Properties

Label 270.2.c.b.109.1
Level $270$
Weight $2$
Character 270.109
Analytic conductor $2.156$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,2,Mod(109,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 270.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.15596085457\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 109.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 270.109
Dual form 270.2.c.b.109.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +(1.00000 + 2.00000i) q^{5} -4.00000i q^{7} +1.00000i q^{8} +(2.00000 - 1.00000i) q^{10} +5.00000 q^{11} -3.00000i q^{13} -4.00000 q^{14} +1.00000 q^{16} -1.00000i q^{17} +6.00000 q^{19} +(-1.00000 - 2.00000i) q^{20} -5.00000i q^{22} +1.00000i q^{23} +(-3.00000 + 4.00000i) q^{25} -3.00000 q^{26} +4.00000i q^{28} -9.00000 q^{29} -5.00000 q^{31} -1.00000i q^{32} -1.00000 q^{34} +(8.00000 - 4.00000i) q^{35} +2.00000i q^{37} -6.00000i q^{38} +(-2.00000 + 1.00000i) q^{40} +2.00000 q^{41} +1.00000i q^{43} -5.00000 q^{44} +1.00000 q^{46} +13.0000i q^{47} -9.00000 q^{49} +(4.00000 + 3.00000i) q^{50} +3.00000i q^{52} +(5.00000 + 10.0000i) q^{55} +4.00000 q^{56} +9.00000i q^{58} -4.00000 q^{59} +8.00000 q^{61} +5.00000i q^{62} -1.00000 q^{64} +(6.00000 - 3.00000i) q^{65} +4.00000i q^{67} +1.00000i q^{68} +(-4.00000 - 8.00000i) q^{70} +6.00000 q^{71} -2.00000i q^{73} +2.00000 q^{74} -6.00000 q^{76} -20.0000i q^{77} -9.00000 q^{79} +(1.00000 + 2.00000i) q^{80} -2.00000i q^{82} +4.00000i q^{83} +(2.00000 - 1.00000i) q^{85} +1.00000 q^{86} +5.00000i q^{88} -14.0000 q^{89} -12.0000 q^{91} -1.00000i q^{92} +13.0000 q^{94} +(6.00000 + 12.0000i) q^{95} +10.0000i q^{97} +9.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 2 q^{5} + 4 q^{10} + 10 q^{11} - 8 q^{14} + 2 q^{16} + 12 q^{19} - 2 q^{20} - 6 q^{25} - 6 q^{26} - 18 q^{29} - 10 q^{31} - 2 q^{34} + 16 q^{35} - 4 q^{40} + 4 q^{41} - 10 q^{44} + 2 q^{46}+ \cdots + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 1.00000 + 2.00000i 0.447214 + 0.894427i
\(6\) 0 0
\(7\) 4.00000i 1.51186i −0.654654 0.755929i \(-0.727186\pi\)
0.654654 0.755929i \(-0.272814\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 2.00000 1.00000i 0.632456 0.316228i
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) 0 0
\(13\) 3.00000i 0.832050i −0.909353 0.416025i \(-0.863423\pi\)
0.909353 0.416025i \(-0.136577\pi\)
\(14\) −4.00000 −1.06904
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.00000i 0.242536i −0.992620 0.121268i \(-0.961304\pi\)
0.992620 0.121268i \(-0.0386960\pi\)
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) −1.00000 2.00000i −0.223607 0.447214i
\(21\) 0 0
\(22\) 5.00000i 1.06600i
\(23\) 1.00000i 0.208514i 0.994550 + 0.104257i \(0.0332465\pi\)
−0.994550 + 0.104257i \(0.966753\pi\)
\(24\) 0 0
\(25\) −3.00000 + 4.00000i −0.600000 + 0.800000i
\(26\) −3.00000 −0.588348
\(27\) 0 0
\(28\) 4.00000i 0.755929i
\(29\) −9.00000 −1.67126 −0.835629 0.549294i \(-0.814897\pi\)
−0.835629 + 0.549294i \(0.814897\pi\)
\(30\) 0 0
\(31\) −5.00000 −0.898027 −0.449013 0.893525i \(-0.648224\pi\)
−0.449013 + 0.893525i \(0.648224\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) 8.00000 4.00000i 1.35225 0.676123i
\(36\) 0 0
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 6.00000i 0.973329i
\(39\) 0 0
\(40\) −2.00000 + 1.00000i −0.316228 + 0.158114i
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) 1.00000i 0.152499i 0.997089 + 0.0762493i \(0.0242945\pi\)
−0.997089 + 0.0762493i \(0.975706\pi\)
\(44\) −5.00000 −0.753778
\(45\) 0 0
\(46\) 1.00000 0.147442
\(47\) 13.0000i 1.89624i 0.317905 + 0.948122i \(0.397021\pi\)
−0.317905 + 0.948122i \(0.602979\pi\)
\(48\) 0 0
\(49\) −9.00000 −1.28571
\(50\) 4.00000 + 3.00000i 0.565685 + 0.424264i
\(51\) 0 0
\(52\) 3.00000i 0.416025i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 5.00000 + 10.0000i 0.674200 + 1.34840i
\(56\) 4.00000 0.534522
\(57\) 0 0
\(58\) 9.00000i 1.18176i
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) 8.00000 1.02430 0.512148 0.858898i \(-0.328850\pi\)
0.512148 + 0.858898i \(0.328850\pi\)
\(62\) 5.00000i 0.635001i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 6.00000 3.00000i 0.744208 0.372104i
\(66\) 0 0
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) 1.00000i 0.121268i
\(69\) 0 0
\(70\) −4.00000 8.00000i −0.478091 0.956183i
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 2.00000i 0.234082i −0.993127 0.117041i \(-0.962659\pi\)
0.993127 0.117041i \(-0.0373409\pi\)
\(74\) 2.00000 0.232495
\(75\) 0 0
\(76\) −6.00000 −0.688247
\(77\) 20.0000i 2.27921i
\(78\) 0 0
