759
Analytic conductor $1.345$
Analytic rank $0$
Dimension $12$
Projective image $D_{21}$
CM discriminant -55
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2695,1,Mod(109,2695)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2695, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 40, 21]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2695.109");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2695 = 5 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2695.ck (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34498020905\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{21})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{21}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{21} - \cdots)\)

Embedding invariants

Embedding label 1759.1
Root \(-0.733052 + 0.680173i\) of defining polynomial
Character \(\chi\) \(=\) 2695.1759
Dual form 2695.1.ck.b.1264.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.88980 - 0.284841i) q^{2} +(2.53464 - 0.781831i) q^{4} +(0.0747301 - 0.997204i) q^{5} +(-0.623490 + 0.781831i) q^{7} +(2.84537 - 1.37026i) q^{8} +(0.365341 + 0.930874i) q^{9} +O(q^{10})\) \(q+(1.88980 - 0.284841i) q^{2} +(2.53464 - 0.781831i) q^{4} +(0.0747301 - 0.997204i) q^{5} +(-0.623490 + 0.781831i) q^{7} +(2.84537 - 1.37026i) q^{8} +(0.365341 + 0.930874i) q^{9} +(-0.142820 - 1.90580i) q^{10} +(0.365341 - 0.930874i) q^{11} +(-0.455573 - 0.571270i) q^{13} +(-0.955573 + 1.65510i) q^{14} +(2.79530 - 1.90580i) q^{16} +(-1.32091 + 1.22563i) q^{17} +(0.955573 + 1.65510i) q^{18} +(-0.590232 - 2.58597i) q^{20} +(0.425270 - 1.86323i) q^{22} +(-0.988831 - 0.149042i) q^{25} +(-1.02366 - 0.949820i) q^{26} +(-0.969059 + 2.46912i) q^{28} +(0.500000 + 0.866025i) q^{31} +(2.42463 - 2.24973i) q^{32} +(-2.14715 + 2.69244i) q^{34} +(0.733052 + 0.680173i) q^{35} +(1.65379 + 2.07379i) q^{36} +(-1.15379 - 2.93982i) q^{40} +(-1.78181 - 0.858075i) q^{43} +(0.198220 - 2.64506i) q^{44} +(0.955573 - 0.294755i) q^{45} +(-0.222521 - 0.974928i) q^{49} -1.91115 q^{50} +(-1.60135 - 1.09178i) q^{52} +(-0.900969 - 0.433884i) q^{55} +(-0.702749 + 3.07894i) q^{56} +(0.0546039 + 0.728639i) q^{59} +(1.19158 + 1.49419i) q^{62} +(-0.955573 - 0.294755i) q^{63} +(1.83189 - 2.29711i) q^{64} +(-0.603718 + 0.411608i) q^{65} +(-2.38980 + 4.13925i) q^{68} +(1.57906 + 1.07659i) q^{70} +(-0.425270 + 1.86323i) q^{71} +(2.31507 + 2.14807i) q^{72} +(1.63402 + 0.246289i) q^{73} +(0.500000 + 0.866025i) q^{77} +(-1.69158 - 2.92990i) q^{80} +(-0.733052 + 0.680173i) q^{81} +(0.623490 - 0.781831i) q^{83} +(1.12349 + 1.40881i) q^{85} +(-3.61168 - 1.11406i) q^{86} +(-0.236007 - 3.14929i) q^{88} +(-0.722521 - 1.84095i) q^{89} +(1.72188 - 0.829215i) q^{90} +0.730682 q^{91} +(-0.698220 - 1.77904i) q^{98} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{2} + q^{5} + 2 q^{7} + 2 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + q^{2} + q^{5} + 2 q^{7} + 2 q^{8} + q^{9} + q^{10} + q^{11} + 5 q^{13} - q^{14} + 13 q^{16} - 2 q^{17} + q^{18} + 5 q^{22} + q^{25} + q^{26} + 6 q^{31} + 7 q^{32} - 3 q^{34} - q^{35} + 6 q^{40} - 2 q^{43} - 7 q^{44} + q^{45} - 2 q^{49} - 2 q^{50} - 14 q^{52} - 2 q^{55} - 9 q^{56} - q^{59} + 2 q^{62} - q^{63} - 9 q^{64} + q^{65} - 7 q^{68} - q^{70} - 5 q^{71} + 6 q^{72} + q^{73} + 6 q^{77} - 8 q^{80} + q^{81} - 2 q^{83} + 4 q^{85} + q^{86} - q^{88} - 8 q^{89} - 2 q^{90} + 2 q^{91} + q^{98} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2695\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1816\) \(2157\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{21}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.88980 0.284841i 1.88980 0.284841i 0.900969 0.433884i \(-0.142857\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(3\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(4\) 2.53464 0.781831i 2.53464 0.781831i
\(5\) 0.0747301 0.997204i 0.0747301 0.997204i
\(6\) 0 0
\(7\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(8\) 2.84537 1.37026i 2.84537 1.37026i
\(9\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(10\) −0.142820 1.90580i −0.142820 1.90580i
\(11\) 0.365341 0.930874i 0.365341 0.930874i
\(12\) 0 0
\(13\) −0.455573 0.571270i −0.455573 0.571270i 0.500000 0.866025i \(-0.333333\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(14\) −0.955573 + 1.65510i −0.955573 + 1.65510i
\(15\) 0 0
\(16\) 2.79530 1.90580i 2.79530 1.90580i
\(17\) −1.32091 + 1.22563i −1.32091 + 1.22563i −0.365341 + 0.930874i \(0.619048\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(18\) 0.955573 + 1.65510i 0.955573 + 1.65510i
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) −0.590232 2.58597i −0.590232 2.58597i
\(21\) 0 0
\(22\) 0.425270 1.86323i 0.425270 1.86323i