\(79\) −9.00000 −1.01258 −0.506290 0.862364i \(-0.668983\pi\)
−0.506290 + 0.862364i \(0.668983\pi\)
\(80\) 1.00000 + 2.00000i 0.111803 + 0.223607i
\(81\) 0 0
\(82\) 2.00000i 0.220863i
\(83\) 4.00000i 0.439057i 0.975606 + 0.219529i \(0.0704519\pi\)
−0.975606 + 0.219529i \(0.929548\pi\)
\(84\) 0 0
\(85\) 2.00000 1.00000i 0.216930 0.108465i
\(86\) 1.00000 0.107833
\(87\) 0 0
\(88\) 5.00000i 0.533002i
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 0 0
\(91\) −12.0000 −1.25794
\(92\) 1.00000i 0.104257i
\(93\) 0 0
\(94\) 13.0000 1.34085
\(95\) 6.00000 + 12.0000i 0.615587 + 1.23117i
\(96\) 0 0
\(97\) 10.0000i 1.01535i 0.861550 + 0.507673i \(0.169494\pi\)
−0.861550 + 0.507673i \(0.830506\pi\)
\(98\) 9.00000i 0.909137i
\(99\) 0 0
\(100\) 3.00000 4.00000i 0.300000 0.400000i
\(101\) −17.0000 −1.69156 −0.845782 0.533529i \(-0.820865\pi\)
−0.845782 + 0.533529i \(0.820865\pi\)
\(102\) 0 0
\(103\) 10.0000i 0.985329i −0.870219 0.492665i \(-0.836023\pi\)
0.870219 0.492665i \(-0.163977\pi\)
\(104\) 3.00000 0.294174
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000i 0.580042i −0.957020 0.290021i \(-0.906338\pi\)
0.957020 0.290021i \(-0.0936623\pi\)
\(108\) 0 0
\(109\) 8.00000 0.766261 0.383131 0.923694i \(-0.374846\pi\)
0.383131 + 0.923694i \(0.374846\pi\)
\(110\) 10.0000 5.00000i 0.953463 0.476731i
\(111\) 0 0
\(112\) 4.00000i 0.377964i
\(113\) 3.00000i 0.282216i −0.989994 0.141108i \(-0.954933\pi\)
0.989994 0.141108i \(-0.0450665\pi\)
\(114\) 0 0
\(115\) −2.00000 + 1.00000i −0.186501 + 0.0932505i
\(116\) 9.00000 0.835629
\(117\) 0 0
\(118\) 4.00000i 0.368230i
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 8.00000i 0.724286i
\(123\) 0 0
\(124\) 5.00000 0.449013
\(125\) −11.0000 2.00000i −0.983870 0.178885i
\(126\) 0 0
\(127\) 4.00000i 0.354943i −0.984126 0.177471i \(-0.943208\pi\)
0.984126 0.177471i \(-0.0567917\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) −3.00000 6.00000i −0.263117 0.526235i
\(131\) 3.00000 0.262111 0.131056 0.991375i \(-0.458163\pi\)
0.131056 + 0.991375i \(0.458163\pi\)
\(132\) 0 0
\(133\) 24.0000i 2.08106i
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 1.00000 0.0857493
\(137\) 18.0000i 1.53784i 0.639343 + 0.768922i \(0.279207\pi\)
−0.639343 + 0.768922i \(0.720793\pi\)
\(138\) 0 0
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) −8.00000 + 4.00000i −0.676123 + 0.338062i
\(141\) 0 0
\(142\) 6.00000i 0.503509i
\(143\) 15.0000i 1.25436i
\(144\) 0 0
\(145\) −9.00000 18.0000i −0.747409 1.49482i
\(146\) −2.00000 −0.165521
\(147\) 0 0
\(148\) 2.00000i 0.164399i
\(149\) −13.0000 −1.06500 −0.532501 0.846430i \(-0.678748\pi\)
−0.532501 + 0.846430i \(0.678748\pi\)
\(150\) 0 0
\(151\) 13.0000 1.05792 0.528962 0.848645i \(-0.322581\pi\)
0.528962 + 0.848645i \(0.322581\pi\)
\(152\) 6.00000i 0.486664i
\(153\) 0 0
\(154\) −20.0000 −1.61165
\(155\) −5.00000 10.0000i −0.401610 0.803219i
\(156\) 0 0
\(157\) 13.0000i 1.03751i 0.854922 + 0.518756i \(0.173605\pi\)
−0.854922 + 0.518756i \(0.826395\pi\)
\(158\) 9.00000i 0.716002i
\(159\) 0 0
\(160\) 2.00000 1.00000i 0.158114 0.0790569i
\(161\) 4.00000 0.315244
\(162\) 0 0
\(163\) 19.0000i 1.48819i −0.668071 0.744097i \(-0.732880\pi\)
0.668071 0.744097i \(-0.267120\pi\)
\(164\) −2.00000 −0.156174
\(165\) 0 0
\(166\) 4.00000 0.310460
\(167\) 12.0000i 0.928588i −0.885681 0.464294i \(-0.846308\pi\)
0.885681 0.464294i \(-0.153692\pi\)
\(168\) 0 0
\(169\) 4.00000 0.307692
\(170\) −1.00000 2.00000i −0.0766965 0.153393i
\(171\) 0 0
\(172\) 1.00000i 0.0762493i
\(173\) 16.0000i 1.21646i −0.793762 0.608229i \(-0.791880\pi\)
0.793762 0.608229i \(-0.208120\pi\)
\(174\) 0 0
\(175\) 16.0000 + 12.0000i 1.20949 + 0.907115i
\(176\) 5.00000 0.376889
\(177\) 0 0
\(178\) 14.0000i 1.04934i
\(179\) 20.0000 1.49487 0.747435 0.664335i \(-0.231285\pi\)
0.747435 + 0.664335i \(0.231285\pi\)
\(180\) 0 0
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 12.0000i 0.889499i
\(183\) 0 0
\(184\) −1.00000 −0.0737210
\(185\) −4.00000 + 2.00000i −0.294086 + 0.147043i
\(186\) 0 0
\(187\) 5.00000i 0.365636i
\(188\) 13.0000i 0.948122i
\(189\) 0 0
\(190\) 12.0000 6.00000i 0.870572 0.435286i
\(191\) 6.00000 0.434145 0.217072 0.976156i \(-0.430349\pi\)
0.217072 + 0.976156i \(0.430349\pi\)
\(192\) 0 0
\(193\) 4.00000i 0.287926i 0.989583 + 0.143963i \(0.0459847\pi\)
−0.989583 + 0.143963i \(0.954015\pi\)
\(194\) 10.0000 0.717958
\(195\) 0 0
\(196\) 9.00000 0.642857
\(197\) 22.0000i 1.56744i 0.621117 + 0.783718i \(0.286679\pi\)
−0.621117 + 0.783718i \(0.713321\pi\)
\(198\) 0 0
\(199\) −3.00000 −0.212664 −0.106332 0.994331i \(-0.533911\pi\)
−0.106332 + 0.994331i \(0.533911\pi\)
\(200\) −4.00000 3.00000i −0.282843 0.212132i
\(201\) 0 0
\(202\) 17.0000i 1.19612i
\(203\) 36.0000i 2.52670i
\(204\) 0 0
\(205\) 2.00000 + 4.00000i 0.139686 + 0.279372i
\(206\) −10.0000 −0.696733
\(207\) 0 0
\(208\) 3.00000i 0.208013i
\(209\) 30.0000 2.07514
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −6.00000 −0.410152
\(215\) −2.00000 + 1.00000i −0.136399 + 0.0681994i
\(216\) 0 0
\(217\) 20.0000i 1.35769i
\(218\) 8.00000i 0.541828i
\(219\) 0 0
\(220\) −5.00000 10.0000i −0.337100 0.674200i
\(221\) −3.00000 −0.201802
\(222\) 0 0
\(223\) 22.0000i 1.47323i 0.676313 + 0.736614i \(0.263577\pi\)
−0.676313 + 0.736614i \(0.736423\pi\)
\(224\) −4.00000 −0.267261
\(225\) 0 0
\(226\) −3.00000 −0.199557
\(227\) 2.00000i 0.132745i 0.997795 + 0.0663723i \(0.0211425\pi\)
−0.997795 + 0.0663723i \(0.978857\pi\)
\(228\) 0 0
\(229\) −2.00000 −0.132164 −0.0660819 0.997814i \(-0.521050\pi\)
−0.0660819 + 0.997814i \(0.521050\pi\)
\(230\) 1.00000 + 2.00000i 0.0659380 + 0.131876i
\(231\) 0 0
\(232\) 9.00000i 0.590879i
\(233\) 14.0000i 0.917170i 0.888650 + 0.458585i \(0.151644\pi\)
−0.888650 + 0.458585i \(0.848356\pi\)
\(234\) 0 0
\(235\) −26.0000 + 13.0000i −1.69605 + 0.848026i
\(236\) 4.00000 0.260378
\(237\) 0 0
\(238\) 4.00000i 0.259281i
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 0 0
\(241\) −23.0000 −1.48156 −0.740780 0.671748i \(-0.765544\pi\)
−0.740780 + 0.671748i \(0.765544\pi\)
\(242\) 14.0000i 0.899954i
\(243\) 0 0
\(244\) −8.00000 −0.512148
\(245\) −9.00000 18.0000i −0.574989 1.14998i
\(246\) 0 0
\(247\) 18.0000i 1.14531i
\(248\) 5.00000i 0.317500i
\(249\) 0 0
\(250\) −2.00000 + 11.0000i −0.126491 + 0.695701i
\(251\) −15.0000 −0.946792 −0.473396 0.880850i \(-0.656972\pi\)
−0.473396 + 0.880850i \(0.656972\pi\)
\(252\) 0 0
\(253\) 5.00000i 0.314347i
\(254\) −4.00000 −0.250982
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 21.0000i 1.30994i −0.755653 0.654972i \(-0.772680\pi\)
0.755653 0.654972i \(-0.227320\pi\)
\(258\) 0 0
\(259\) 8.00000 0.497096
\(260\) −6.00000 + 3.00000i −0.372104 + 0.186052i
\(261\) 0 0
\(262\) 3.00000i 0.185341i
\(263\) 8.00000i 0.493301i −0.969104 0.246651i \(-0.920670\pi\)
0.969104 0.246651i \(-0.0793300\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −24.0000 −1.47153
\(267\) 0 0
\(268\) 4.00000i 0.244339i
\(269\) 9.00000 0.548740 0.274370 0.961624i \(-0.411531\pi\)
0.274370 + 0.961624i \(0.411531\pi\)
\(270\) 0 0
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 1.00000i 0.0606339i
\(273\) 0 0
\(274\) 18.0000 1.08742
\(275\) −15.0000 + 20.0000i −0.904534 + 1.20605i
\(276\) 0 0
\(277\) 26.0000i 1.56219i 0.624413 + 0.781094i \(0.285338\pi\)
−0.624413 + 0.781094i \(0.714662\pi\)
\(278\) 8.00000i 0.479808i
\(279\) 0 0
\(280\) 4.00000 + 8.00000i 0.239046 + 0.478091i
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) 20.0000i 1.18888i 0.804141 + 0.594438i \(0.202626\pi\)
−0.804141 + 0.594438i \(0.797374\pi\)
\(284\) −6.00000 −0.356034
\(285\) 0 0
\(286\) −15.0000 −0.886969
\(287\) 8.00000i 0.472225i
\(288\) 0 0
\(289\) 16.0000 0.941176
\(290\) −18.0000 + 9.00000i −1.05700 + 0.528498i
\(291\) 0 0
\(292\) 2.00000i 0.117041i
\(293\) 6.00000i 0.350524i −0.984522 0.175262i \(-0.943923\pi\)
0.984522 0.175262i \(-0.0560772\pi\)
\(294\) 0 0
\(295\) −4.00000 8.00000i −0.232889 0.465778i
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) 13.0000i 0.753070i
\(299\) 3.00000 0.173494
\(300\) 0 0
\(301\) 4.00000 0.230556
\(302\) 13.0000i 0.748066i
\(303\) 0 0
\(304\) 6.00000 0.344124
\(305\) 8.00000 + 16.0000i 0.458079 + 0.916157i
\(306\) 0 0
\(307\) 21.0000i 1.19853i −0.800549 0.599267i \(-0.795459\pi\)
0.800549 0.599267i \(-0.204541\pi\)
\(308\) 20.0000i 1.13961i
\(309\) 0 0
\(310\) −10.0000 + 5.00000i −0.567962 + 0.283981i
\(311\) −18.0000 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(312\) 0 0
\(313\) 14.0000i 0.791327i −0.918396 0.395663i \(-0.870515\pi\)
0.918396 0.395663i \(-0.129485\pi\)
\(314\) 13.0000 0.733632
\(315\) 0 0
\(316\) 9.00000 0.506290
\(317\) 4.00000i 0.224662i −0.993671 0.112331i \(-0.964168\pi\)
0.993671 0.112331i \(-0.0358318\pi\)
\(318\) 0 0
\(319\) −45.0000 −2.51952
\(320\) −1.00000 2.00000i −0.0559017 0.111803i
\(321\) 0 0
\(322\) 4.00000i 0.222911i
\(323\) 6.00000i 0.333849i
\(324\) 0 0
\(325\) 12.0000 + 9.00000i 0.665640 + 0.499230i
\(326\) −19.0000 −1.05231
\(327\) 0 0
\(328\) 2.00000i 0.110432i
\(329\) 52.0000 2.86685
\(330\) 0 0
\(331\) 10.0000 0.549650 0.274825 0.961494i \(-0.411380\pi\)
0.274825 + 0.961494i \(0.411380\pi\)