\(23\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(24\) 0 0
\(25\) −0.988831 0.149042i −0.988831 0.149042i
\(26\) −1.02366 0.949820i −1.02366 0.949820i
\(27\) 0 0
\(28\) −0.969059 + 2.46912i −0.969059 + 2.46912i
\(29\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(30\) 0 0
\(31\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(32\) 2.42463 2.24973i 2.42463 2.24973i
\(33\) 0 0
\(34\) −2.14715 + 2.69244i −2.14715 + 2.69244i
\(35\) 0.733052 + 0.680173i 0.733052 + 0.680173i
\(36\) 1.65379 + 2.07379i 1.65379 + 2.07379i
\(37\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −1.15379 2.93982i −1.15379 2.93982i
\(41\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(42\) 0 0
\(43\) −1.78181 0.858075i −1.78181 0.858075i −0.955573 0.294755i \(-0.904762\pi\)
−0.826239 0.563320i \(-0.809524\pi\)
\(44\) 0.198220 2.64506i 0.198220 2.64506i
\(45\) 0.955573 0.294755i 0.955573 0.294755i
\(46\) 0 0
\(47\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(48\) 0 0
\(49\) −0.222521 0.974928i −0.222521 0.974928i
\(50\) −1.91115 −1.91115
\(51\) 0 0
\(52\) −1.60135 1.09178i −1.60135 1.09178i
\(53\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(54\) 0 0
\(55\) −0.900969 0.433884i −0.900969 0.433884i
\(56\) −0.702749 + 3.07894i −0.702749 + 3.07894i
\(57\) 0 0
\(58\) 0 0
\(59\) 0.0546039 + 0.728639i 0.0546039 + 0.728639i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(60\) 0 0
\(61\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(62\) 1.19158 + 1.49419i 1.19158 + 1.49419i
\(63\) −0.955573 0.294755i −0.955573 0.294755i
\(64\) 1.83189 2.29711i 1.83189 2.29711i
\(65\) −0.603718 + 0.411608i −0.603718 + 0.411608i
\(66\) 0 0
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) −2.38980 + 4.13925i −2.38980 + 4.13925i
\(69\) 0 0
\(70\) 1.57906 + 1.07659i 1.57906 + 1.07659i
\(71\) −0.425270 + 1.86323i −0.425270 + 1.86323i 0.0747301 + 0.997204i \(0.476190\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(72\) 2.31507 + 2.14807i 2.31507 + 2.14807i
\(73\) 1.63402 + 0.246289i 1.63402 + 0.246289i 0.900969 0.433884i \(-0.142857\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(78\) 0 0
\(79\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(80\) −1.69158 2.92990i −1.69158 2.92990i
\(81\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(82\) 0 0
\(83\) 0.623490 0.781831i 0.623490 0.781831i −0.365341 0.930874i \(-0.619048\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(84\) 0 0
\(85\) 1.12349 + 1.40881i 1.12349 + 1.40881i
\(86\) −3.61168 1.11406i −3.61168 1.11406i
\(87\) 0 0
\(88\) −0.236007 3.14929i −0.236007 3.14929i
\(89\) −0.722521 1.84095i −0.722521 1.84095i −0.500000 0.866025i \(-0.666667\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(90\) 1.72188 0.829215i 1.72188 0.829215i
\(91\) 0.730682 0.730682
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −0.698220 1.77904i −0.698220 1.77904i
\(99\) 1.00000 1.00000
\(100\) −2.62285 + 0.395331i −2.62285 + 0.395331i
\(101\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(102\) 0 0
\(103\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(104\) −2.07906 1.00122i −2.07906 1.00122i
\(105\) 0 0
\(106\) 0 0
\(107\) 0.162592 + 0.414278i 0.162592 + 0.414278i 0.988831 0.149042i \(-0.0476190\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(108\) 0 0
\(109\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(110\) −1.82624 0.563320i −1.82624 0.563320i
\(111\) 0 0
\(112\) −0.252824 + 3.37370i −0.252824 + 3.37370i
\(113\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.365341 0.632789i 0.365341 0.632789i
\(118\) 0.310737 + 1.36143i 0.310737 + 1.36143i
\(119\) −0.134659 1.79690i −0.134659 1.79690i
\(120\) 0 0
\(121\) −0.733052 0.680173i −0.733052 0.680173i
\(122\) 0 0
\(123\) 0 0
\(124\) 1.94440 + 1.80414i 1.94440 + 1.80414i
\(125\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(126\) −1.88980 0.284841i −1.88980 0.284841i
\(127\) −0.0990311 0.433884i −0.0990311 0.433884i 0.900969 0.433884i \(-0.142857\pi\)
−1.00000 \(\pi\)
\(128\) 1.15379 1.99843i 1.15379 1.99843i
\(129\) 0 0
\(130\) −1.02366 + 0.949820i −1.02366 + 0.949820i
\(131\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −2.07906 + 5.29737i −2.07906 + 5.29737i
\(137\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(138\) 0 0
\(139\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(140\) 2.38980 + 1.15087i 2.38980 + 1.15087i
\(141\) 0 0
\(142\) −0.272950 + 3.64226i −0.272950 + 3.64226i
\(143\) −0.698220 + 0.215372i −0.698220 + 0.215372i
\(144\) 2.79530 + 1.90580i 2.79530 + 1.90580i
\(145\) 0 0
\(146\) 3.15813 3.15813
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(150\) 0 0
\(151\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(152\) 0 0