\(332\) 4.00000i 0.219529i
\(333\) 0 0
\(334\) −12.0000 −0.656611
\(335\) −8.00000 + 4.00000i −0.437087 + 0.218543i
\(336\) 0 0
\(337\) 16.0000i 0.871576i −0.900049 0.435788i \(-0.856470\pi\)
0.900049 0.435788i \(-0.143530\pi\)
\(338\) 4.00000i 0.217571i
\(339\) 0 0
\(340\) −2.00000 + 1.00000i −0.108465 + 0.0542326i
\(341\) −25.0000 −1.35383
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) −1.00000 −0.0539164
\(345\) 0 0
\(346\) −16.0000 −0.860165
\(347\) 6.00000i 0.322097i 0.986947 + 0.161048i \(0.0514875\pi\)
−0.986947 + 0.161048i \(0.948512\pi\)
\(348\) 0 0
\(349\) −16.0000 −0.856460 −0.428230 0.903670i \(-0.640863\pi\)
−0.428230 + 0.903670i \(0.640863\pi\)
\(350\) 12.0000 16.0000i 0.641427 0.855236i
\(351\) 0 0
\(352\) 5.00000i 0.266501i
\(353\) 11.0000i 0.585471i 0.956193 + 0.292735i \(0.0945655\pi\)
−0.956193 + 0.292735i \(0.905434\pi\)
\(354\) 0 0
\(355\) 6.00000 + 12.0000i 0.318447 + 0.636894i
\(356\) 14.0000 0.741999
\(357\) 0 0
\(358\) 20.0000i 1.05703i
\(359\) 6.00000 0.316668 0.158334 0.987386i \(-0.449388\pi\)
0.158334 + 0.987386i \(0.449388\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 22.0000i 1.15629i
\(363\) 0 0
\(364\) 12.0000 0.628971
\(365\) 4.00000 2.00000i 0.209370 0.104685i
\(366\) 0 0
\(367\) 22.0000i 1.14839i −0.818718 0.574195i \(-0.805315\pi\)
0.818718 0.574195i \(-0.194685\pi\)
\(368\) 1.00000i 0.0521286i
\(369\) 0 0
\(370\) 2.00000 + 4.00000i 0.103975 + 0.207950i
\(371\) 0 0
\(372\) 0 0
\(373\) 21.0000i 1.08734i −0.839299 0.543669i \(-0.817035\pi\)
0.839299 0.543669i \(-0.182965\pi\)
\(374\) −5.00000 −0.258544
\(375\) 0 0
\(376\) −13.0000 −0.670424
\(377\) 27.0000i 1.39057i
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) −6.00000 12.0000i −0.307794 0.615587i
\(381\) 0 0
\(382\) 6.00000i 0.306987i
\(383\) 19.0000i 0.970855i −0.874277 0.485427i \(-0.838664\pi\)
0.874277 0.485427i \(-0.161336\pi\)
\(384\) 0 0
\(385\) 40.0000 20.0000i 2.03859 1.01929i
\(386\) 4.00000 0.203595
\(387\) 0 0
\(388\) 10.0000i 0.507673i
\(389\) −5.00000 −0.253510 −0.126755 0.991934i \(-0.540456\pi\)
−0.126755 + 0.991934i \(0.540456\pi\)
\(390\) 0 0
\(391\) 1.00000 0.0505722
\(392\) 9.00000i 0.454569i
\(393\) 0 0
\(394\) 22.0000 1.10834
\(395\) −9.00000 18.0000i −0.452839 0.905678i
\(396\) 0 0
\(397\) 13.0000i 0.652451i −0.945292 0.326226i \(-0.894223\pi\)
0.945292 0.326226i \(-0.105777\pi\)
\(398\) 3.00000i 0.150376i
\(399\) 0 0
\(400\) −3.00000 + 4.00000i −0.150000 + 0.200000i
\(401\) 16.0000 0.799002 0.399501 0.916733i \(-0.369183\pi\)
0.399501 + 0.916733i \(0.369183\pi\)
\(402\) 0 0
\(403\) 15.0000i 0.747203i
\(404\) 17.0000 0.845782
\(405\) 0 0
\(406\) 36.0000 1.78665
\(407\) 10.0000i 0.495682i
\(408\) 0 0
\(409\) −11.0000 −0.543915 −0.271957 0.962309i \(-0.587671\pi\)
−0.271957 + 0.962309i \(0.587671\pi\)
\(410\) 4.00000 2.00000i 0.197546 0.0987730i
\(411\) 0 0
\(412\) 10.0000i 0.492665i
\(413\) 16.0000i 0.787309i
\(414\) 0 0
\(415\) −8.00000 + 4.00000i −0.392705 + 0.196352i
\(416\) −3.00000 −0.147087
\(417\) 0 0
\(418\) 30.0000i 1.46735i
\(419\) −23.0000 −1.12362 −0.561812 0.827265i \(-0.689895\pi\)
−0.561812 + 0.827265i \(0.689895\pi\)
\(420\) 0 0
\(421\) −26.0000 −1.26716 −0.633581 0.773676i \(-0.718416\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.00000 + 3.00000i 0.194029 + 0.145521i
\(426\) 0 0
\(427\) 32.0000i 1.54859i
\(428\) 6.00000i 0.290021i
\(429\) 0 0
\(430\) 1.00000 + 2.00000i 0.0482243 + 0.0964486i
\(431\) 8.00000 0.385346 0.192673 0.981263i \(-0.438284\pi\)
0.192673 + 0.981263i \(0.438284\pi\)
\(432\) 0 0
\(433\) 22.0000i 1.05725i 0.848855 + 0.528626i \(0.177293\pi\)
−0.848855 + 0.528626i \(0.822707\pi\)
\(434\) 20.0000 0.960031
\(435\) 0 0
\(436\) −8.00000 −0.383131
\(437\) 6.00000i 0.287019i
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) −10.0000 + 5.00000i −0.476731 + 0.238366i
\(441\) 0 0
\(442\) 3.00000i 0.142695i
\(443\) 30.0000i 1.42534i −0.701498 0.712672i \(-0.747485\pi\)
0.701498 0.712672i \(-0.252515\pi\)
\(444\) 0 0
\(445\) −14.0000 28.0000i −0.663664 1.32733i
\(446\) 22.0000 1.04173
\(447\) 0 0
\(448\) 4.00000i 0.188982i
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 10.0000 0.470882
\(452\) 3.00000i 0.141108i
\(453\) 0 0
\(454\) 2.00000 0.0938647
\(455\) −12.0000 24.0000i −0.562569 1.12514i
\(456\) 0 0
\(457\) 16.0000i 0.748448i −0.927338 0.374224i \(-0.877909\pi\)
0.927338 0.374224i \(-0.122091\pi\)
\(458\) 2.00000i 0.0934539i
\(459\) 0 0
\(460\) 2.00000 1.00000i 0.0932505 0.0466252i
\(461\) 6.00000 0.279448 0.139724 0.990190i \(-0.455378\pi\)
0.139724 + 0.990190i \(0.455378\pi\)
\(462\) 0 0
\(463\) 6.00000i 0.278844i −0.990233 0.139422i \(-0.955476\pi\)
0.990233 0.139422i \(-0.0445244\pi\)
\(464\) −9.00000 −0.417815
\(465\) 0 0
\(466\) 14.0000 0.648537
\(467\) 6.00000i 0.277647i −0.990317 0.138823i \(-0.955668\pi\)
0.990317 0.138823i \(-0.0443321\pi\)
\(468\) 0 0
\(469\) 16.0000 0.738811
\(470\) 13.0000 + 26.0000i 0.599645 + 1.19929i
\(471\) 0 0
\(472\) 4.00000i 0.184115i
\(473\) 5.00000i 0.229900i
\(474\) 0 0
\(475\) −18.0000 + 24.0000i −0.825897 + 1.10120i
\(476\) 4.00000 0.183340
\(477\) 0 0
\(478\) 16.0000i 0.731823i
\(479\) −2.00000 −0.0913823 −0.0456912 0.998956i \(-0.514549\pi\)
−0.0456912 + 0.998956i \(0.514549\pi\)
\(480\) 0 0
\(481\) 6.00000 0.273576
\(482\) 23.0000i 1.04762i
\(483\) 0 0
\(484\) −14.0000 −0.636364
\(485\) −20.0000 + 10.0000i −0.908153 + 0.454077i
\(486\) 0 0
\(487\) 12.0000i 0.543772i 0.962329 + 0.271886i \(0.0876473\pi\)
−0.962329 + 0.271886i \(0.912353\pi\)
\(488\) 8.00000i 0.362143i
\(489\) 0 0
\(490\) −18.0000 + 9.00000i −0.813157 + 0.406579i
\(491\) −24.0000 −1.08310 −0.541552 0.840667i \(-0.682163\pi\)
−0.541552 + 0.840667i \(0.682163\pi\)
\(492\) 0 0
\(493\) 9.00000i 0.405340i
\(494\) −18.0000 −0.809858
\(495\) 0 0
\(496\) −5.00000 −0.224507
\(497\) 24.0000i 1.07655i
\(498\) 0 0
\(499\) 12.0000 0.537194 0.268597 0.963253i \(-0.413440\pi\)
0.268597 + 0.963253i \(0.413440\pi\)
\(500\) 11.0000 + 2.00000i 0.491935 + 0.0894427i
\(501\) 0 0
\(502\) 15.0000i 0.669483i
\(503\) 9.00000i 0.401290i 0.979664 + 0.200645i \(0.0643038\pi\)
−0.979664 + 0.200645i \(0.935696\pi\)
\(504\) 0 0
\(505\) −17.0000 34.0000i −0.756490 1.51298i
\(506\) 5.00000 0.222277
\(507\) 0 0
\(508\) 4.00000i 0.177471i
\(509\) −21.0000 −0.930809 −0.465404 0.885098i \(-0.654091\pi\)
−0.465404 + 0.885098i \(0.654091\pi\)
\(510\) 0 0
\(511\) −8.00000 −0.353899
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −21.0000 −0.926270
\(515\) 20.0000 10.0000i 0.881305 0.440653i
\(516\) 0 0
\(517\) 65.0000i 2.85870i
\(518\) 8.00000i 0.351500i
\(519\) 0 0
\(520\) 3.00000 + 6.00000i 0.131559 + 0.263117i
\(521\) 22.0000 0.963837 0.481919 0.876216i \(-0.339940\pi\)
0.481919 + 0.876216i \(0.339940\pi\)
\(522\) 0 0
\(523\) 23.0000i 1.00572i 0.864368 + 0.502860i \(0.167719\pi\)
−0.864368 + 0.502860i \(0.832281\pi\)
\(524\) −3.00000 −0.131056
\(525\) 0 0
\(526\) −8.00000 −0.348817
\(527\) 5.00000i 0.217803i
\(528\) 0 0
\(529\) 22.0000 0.956522
\(530\) 0 0
\(531\) 0 0
\(532\) 24.0000i 1.04053i
\(533\) 6.00000i 0.259889i
\(534\) 0 0
\(535\) 12.0000 6.00000i 0.518805 0.259403i
\(536\) −4.00000 −0.172774
\(537\) 0 0
\(538\) 9.00000i 0.388018i
\(539\) −45.0000 −1.93829
\(540\) 0 0
\(541\) 10.0000 0.429934 0.214967 0.976621i \(-0.431036\pi\)
0.214967 + 0.976621i \(0.431036\pi\)
\(542\) 16.0000i 0.687259i
\(543\) 0 0
\(544\) −1.00000 −0.0428746
\(545\) 8.00000 + 16.0000i 0.342682 + 0.685365i
\(546\) 0 0
\(547\) 25.0000i 1.06892i −0.845193 0.534461i \(-0.820514\pi\)
0.845193 0.534461i \(-0.179486\pi\)
\(548\) 18.0000i 0.768922i
\(549\) 0 0
\(550\) 20.0000 + 15.0000i 0.852803 + 0.639602i
\(551\) −54.0000 −2.30048
\(552\) 0 0
\(553\) 36.0000i 1.53088i
\(554\) 26.0000 1.10463
\(555\) 0 0
\(556\) −8.00000 −0.339276
\(557\) 42.0000i 1.77960i −0.456354 0.889799i \(-0.650845\pi\)
0.456354 0.889799i \(-0.349155\pi\)
\(558\) 0 0
\(559\) 3.00000 0.126886
\(560\) 8.00000 4.00000i 0.338062 0.169031i
\(561\) 0 0
\(562\) 18.0000i 0.759284i
\(563\) 4.00000i 0.168580i −0.996441 0.0842900i \(-0.973138\pi\)
0.996441 0.0842900i \(-0.0268622\pi\)
\(564\) 0 0
\(565\) 6.00000 3.00000i 0.252422 0.126211i
\(566\) 20.0000 0.840663
\(567\) 0 0
\(568\) 6.00000i 0.251754i
\(569\) −20.0000 −0.838444 −0.419222 0.907884i \(-0.637697\pi\)
−0.419222 + 0.907884i \(0.637697\pi\)
\(570\) 0 0
\(571\) −32.0000 −1.33916 −0.669579 0.742741i \(-0.733526\pi\)
−0.669579 + 0.742741i \(0.733526\pi\)
\(572\) 15.0000i 0.627182i
\(573\) 0 0
\(574\) −8.00000 −0.333914
\(575\) −4.00000 3.00000i −0.166812 0.125109i
\(576\) 0 0
\(577\) 32.0000i 1.33218i 0.745873 + 0.666089i \(0.232033\pi\)
−0.745873 + 0.666089i \(0.767967\pi\)
\(578\) 16.0000i 0.665512i
\(579\) 0 0
\(580\) 9.00000 + 18.0000i 0.373705 + 0.747409i
\(581\) 16.0000 0.663792
\(582\) 0 0
\(583\) 0 0
\(584\) 2.00000 0.0827606
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 36.0000i 1.48588i −0.669359 0.742940i \(-0.733431\pi\)
0.669359 0.742940i \(-0.266569\pi\)
\(588\) 0 0
\(589\) −30.0000 −1.23613
\(590\) −8.00000 + 4.00000i −0.329355 + 0.164677i
\(591\) 0 0
\(592\) 2.00000i 0.0821995i
\(593\) 21.0000i 0.862367i 0.902264 + 0.431183i \(0.141904\pi\)