\(153\) −1.62349 0.781831i −1.62349 0.781831i
\(154\) 1.19158 + 1.49419i 1.19158 + 1.49419i
\(155\) 0.900969 0.433884i 0.900969 0.433884i
\(156\) 0 0
\(157\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −2.06225 2.58597i −2.06225 2.58597i
\(161\) 0 0
\(162\) −1.19158 + 1.49419i −1.19158 + 1.49419i
\(163\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0.955573 1.65510i 0.955573 1.65510i
\(167\) 0.445042 + 1.94986i 0.445042 + 1.94986i 0.222521 + 0.974928i \(0.428571\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(168\) 0 0
\(169\) 0.103718 0.454418i 0.103718 0.454418i
\(170\) 2.52446 + 2.34236i 2.52446 + 2.34236i
\(171\) 0 0
\(172\) −5.18711 0.781831i −5.18711 0.781831i
\(173\) −1.07473 0.997204i −1.07473 0.997204i −0.0747301 0.997204i \(-0.523810\pi\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0.733052 0.680173i 0.733052 0.680173i
\(176\) −0.752824 3.29834i −0.752824 3.29834i
\(177\) 0 0
\(178\) −1.88980 3.27323i −1.88980 3.27323i
\(179\) −1.40097 + 1.29991i −1.40097 + 1.29991i −0.500000 + 0.866025i \(0.666667\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(180\) 2.19158 1.49419i 2.19158 1.49419i
\(181\) 1.03030 1.29196i 1.03030 1.29196i 0.0747301 0.997204i \(-0.476190\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(182\) 1.38084 0.208129i 1.38084 0.208129i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.658322 + 1.67738i 0.658322 + 1.67738i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i 0.826239 + 0.563320i \(0.190476\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(192\) 0 0
\(193\) 1.48883 + 1.01507i 1.48883 + 1.01507i 0.988831 + 0.149042i \(0.0476190\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −1.32624 2.29711i −1.32624 2.29711i
\(197\) 1.46610 1.46610 0.733052 0.680173i \(-0.238095\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(198\) 1.88980 0.284841i 1.88980 0.284841i
\(199\) −1.21135 0.825886i −1.21135 0.825886i −0.222521 0.974928i \(-0.571429\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(200\) −3.01782 + 0.930874i −3.01782 + 0.930874i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −2.36219 0.728639i −2.36219 0.728639i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0.425270 + 0.736589i 0.425270 + 0.736589i
\(215\) −0.988831 + 1.71271i −0.988831 + 1.71271i
\(216\) 0 0
\(217\) −0.988831 0.149042i −0.988831 0.149042i
\(218\) 0 0
\(219\) 0 0
\(220\) −2.62285 0.395331i −2.62285 0.395331i
\(221\) 1.30194 + 0.196236i 1.30194 + 0.196236i
\(222\) 0 0
\(223\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(224\) 0.247176 + 3.29834i 0.247176 + 3.29834i
\(225\) −0.222521 0.974928i −0.222521 0.974928i
\(226\) 0 0
\(227\) 0.0747301 + 0.129436i 0.0747301 + 0.129436i 0.900969 0.433884i \(-0.142857\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(228\) 0 0
\(229\) 1.57906 1.07659i 1.57906 1.07659i 0.623490 0.781831i \(-0.285714\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.91115 0.589510i −1.91115 0.589510i −0.955573 0.294755i \(-0.904762\pi\)
−0.955573 0.294755i \(-0.904762\pi\)
\(234\) 0.510177 1.29991i 0.510177 1.29991i
\(235\) 0 0
\(236\) 0.708074 + 1.80414i 0.708074 + 1.80414i
\(237\) 0 0
\(238\) −0.766310 3.35742i −0.766310 3.35742i
\(239\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(240\) 0 0
\(241\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(242\) −1.57906 1.07659i −1.57906 1.07659i
\(243\) 0 0
\(244\) 0 0
\(245\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(246\) 0 0
\(247\) 0 0
\(248\) 2.60937 + 1.77904i 2.60937 + 1.77904i
\(249\) 0 0
\(250\) −0.142820 + 1.90580i −0.142820 + 1.90580i
\(251\) 0.400969 + 0.193096i 0.400969 + 0.193096i 0.623490 0.781831i \(-0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(252\) −2.65248 −2.65248
\(253\) 0 0
\(254\) −0.310737 0.791745i −0.310737 0.791745i
\(255\) 0 0
\(256\) 0.537787 1.37026i 0.537787 1.37026i
\(257\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −1.20840 + 1.51528i −1.20840 + 1.51528i
\(261\) 0 0
\(262\) 0 0
\(263\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.78181 + 0.268565i 1.78181 + 0.268565i 0.955573 0.294755i \(-0.0952381\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(270\) 0 0
\(271\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(272\) −1.35654 + 5.94340i −1.35654 + 5.94340i
\(273\) 0 0
\(274\) 0 0
\(275\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(276\) 0 0
\(277\) 1.21135 1.12397i 1.21135 1.12397i 0.222521 0.974928i \(-0.428571\pi\)
0.988831 0.149042i \(-0.0476190\pi\)
\(278\) 0 0
\(279\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(280\) 3.01782 + 0.930874i 3.01782 + 0.930874i
\(281\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(282\) 0 0