−0.902264 + 0.431183i \(0.858096\pi\)
\(594\) 0 0
\(595\) −4.00000 8.00000i −0.163984 0.327968i
\(596\) 13.0000 0.532501
\(597\) 0 0
\(598\) 3.00000i 0.122679i
\(599\) −42.0000 −1.71607 −0.858037 0.513588i \(-0.828316\pi\)
−0.858037 + 0.513588i \(0.828316\pi\)
\(600\) 0 0
\(601\) −19.0000 −0.775026 −0.387513 0.921864i \(-0.626666\pi\)
−0.387513 + 0.921864i \(0.626666\pi\)
\(602\) 4.00000i 0.163028i
\(603\) 0 0
\(604\) −13.0000 −0.528962
\(605\) 14.0000 + 28.0000i 0.569181 + 1.13836i
\(606\) 0 0
\(607\) 10.0000i 0.405887i 0.979190 + 0.202944i \(0.0650509\pi\)
−0.979190 + 0.202944i \(0.934949\pi\)
\(608\) 6.00000i 0.243332i
\(609\) 0 0
\(610\) 16.0000 8.00000i 0.647821 0.323911i
\(611\) 39.0000 1.57777
\(612\) 0 0
\(613\) 23.0000i 0.928961i −0.885583 0.464481i \(-0.846241\pi\)
0.885583 0.464481i \(-0.153759\pi\)
\(614\) −21.0000 −0.847491
\(615\) 0 0
\(616\) 20.0000 0.805823
\(617\) 29.0000i 1.16750i 0.811935 + 0.583748i \(0.198414\pi\)
−0.811935 + 0.583748i \(0.801586\pi\)
\(618\) 0 0
\(619\) −26.0000 −1.04503 −0.522514 0.852631i \(-0.675006\pi\)
−0.522514 + 0.852631i \(0.675006\pi\)
\(620\) 5.00000 + 10.0000i 0.200805 + 0.401610i
\(621\) 0 0
\(622\) 18.0000i 0.721734i
\(623\) 56.0000i 2.24359i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) −14.0000 −0.559553
\(627\) 0 0
\(628\) 13.0000i 0.518756i
\(629\) 2.00000 0.0797452
\(630\) 0 0
\(631\) −4.00000 −0.159237 −0.0796187 0.996825i \(-0.525370\pi\)
−0.0796187 + 0.996825i \(0.525370\pi\)
\(632\) 9.00000i 0.358001i
\(633\) 0 0
\(634\) −4.00000 −0.158860
\(635\) 8.00000 4.00000i 0.317470 0.158735i
\(636\) 0 0
\(637\) 27.0000i 1.06978i
\(638\) 45.0000i 1.78157i
\(639\) 0 0
\(640\) −2.00000 + 1.00000i −0.0790569 + 0.0395285i
\(641\) 20.0000 0.789953 0.394976 0.918691i \(-0.370753\pi\)
0.394976 + 0.918691i \(0.370753\pi\)
\(642\) 0 0
\(643\) 21.0000i 0.828159i 0.910241 + 0.414080i \(0.135896\pi\)
−0.910241 + 0.414080i \(0.864104\pi\)
\(644\) −4.00000 −0.157622
\(645\) 0 0
\(646\) −6.00000 −0.236067
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) −20.0000 −0.785069
\(650\) 9.00000 12.0000i 0.353009 0.470679i
\(651\) 0 0
\(652\) 19.0000i 0.744097i
\(653\) 26.0000i 1.01746i −0.860927 0.508729i \(-0.830115\pi\)
0.860927 0.508729i \(-0.169885\pi\)
\(654\) 0 0
\(655\) 3.00000 + 6.00000i 0.117220 + 0.234439i
\(656\) 2.00000 0.0780869
\(657\) 0 0
\(658\) 52.0000i 2.02717i
\(659\) 20.0000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(660\) 0 0
\(661\) 44.0000 1.71140 0.855701 0.517471i \(-0.173126\pi\)
0.855701 + 0.517471i \(0.173126\pi\)
\(662\) 10.0000i 0.388661i
\(663\) 0 0
\(664\) −4.00000 −0.155230
\(665\) 48.0000 24.0000i 1.86136 0.930680i
\(666\) 0 0
\(667\) 9.00000i 0.348481i
\(668\) 12.0000i 0.464294i
\(669\) 0 0
\(670\) 4.00000 + 8.00000i 0.154533 + 0.309067i
\(671\) 40.0000 1.54418
\(672\) 0 0
\(673\) 48.0000i 1.85026i 0.379646 + 0.925132i \(0.376046\pi\)
−0.379646 + 0.925132i \(0.623954\pi\)
\(674\) −16.0000 −0.616297
\(675\) 0 0
\(676\) −4.00000 −0.153846
\(677\) 4.00000i 0.153732i −0.997041 0.0768662i \(-0.975509\pi\)
0.997041 0.0768662i \(-0.0244914\pi\)
\(678\) 0 0
\(679\) 40.0000 1.53506
\(680\) 1.00000 + 2.00000i 0.0383482 + 0.0766965i
\(681\) 0 0
\(682\) 25.0000i 0.957299i
\(683\) 44.0000i 1.68361i −0.539779 0.841807i \(-0.681492\pi\)
0.539779 0.841807i \(-0.318508\pi\)
\(684\) 0 0
\(685\) −36.0000 + 18.0000i −1.37549 + 0.687745i
\(686\) 8.00000 0.305441
\(687\) 0 0
\(688\) 1.00000i 0.0381246i
\(689\) 0 0
\(690\) 0 0
\(691\) 22.0000 0.836919 0.418460 0.908235i \(-0.362570\pi\)
0.418460 + 0.908235i \(0.362570\pi\)
\(692\) 16.0000i 0.608229i
\(693\) 0 0
\(694\) 6.00000 0.227757
\(695\) 8.00000 + 16.0000i 0.303457 + 0.606915i
\(696\) 0 0
\(697\) 2.00000i 0.0757554i
\(698\) 16.0000i 0.605609i
\(699\) 0 0
\(700\) −16.0000 12.0000i −0.604743 0.453557i
\(701\) −31.0000 −1.17085 −0.585427 0.810725i \(-0.699073\pi\)
−0.585427 + 0.810725i \(0.699073\pi\)
\(702\) 0 0
\(703\) 12.0000i 0.452589i
\(704\) −5.00000 −0.188445
\(705\) 0 0
\(706\) 11.0000 0.413990
\(707\) 68.0000i 2.55740i
\(708\) 0 0
\(709\) 24.0000 0.901339 0.450669 0.892691i \(-0.351185\pi\)
0.450669 + 0.892691i \(0.351185\pi\)
\(710\) 12.0000 6.00000i 0.450352 0.225176i
\(711\) 0 0
\(712\) 14.0000i 0.524672i
\(713\) 5.00000i 0.187251i
\(714\) 0 0
\(715\) 30.0000 15.0000i 1.12194 0.560968i
\(716\) −20.0000 −0.747435
\(717\) 0 0
\(718\) 6.00000i 0.223918i
\(719\) −20.0000 −0.745874 −0.372937 0.927857i \(-0.621649\pi\)
−0.372937 + 0.927857i \(0.621649\pi\)
\(720\) 0 0
\(721\) −40.0000 −1.48968
\(722\) 17.0000i 0.632674i
\(723\) 0 0
\(724\) 22.0000 0.817624