\(283\) −0.455573 + 1.16078i −0.455573 + 1.16078i 0.500000 + 0.866025i \(0.333333\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(284\) 0.378827 + 5.05510i 0.378827 + 5.05510i
\(285\) 0 0
\(286\) −1.25815 + 0.605893i −1.25815 + 0.605893i
\(287\) 0 0
\(288\) 2.98003 + 1.43511i 2.98003 + 1.43511i
\(289\) 0.167917 2.24070i 0.167917 2.24070i
\(290\) 0 0
\(291\) 0 0
\(292\) 4.33420 0.653276i 4.33420 0.653276i
\(293\) −0.149460 −0.149460 −0.0747301 0.997204i \(-0.523810\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(294\) 0 0
\(295\) 0.730682 0.730682
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 1.78181 0.858075i 1.78181 0.858075i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) −3.29077 1.01507i −3.29077 1.01507i
\(307\) −1.19158 1.49419i −1.19158 1.49419i −0.826239 0.563320i \(-0.809524\pi\)
−0.365341 0.930874i \(-0.619048\pi\)
\(308\) 1.94440 + 1.80414i 1.94440 + 1.80414i
\(309\) 0 0
\(310\) 1.57906 1.07659i 1.57906 1.07659i
\(311\) −0.109562 + 0.101659i −0.109562 + 0.101659i −0.733052 0.680173i \(-0.761905\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(312\) 0 0
\(313\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 0 0
\(315\) −0.365341 + 0.930874i −0.365341 + 0.930874i
\(316\) 0 0
\(317\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −2.15379 1.99843i −2.15379 1.99843i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −1.32624 + 2.29711i −1.32624 + 2.29711i
\(325\) 0.365341 + 0.632789i 0.365341 + 0.632789i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.88980 0.582926i −1.88980 0.582926i −0.988831 0.149042i \(-0.952381\pi\)
−0.900969 0.433884i \(-0.857143\pi\)
\(332\) 0.969059 2.46912i 0.969059 2.46912i
\(333\) 0 0
\(334\) 1.39644 + 3.55807i 1.39644 + 3.55807i
\(335\) 0 0
\(336\) 0 0
\(337\) 0.658322 + 0.317031i 0.658322 + 0.317031i 0.733052 0.680173i \(-0.238095\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(338\) 0.0665690 0.888301i 0.0665690 0.888301i
\(339\) 0 0
\(340\) 3.94909 + 2.69244i 3.94909 + 2.69244i
\(341\) 0.988831 0.149042i 0.988831 0.149042i
\(342\) 0 0
\(343\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(344\) −6.24570 −6.24570
\(345\) 0 0
\(346\) −2.31507 1.57839i −2.31507 1.57839i
\(347\) 1.40097 0.432142i 1.40097 0.432142i 0.500000 0.866025i \(-0.333333\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(348\) 0 0
\(349\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(350\) 1.19158 1.49419i 1.19158 1.49419i
\(351\) 0 0
\(352\) −1.20840 3.07894i −1.20840 3.07894i
\(353\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(354\) 0 0
\(355\) 1.82624 + 0.563320i 1.82624 + 0.563320i
\(356\) −3.27064 4.10126i −3.27064 4.10126i
\(357\) 0 0
\(358\) −2.27728 + 2.85562i −2.27728 + 2.85562i
\(359\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(360\) 2.31507 2.14807i 2.31507 2.14807i
\(361\) −0.500000 0.866025i −0.500000 0.866025i
\(362\) 1.57906 2.73502i 1.57906 2.73502i
\(363\) 0 0
\(364\) 1.85201 0.571270i 1.85201 0.571270i
\(365\) 0.367711 1.61105i 0.367711 1.61105i
\(366\) 0 0
\(367\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0.0747301 0.129436i 0.0747301 0.129436i −0.826239 0.563320i \(-0.809524\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(374\) 1.72188 + 2.98239i 1.72188 + 2.98239i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0.0931869 + 0.116853i 0.0931869 + 0.116853i 0.826239 0.563320i \(-0.190476\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0.142820 + 1.90580i 0.142820 + 1.90580i
\(383\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(384\) 0 0
\(385\) 0.900969 0.433884i 0.900969 0.433884i
\(386\) 3.10273 + 1.49419i 3.10273 + 1.49419i
\(387\) 0.147791 1.97213i 0.147791 1.97213i
\(388\) 0 0
\(389\) 0.123490 + 0.0841939i 0.123490 + 0.0841939i 0.623490 0.781831i \(-0.285714\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.96906 2.46912i −1.96906 2.46912i
\(393\) 0 0
\(394\) 2.77064 0.417607i 2.77064 0.417607i
\(395\) 0 0
\(396\) 2.53464 0.781831i 2.53464 0.781831i
\(397\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(398\) −2.52446 1.21572i −2.52446 1.21572i
\(399\) 0 0
\(400\) −3.04812 + 1.46790i −3.04812 + 1.46790i
\(401\) −0.722521 1.84095i −0.722521 1.84095i −0.500000 0.866025i \(-0.666667\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(402\) 0 0
\(403\) 0.266948 0.680173i 0.266948 0.680173i
\(404\) 0 0
\(405\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.603718 0.411608i −0.603718 0.411608i
\(414\) 0 0
\(415\) −0.733052 0.680173i −0.733052 0.680173i
\(416\) −2.38980 0.360204i −2.38980 0.360204i
\(417\) 0 0
\(418\) 0 0
\(419\) −0.162592 + 0.712362i −0.162592 + 0.712362i 0.826239 + 0.563320i \(0.190476\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(420\) 0 0
\(421\) 0.400969 + 1.75676i 0.400969 + 1.75676i 0.623490 + 0.781831i \(0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.48883 1.01507i 1.48883 1.01507i
\(426\) 0 0
\(427\) 0 0
\(428\) 0.736007 + 0.922924i 0.736007 + 0.922924i
\(429\) 0 0
\(430\) −1.38084 + 3.51833i −1.38084 + 3.51833i
\(431\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(432\) 0 0
\(433\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(434\) −1.91115 −1.91115
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(440\) −3.15813 −3.15813
\(441\) 0.826239 0.563320i 0.826239 0.563320i
\(442\) 2.51630 2.51630
\(443\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(444\) 0 0
\(445\) −1.88980 + 0.582926i −1.88980 + 0.582926i
\(446\) 0 0
\(447\) 0 0
\(448\) 0.653793 + 2.86445i 0.653793 + 2.86445i
\(449\) −0.658322 + 0.317031i −0.658322 + 0.317031i −0.733052 0.680173i \(-0.761905\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(450\) −0.698220 1.77904i −0.698220 1.77904i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0.178094 + 0.223322i 0.178094 + 0.223322i
\(455\) 0.0546039 0.728639i 0.0546039 0.728639i
\(456\) 0 0
\(457\) 0.826239 0.563320i 0.826239 0.563320i −0.0747301 0.997204i \(-0.523810\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(458\) 2.67746 2.48432i 2.67746 2.48432i
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(462\) 0 0
\(463\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −3.77960 0.569683i −3.77960 0.569683i
\(467\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(468\) 0.431272 1.88953i 0.431272 1.88953i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 1.15379 + 1.99843i 1.15379 + 1.99843i
\(473\) −1.44973 + 1.34515i −1.44973 + 1.34515i
\(474\) 0 0
\(475\) 0 0
\(476\) −1.74618 4.44920i −1.74618 4.44920i
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −2.38980 1.15087i −2.38980 1.15087i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −1.82624 + 0.563320i −1.82624 + 0.563320i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0.0747301 0.997204i 0.0747301 0.997204i
\(496\) 3.04812 + 1.46790i 3.04812 + 1.46790i
\(497\) −1.19158 1.49419i −1.19158 1.49419i
\(498\) 0 0
\(499\) −0.722521 1.84095i −0.722521 1.84095i −0.500000 0.866025i \(-0.666667\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(500\) 0.198220 + 2.64506i 0.198220 + 2.64506i
\(501\) 0 0
\(502\) 0.812753 + 0.250701i 0.812753 + 0.250701i
\(503\) 0.623490 + 0.781831i 0.623490 + 0.781831i 0.988831 0.149042i \(-0.0476190\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(504\) −3.12285 + 0.470694i −3.12285 + 0.470694i
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −0.590232 1.02231i −0.590232 1.02231i
\(509\) −0.0747301 + 0.129436i −0.0747301 + 0.129436i −0.900969 0.433884i \(-0.857143\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(510\) 0 0
\(511\) −1.21135 + 1.12397i −1.21135 + 1.12397i
\(512\) 0.112517 0.492970i 0.112517 0.492970i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −1.15379 + 1.99843i −1.15379 + 1.99843i
\(521\) −0.955573 1.65510i −0.955573 1.65510i −0.733052 0.680173i \(-0.761905\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(522\) 0 0
\(523\) 1.63402 1.11406i 1.63402 1.11406i 0.733052 0.680173i \(-0.238095\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −1.19158 1.49419i −1.19158 1.49419i
\(527\) −1.72188 0.531130i −1.72188 0.531130i
\(528\) 0 0
\(529\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(530\) 0 0
\(531\) −0.658322 + 0.317031i −0.658322 + 0.317031i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0.425270 0.131178i 0.425270 0.131178i
\(536\) 0 0
\(537\) 0 0
\(538\) 3.44377 3.44377
\(539\) −0.988831 0.149042i −0.988831 0.149042i
\(540\) 0 0
\(541\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −0.445396 + 5.94340i −0.445396 + 5.94340i
\(545\) 0 0
\(546\) 0 0
\(547\) 1.48883 0.716983i 1.48883 0.716983i 0.500000 0.866025i \(-0.333333\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) −0.698220 + 1.77904i −0.698220 + 1.77904i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 1.96906 2.46912i 1.96906 2.46912i
\(555\) 0 0
\(556\) 0 0
\(557\) 0.623490 + 1.07992i 0.623490 + 1.07992i 0.988831 + 0.149042i \(0.0476190\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(558\) −0.955573 + 1.65510i −0.955573 + 1.65510i
\(559\) 0.321552 + 1.40881i 0.321552 + 1.40881i
\(560\) 3.34537 + 0.504234i 3.34537 + 0.504234i
\(561\) 0 0
\(562\) 0 0
\(563\) −1.44973 0.218511i −1.44973 0.218511i −0.623490 0.781831i \(-0.714286\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −0.530303 + 2.32341i −0.530303 + 2.32341i
\(567\) −0.0747301 0.997204i −0.0747301 0.997204i
\(568\) 1.34306 + 5.88431i 1.34306 + 5.88431i