\(725\) 27.0000 36.0000i 1.00275 1.33701i
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 12.0000i 0.444750i
\(729\) 0 0
\(730\) −2.00000 4.00000i −0.0740233 0.148047i
\(731\) 1.00000 0.0369863
\(732\) 0 0
\(733\) 46.0000i 1.69905i −0.527549 0.849524i \(-0.676889\pi\)
0.527549 0.849524i \(-0.323111\pi\)
\(734\) −22.0000 −0.812035
\(735\) 0 0
\(736\) 1.00000 0.0368605
\(737\) 20.0000i 0.736709i
\(738\) 0 0
\(739\) −10.0000 −0.367856 −0.183928 0.982940i \(-0.558881\pi\)
−0.183928 + 0.982940i \(0.558881\pi\)
\(740\) 4.00000 2.00000i 0.147043 0.0735215i
\(741\) 0 0
\(742\) 0 0
\(743\) 9.00000i 0.330178i −0.986279 0.165089i \(-0.947209\pi\)
0.986279 0.165089i \(-0.0527911\pi\)
\(744\) 0 0
\(745\) −13.0000 26.0000i −0.476283 0.952566i
\(746\) −21.0000 −0.768865
\(747\) 0 0
\(748\) 5.00000i 0.182818i
\(749\) −24.0000 −0.876941
\(750\) 0 0
\(751\) −7.00000 −0.255434 −0.127717 0.991811i \(-0.540765\pi\)
−0.127717 + 0.991811i \(0.540765\pi\)
\(752\) 13.0000i 0.474061i
\(753\) 0 0
\(754\) 27.0000 0.983282
\(755\) 13.0000 + 26.0000i 0.473118 + 0.946237i
\(756\) 0 0
\(757\) 43.0000i 1.56286i −0.623992 0.781431i \(-0.714490\pi\)
0.623992 0.781431i \(-0.285510\pi\)
\(758\) 28.0000i 1.01701i
\(759\) 0 0
\(760\) −12.0000 + 6.00000i −0.435286 + 0.217643i
\(761\) −12.0000 −0.435000 −0.217500 0.976060i \(-0.569790\pi\)
−0.217500 + 0.976060i \(0.569790\pi\)
\(762\) 0 0
\(763\) 32.0000i 1.15848i
\(764\) −6.00000 −0.217072
\(765\) 0 0
\(766\) −19.0000 −0.686498
\(767\) 12.0000i 0.433295i
\(768\) 0 0
\(769\) −3.00000 −0.108183 −0.0540914 0.998536i \(-0.517226\pi\)
−0.0540914 + 0.998536i \(0.517226\pi\)
\(770\) −20.0000 40.0000i −0.720750 1.44150i
\(771\) 0 0
\(772\) 4.00000i 0.143963i
\(773\) 18.0000i 0.647415i −0.946157 0.323708i \(-0.895071\pi\)
0.946157 0.323708i \(-0.104929\pi\)
\(774\) 0 0
\(775\) 15.0000 20.0000i 0.538816 0.718421i
\(776\) −10.0000 −0.358979
\(777\) 0 0
\(778\) 5.00000i 0.179259i
\(779\) 12.0000 0.429945
\(780\) 0 0
\(781\) 30.0000 1.07348
\(782\) 1.00000i 0.0357599i
\(783\) 0 0
\(784\) −9.00000 −0.321429
\(785\) −26.0000 + 13.0000i −0.927980 + 0.463990i
\(786\) 0 0
\(787\) 13.0000i 0.463400i −0.972787 0.231700i \(-0.925571\pi\)
0.972787 0.231700i \(-0.0744288\pi\)
\(788\) 22.0000i 0.783718i
\(789\) 0 0
\(790\) −18.0000 + 9.00000i −0.640411 + 0.320206i
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 24.0000i 0.852265i
\(794\) −13.0000 −0.461353
\(795\) 0 0
\(796\) 3.00000 0.106332
\(797\) 14.0000i 0.495905i 0.968772 + 0.247953i \(0.0797578\pi\)
−0.968772 + 0.247953i \(0.920242\pi\)
\(798\) 0 0
\(799\) 13.0000 0.459907
\(800\) 4.00000 + 3.00000i 0.141421 + 0.106066i
\(801\) 0 0
\(802\) 16.0000i 0.564980i
\(803\) 10.0000i 0.352892i
\(804\) 0 0
\(805\) 4.00000 + 8.00000i 0.140981 + 0.281963i
\(806\) 15.0000 0.528352
\(807\) 0 0
\(808\) 17.0000i 0.598058i
\(809\) 12.0000 0.421898 0.210949 0.977497i \(-0.432345\pi\)
0.210949 + 0.977497i \(0.432345\pi\)
\(810\) 0 0
\(811\) −26.0000 −0.912983 −0.456492 0.889728i \(-0.650894\pi\)
−0.456492 + 0.889728i \(0.650894\pi\)
\(812\) 36.0000i 1.26335i
\(813\) 0 0
\(814\) 10.0000 0.350500
\(815\) 38.0000 19.0000i 1.33108 0.665541i
\(816\) 0 0
\(817\) 6.00000i 0.209913i
\(818\) 11.0000i 0.384606i
\(819\) 0 0
\(820\) −2.00000 4.00000i −0.0698430 0.139686i
\(821\) 46.0000 1.60541 0.802706 0.596376i \(-0.203393\pi\)
0.802706 + 0.596376i \(0.203393\pi\)
\(822\) 0 0
\(823\) 24.0000i 0.836587i 0.908312 + 0.418294i \(0.137372\pi\)
−0.908312 + 0.418294i \(0.862628\pi\)
\(824\) 10.0000 0.348367
\(825\) 0 0
\(826\) 16.0000 0.556711
\(827\) 22.0000i 0.765015i −0.923952 0.382507i \(-0.875061\pi\)
0.923952 0.382507i \(-0.124939\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 4.00000 + 8.00000i 0.138842 + 0.277684i
\(831\) 0 0
\(832\) 3.00000i 0.104006i
\(833\) 9.00000i 0.311832i
\(834\) 0 0
\(835\) 24.0000 12.0000i 0.830554 0.415277i
\(836\) −30.0000 −1.03757
\(837\) 0 0
\(838\) 23.0000i 0.794522i
\(839\) −34.0000 −1.17381 −0.586905 0.809656i \(-0.699654\pi\)
−0.586905 + 0.809656i \(0.699654\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 26.0000i 0.896019i
\(843\) 0 0
\(844\) 0 0
\(845\) 4.00000 + 8.00000i 0.137604 + 0.275208i
\(846\) 0 0
\(847\) 56.0000i 1.92418i
\(848\) 0 0
\(849\) 0 0
\(850\) 3.00000 4.00000i 0.102899 0.137199i
\(851\) −2.00000 −0.0685591
\(852\) 0 0
\(853\) 19.0000i 0.650548i −0.945620 0.325274i \(-0.894544\pi\)
0.945620 0.325274i \(-0.105456\pi\)
\(854\) −32.0000 −1.09502
\(855\) 0 0
\(856\) 6.00000 0.205076
\(857\) 6.00000i 0.204956i 0.994735 + 0.102478i \(0.0326771\pi\)