\(569\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(572\) −1.60135 + 1.09178i −1.60135 + 1.09178i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 2.80759 + 0.866025i 2.80759 + 0.866025i
\(577\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(578\) −0.320914 4.28230i −0.320914 4.28230i
\(579\) 0 0
\(580\) 0 0
\(581\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(582\) 0 0
\(583\) 0 0
\(584\) 4.98688 1.53825i 4.98688 1.53825i
\(585\) −0.603718 0.411608i −0.603718 0.411608i
\(586\) −0.282450 + 0.0425725i −0.282450 + 0.0425725i
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 1.38084 0.208129i 1.38084 0.208129i
\(591\) 0 0
\(592\) 0 0
\(593\) 0.147791 1.97213i 0.147791 1.97213i −0.0747301 0.997204i \(-0.523810\pi\)
0.222521 0.974928i \(-0.428571\pi\)
\(594\) 0 0
\(595\) −1.80194 −1.80194
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0.0546039 0.139129i 0.0546039 0.139129i −0.900969 0.433884i \(-0.857143\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(600\) 0 0
\(601\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(602\) 3.12285 2.12912i 3.12285 2.12912i
\(603\) 0 0
\(604\) 0 0
\(605\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(606\) 0 0
\(607\) 0.0747301 0.129436i 0.0747301 0.129436i −0.826239 0.563320i \(-0.809524\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −4.72622 0.712362i −4.72622 0.712362i
\(613\) −1.44973 0.218511i −1.44973 0.218511i −0.623490 0.781831i \(-0.714286\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(614\) −2.67746 2.48432i −2.67746 2.48432i
\(615\) 0 0
\(616\) 2.60937 + 1.77904i 2.60937 + 1.77904i
\(617\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(618\) 0 0
\(619\) −0.623490 1.07992i −0.623490 1.07992i −0.988831 0.149042i \(-0.952381\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(620\) 1.94440 1.80414i 1.94440 1.80414i
\(621\) 0 0
\(622\) −0.178094 + 0.223322i −0.178094 + 0.223322i
\(623\) 1.88980 + 0.582926i 1.88980 + 0.582926i
\(624\) 0 0
\(625\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) −0.425270 + 1.86323i −0.425270 + 1.86323i
\(631\) 1.32091 + 0.636119i 1.32091 + 0.636119i 0.955573 0.294755i \(-0.0952381\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.440071 + 0.0663300i −0.440071 + 0.0663300i
\(636\) 0 0
\(637\) −0.455573 + 0.571270i −0.455573 + 0.571270i
\(638\) 0 0
\(639\) −1.88980 + 0.284841i −1.88980 + 0.284841i
\(640\) −1.90662 1.29991i −1.90662 1.29991i
\(641\) −0.425270 + 0.131178i −0.425270 + 0.131178i −0.500000 0.866025i \(-0.666667\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(642\) 0 0
\(643\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(648\) −1.15379 + 2.93982i −1.15379 + 2.93982i
\(649\) 0.698220 + 0.215372i 0.698220 + 0.215372i
\(650\) 0.870666 + 1.09178i 0.870666 + 1.09178i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0.367711 + 1.61105i 0.367711 + 1.61105i
\(658\) 0 0
\(659\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(660\) 0 0
\(661\) 0.440071 + 0.0663300i 0.440071 + 0.0663300i 0.365341 0.930874i \(-0.380952\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(662\) −3.73738 0.563320i −3.73738 0.563320i
\(663\) 0 0
\(664\) 0.702749 3.07894i 0.702749 3.07894i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 2.65248 + 4.59423i 2.65248 + 4.59423i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.623490 + 0.781831i 0.623490 + 0.781831i 0.988831 0.149042i \(-0.0476190\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(674\) 1.33440 + 0.411608i 1.33440 + 0.411608i
\(675\) 0 0
\(676\) −0.0923910 1.23287i −0.0923910 1.23287i
\(677\) −0.455573 1.16078i −0.455573 1.16078i −0.955573 0.294755i \(-0.904762\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 5.12718 + 2.46912i 5.12718 + 2.46912i
\(681\) 0 0
\(682\) 1.82624 0.563320i 1.82624 0.563320i
\(683\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.82624 + 0.563320i 1.82624 + 0.563320i
\(687\) 0 0
\(688\) −6.61601 + 0.997204i −6.61601 + 0.997204i
\(689\) 0 0
\(690\) 0 0
\(691\) −0.134659 + 1.79690i −0.134659 + 1.79690i 0.365341 + 0.930874i \(0.380952\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) −3.50369 1.68729i −3.50369 1.68729i
\(693\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(694\) 2.52446 1.21572i 2.52446 1.21572i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 1.32624 2.29711i 1.32624 2.29711i
\(701\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −1.46906 2.54448i −1.46906 2.54448i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0.733052 + 0.680173i 0.733052 + 0.680173i 0.955573 0.294755i \(-0.0952381\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(710\) 3.61168 + 0.544374i 3.61168 + 0.544374i
\(711\) 0 0
\(712\) −4.57842 4.24816i −4.57842 4.24816i
\(713\) 0 0
\(714\) 0 0
\(715\) 0.162592 + 0.712362i 0.162592 + 0.712362i
\(716\) −2.53464 + 4.39012i −2.53464 + 4.39012i
\(717\) 0 0
\(718\) 0 0
\(719\) −1.48883 + 1.01507i −1.48883 + 1.01507i −0.500000 + 0.866025i \(0.666667\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(720\) 2.10937 2.64506i 2.10937 2.64506i
\(721\) 0 0
\(722\) −1.19158 1.49419i −1.19158 1.49419i
\(723\) 0 0
\(724\) 1.60135 4.08017i 1.60135 4.08017i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(728\) 2.07906 1.00122i 2.07906 1.00122i
\(729\) −0.900969 0.433884i −0.900969 0.433884i
\(730\) 0.236007 3.14929i 0.236007 3.14929i
\(731\) 3.40530 1.05040i 3.40530 1.05040i
\(732\) 0 0
\(733\) −0.440071 + 0.0663300i −0.440071 + 0.0663300i −0.365341 0.930874i \(-0.619048\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.658322 0.317031i 0.658322 0.317031i −0.0747301 0.997204i \(-0.523810\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0.104356 0.265895i 0.104356 0.265895i
\(747\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(748\) 2.98003 + 3.73684i 2.98003 + 3.73684i
\(749\) −0.425270 0.131178i −0.425270 0.131178i
\(750\) 0 0
\(751\) 1.36534 0.930874i 1.36534 0.930874i 0.365341 0.930874i \(-0.380952\pi\)
1.00000 \(0\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(758\) 0.209389 + 0.194285i 0.209389 + 0.194285i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0.590232 + 2.58597i 0.590232 + 2.58597i
\(765\) −0.900969 + 1.56052i −0.900969 + 1.56052i
\(766\) 0 0
\(767\) 0.391374 0.363142i 0.391374 0.363142i
\(768\) 0 0
\(769\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(770\) 1.57906 1.07659i 1.57906 1.07659i
\(771\) 0 0
\(772\) 4.56726 + 1.40881i 4.56726 + 1.40881i
\(773\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(774\) −0.282450 3.76903i −0.282450 3.76903i
\(775\) −0.365341 0.930874i −0.365341 0.930874i
\(776\) 0 0
\(777\) 0 0
\(778\) 0.257353 + 0.123935i 0.257353 + 0.123935i
\(779\) 0 0
\(780\) 0 0
\(781\) 1.57906 + 1.07659i 1.57906 + 1.07659i
\(782\) 0 0
\(783\) 0 0
\(784\) −2.48003 2.30113i −2.48003 2.30113i
\(785\) 0 0
\(786\) 0 0
\(787\) 1.21135 + 0.825886i 1.21135 + 0.825886i 0.988831 0.149042i \(-0.0476190\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(788\) 3.71604 1.14625i 3.71604 1.14625i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 2.84537 1.37026i 2.84537 1.37026i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −3.71604 1.14625i −3.71604 1.14625i
\(797\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −2.73286 + 1.86323i −2.73286 + 1.86323i
\(801\) 1.44973 1.34515i 1.44973 1.34515i
\(802\) −1.88980 3.27323i −1.88980 3.27323i
\(803\) 0.826239 1.43109i 0.826239 1.43109i
\(804\) 0 0
\(805\) 0 0
\(806\) 0.310737 1.36143i 0.310737 1.36143i
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(810\) 1.40097 + 1.29991i 1.40097 + 1.29991i
\(811\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0.266948 + 0.680173i 0.266948 + 0.680173i
\(820\) 0 0
\(821\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(822\) 0 0
\(823\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −1.25815 0.605893i −1.25815 0.605893i
\(827\) −1.62349 0.781831i −1.62349 0.781831i −0.623490 0.781831i \(-0.714286\pi\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0.698220 0.215372i 0.698220 0.215372i 0.0747301 0.997204i \(-0.476190\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(830\) −1.57906 1.07659i −1.57906 1.07659i
\(831\) 0 0
\(832\) −2.14683 −2.14683
\(833\) 1.48883 + 1.01507i 1.48883 + 1.01507i
\(834\) 0 0
\(835\) 1.97766 0.298085i 1.97766 0.298085i
\(836\) 0 0
\(837\) 0 0
\(838\) −0.104356 + 1.39254i −0.104356 + 1.39254i
\(839\) 1.62349 + 0.781831i 1.62349 + 0.781831i 1.00000 \(0\)
0.623490 + 0.781831i \(0.285714\pi\)
\(840\) 0 0
\(841\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(842\) 1.25815 + 3.20571i 1.25815 + 3.20571i
\(843\) 0 0
\(844\) 0 0
\(845\) −0.445396 0.137386i −0.445396 0.137386i
\(846\) 0 0
\(847\) 0.988831 0.149042i 0.988831 0.149042i
\(848\) 0 0
\(849\) 0 0
\(850\) 2.52446 2.34236i 2.52446 2.34236i
\(851\) 0 0
\(852\) 0 0
\(853\) −0.0990311 0.433884i −0.0990311 0.433884i 0.900969 0.433884i \(-0.142857\pi\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 1.03030 + 0.955981i 1.03030 + 0.955981i
\(857\) 1.88980 + 0.284841i 1.88980 + 0.284841i 0.988831 0.149042i \(-0.0476190\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(858\) 0 0
\(859\) 1.32091 + 1.22563i 1.32091 + 1.22563i 0.955573 + 0.294755i \(0.0952381\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(860\) −1.16728 + 5.11418i −1.16728 + 5.11418i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(864\) 0 0
\(865\) −1.07473 + 0.997204i −1.07473 + 0.997204i
\(866\) 0 0
\(867\) 0 0
\(868\) −2.62285 + 0.395331i −2.62285 + 0.395331i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.623490 0.781831i −0.623490 0.781831i
\(876\) 0 0
\(877\) 0.0747301 0.997204i 0.0747301 0.997204i −0.826239 0.563320i \(-0.809524\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −3.34537 + 0.504234i −3.34537 + 0.504234i
\(881\) −1.46610 −1.46610 −0.733052 0.680173i \(-0.761905\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(882\) 1.40097 1.29991i 1.40097 1.29991i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 3.45336 0.520510i 3.45336 0.520510i
\(885\) 0 0
\(886\) 0 0
\(887\) −0.123490 + 1.64786i −0.123490 + 1.64786i 0.500000 + 0.866025i \(0.333333\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(888\) 0 0
\(889\) 0.400969 + 0.193096i 0.400969 + 0.193096i
\(890\) −3.40530 + 1.63991i −3.40530 + 1.63991i
\(891\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 1.19158 + 1.49419i 1.19158 + 1.49419i
\(896\) 0.843056 + 2.14807i 0.843056 + 2.14807i
\(897\) 0 0
\(898\) −1.15379 + 0.786643i −1.15379 + 0.786643i
\(899\) 0 0
\(900\) −1.32624 2.29711i −1.32624 2.29711i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.21135 1.12397i −1.21135 1.12397i
\(906\) 0 0
\(907\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(908\) 0.290611 + 0.269648i 0.290611 + 0.269648i
\(909\) 0 0
\(910\) −0.104356 1.39254i −0.104356 1.39254i
\(911\) 0.326239 + 1.42935i 0.326239 + 1.42935i 0.826239 + 0.563320i \(0.190476\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(912\) 0 0
\(913\) −0.500000 0.866025i −0.500000 0.866025i
\(914\) 1.40097 1.29991i 1.40097 1.29991i
\(915\) 0 0
\(916\) 3.16064 3.96332i 3.16064 3.96332i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.25815 0.605893i 1.25815 0.605893i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0.440071 0.0663300i 0.440071 0.0663300i 0.0747301 0.997204i \(-0.476190\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −5.30496 −5.30496
\(933\) 0 0
\(934\) 0 0
\(935\) 1.72188 0.531130i 1.72188 0.531130i
\(936\) 0.172446 2.30113i 0.172446 2.30113i
\(937\) 0.658322 + 0.317031i 0.658322 + 0.317031i 0.733052 0.680173i \(-0.238095\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 1.54128 + 1.93270i 1.54128 + 1.93270i
\(945\) 0 0
\(946\) −2.35654 + 2.95501i −2.35654 + 2.95501i
\(947\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(948\) 0 0
\(949\) −0.603718 1.04567i −0.603718 1.04567i
\(950\) 0 0
\(951\) 0 0
\(952\) −2.84537 4.92833i −2.84537 4.92833i
\(953\) 0.277479 1.21572i 0.277479 1.21572i −0.623490 0.781831i \(-0.714286\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(954\) 0 0
\(955\) 0.988831 + 0.149042i 0.988831 + 0.149042i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0 0
\(962\) 0 0
\(963\) −0.326239 + 0.302705i −0.326239 + 0.302705i
\(964\) 0 0
\(965\) 1.12349 1.40881i 1.12349 1.40881i
\(966\) 0 0
\(967\) −1.03030 1.29196i −1.03030 1.29196i −0.955573 0.294755i \(-0.904762\pi\)
−0.0747301 0.997204i \(-0.523810\pi\)
\(968\) −3.01782 0.930874i −3.01782 0.930874i
\(969\) 0 0
\(970\) 0 0
\(971\) −0.535628 1.36476i −0.535628 1.36476i −0.900969 0.433884i \(-0.857143\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(978\) 0 0
\(979\) −1.97766 −1.97766
\(980\) −2.38980 + 1.15087i −2.38980 + 1.15087i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(984\) 0 0
\(985\) 0.109562 1.46200i 0.109562 1.46200i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −0.142820 1.90580i −0.142820 1.90580i
\(991\) −0.658322 + 1.67738i −0.658322 + 1.67738i 0.0747301 + 0.997204i \(0.476190\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(992\) 3.16064 + 0.974928i 3.16064 + 0.974928i
\(993\) 0 0
\(994\) −2.67746 2.48432i −2.67746 2.48432i
\(995\) −0.914101 + 1.14625i −0.914101 + 1.14625i
\(996\) 0 0
\(997\) −1.44973 + 1.34515i −1.44973 + 1.34515i −0.623490 + 0.781831i \(0.714286\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(998\) −1.88980 3.27323i −1.88980 3.27323i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2695.1.ck.b.1759.1 yes 12
5.4 even 2 2695.1.ck.a.1759.1 yes 12
11.10 odd 2 2695.1.ck.a.1759.1 yes 12
49.39 even 21 inner 2695.1.ck.b.1264.1 yes 12
55.54 odd 2 CM 2695.1.ck.b.1759.1 yes 12
245.39 even 42 2695.1.ck.a.1264.1 12
539.186 odd 42 2695.1.ck.a.1264.1 12
2695.1264 odd 42 inner 2695.1.ck.b.1264.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2695.1.ck.a.1264.1 12 245.39 even 42
2695.1.ck.a.1264.1 12 539.186 odd 42
2695.1.ck.a.1759.1 yes 12 5.4 even 2
2695.1.ck.a.1759.1 yes 12 11.10 odd 2
2695.1.ck.b.1264.1 yes 12 49.39 even 21 inner
2695.1.ck.b.1264.1 yes 12 2695.1264 odd 42 inner
2695.1.ck.b.1759.1 yes 12 1.1 even 1 trivial
2695.1.ck.b.1759.1 yes 12 55.54 odd 2 CM