−0.994735 + 0.102478i \(0.967323\pi\)
\(858\) 0 0
\(859\) −2.00000 −0.0682391 −0.0341196 0.999418i \(-0.510863\pi\)
−0.0341196 + 0.999418i \(0.510863\pi\)
\(860\) 2.00000 1.00000i 0.0681994 0.0340997i
\(861\) 0 0
\(862\) 8.00000i 0.272481i
\(863\) 39.0000i 1.32758i 0.747921 + 0.663788i \(0.231052\pi\)
−0.747921 + 0.663788i \(0.768948\pi\)
\(864\) 0 0
\(865\) 32.0000 16.0000i 1.08803 0.544016i
\(866\) 22.0000 0.747590
\(867\) 0 0
\(868\) 20.0000i 0.678844i
\(869\) −45.0000 −1.52652
\(870\) 0 0
\(871\) 12.0000 0.406604
\(872\) 8.00000i 0.270914i
\(873\) 0 0
\(874\) 6.00000 0.202953
\(875\) −8.00000 + 44.0000i −0.270449 + 1.48747i
\(876\) 0 0
\(877\) 1.00000i 0.0337676i 0.999857 + 0.0168838i \(0.00537454\pi\)
−0.999857 + 0.0168838i \(0.994625\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 5.00000 + 10.0000i 0.168550 + 0.337100i
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 0 0
\(883\) 36.0000i 1.21150i 0.795656 + 0.605748i \(0.207126\pi\)
−0.795656 + 0.605748i \(0.792874\pi\)
\(884\) 3.00000 0.100901
\(885\) 0 0
\(886\) −30.0000 −1.00787
\(887\) 51.0000i 1.71241i −0.516634 0.856206i \(-0.672815\pi\)
0.516634 0.856206i \(-0.327185\pi\)
\(888\) 0 0
\(889\) −16.0000 −0.536623
\(890\) −28.0000 + 14.0000i −0.938562 + 0.469281i
\(891\) 0 0
\(892\) 22.0000i 0.736614i
\(893\) 78.0000i 2.61017i
\(894\) 0 0
\(895\) 20.0000 + 40.0000i 0.668526 + 1.33705i
\(896\) 4.00000 0.133631
\(897\) 0 0
\(898\) 0 0
\(899\) 45.0000 1.50083
\(900\) 0 0
\(901\) 0 0
\(902\) 10.0000i 0.332964i
\(903\) 0 0
\(904\) 3.00000 0.0997785
\(905\) −22.0000 44.0000i −0.731305 1.46261i
\(906\) 0 0
\(907\) 3.00000i 0.0996134i 0.998759 + 0.0498067i \(0.0158605\pi\)
−0.998759 + 0.0498067i \(0.984139\pi\)
\(908\) 2.00000i 0.0663723i
\(909\) 0 0
\(910\) −24.0000 + 12.0000i −0.795592 + 0.397796i
\(911\) 36.0000 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(912\) 0 0
\(913\) 20.0000i 0.661903i
\(914\) −16.0000 −0.529233
\(915\) 0 0
\(916\) 2.00000 0.0660819
\(917\) 12.0000i 0.396275i
\(918\) 0 0
\(919\) −33.0000 −1.08857 −0.544285 0.838901i \(-0.683199\pi\)
−0.544285 + 0.838901i \(0.683199\pi\)
\(920\) −1.00000 2.00000i −0.0329690 0.0659380i
\(921\) 0 0
\(922\) 6.00000i 0.197599i
\(923\) 18.0000i 0.592477i
\(924\) 0 0
\(925\) −8.00000 6.00000i −0.263038 0.197279i
\(926\) −6.00000 −0.197172
\(927\) 0 0
\(928\) 9.00000i 0.295439i
\(929\) −6.00000 −0.196854 −0.0984268 0.995144i \(-0.531381\pi\)
−0.0984268 + 0.995144i \(0.531381\pi\)
\(930\) 0 0
\(931\) −54.0000 −1.76978
\(932\) 14.0000i 0.458585i
\(933\) 0 0
\(934\) −6.00000 −0.196326
\(935\) 10.0000 5.00000i 0.327035 0.163517i
\(936\) 0 0
\(937\) 40.0000i 1.30674i 0.757037 + 0.653372i \(0.226646\pi\)
−0.757037 + 0.653372i \(0.773354\pi\)
\(938\) 16.0000i 0.522419i
\(939\) 0 0
\(940\) 26.0000 13.0000i 0.848026 0.424013i
\(941\) −31.0000 −1.01057 −0.505286 0.862952i \(-0.668613\pi\)
−0.505286 + 0.862952i \(0.668613\pi\)
\(942\) 0 0
\(943\) 2.00000i 0.0651290i
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) 5.00000 0.162564
\(947\) 48.0000i 1.55979i −0.625910 0.779895i \(-0.715272\pi\)
0.625910 0.779895i \(-0.284728\pi\)
\(948\) 0 0
\(949\) −6.00000 −0.194768
\(950\) 24.0000 + 18.0000i 0.778663 + 0.583997i
\(951\) 0 0
\(952\) 4.00000i 0.129641i
\(953\) 61.0000i 1.97598i −0.154506 0.987992i \(-0.549378\pi\)
0.154506 0.987992i \(-0.450622\pi\)
\(954\) 0 0
\(955\) 6.00000 + 12.0000i 0.194155 + 0.388311i
\(956\) −16.0000 −0.517477
\(957\) 0 0
\(958\) 2.00000i 0.0646171i
\(959\) 72.0000 2.32500
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) 6.00000i 0.193448i
\(963\) 0 0
\(964\) 23.0000 0.740780
\(965\) −8.00000 + 4.00000i −0.257529 + 0.128765i
\(966\) 0 0
\(967\) 2.00000i 0.0643157i −0.999483 0.0321578i \(-0.989762\pi\)
0.999483 0.0321578i \(-0.0102379\pi\)
\(968\) 14.0000i 0.449977i
\(969\) 0 0
\(970\) 10.0000 + 20.0000i 0.321081 + 0.642161i
\(971\) 9.00000 0.288824 0.144412 0.989518i \(-0.453871\pi\)
0.144412 + 0.989518i \(0.453871\pi\)
\(972\) 0 0
\(973\) 32.0000i 1.02587i
\(974\) 12.0000 0.384505
\(975\) 0 0
\(976\) 8.00000 0.256074
\(977\) 39.0000i 1.24772i 0.781536 + 0.623860i \(0.214437\pi\)
−0.781536 + 0.623860i \(0.785563\pi\)
\(978\) 0 0
\(979\) −70.0000 −2.23721
\(980\) 9.00000 + 18.0000i 0.287494 + 0.574989i
\(981\) 0 0
\(982\) 24.0000i 0.765871i
\(983\) 29.0000i 0.924956i 0.886631 + 0.462478i \(0.153040\pi\)
−0.886631 + 0.462478i \(0.846960\pi\)
\(984\) 0 0
\(985\) −44.0000 + 22.0000i −1.40196 + 0.700978i
\(986\) 9.00000 0.286618
\(987\) 0 0
\(988\) 18.0000i 0.572656i
\(989\) −1.00000 −0.0317982
\(990\) 0 0
\(991\) −17.0000 −0.540023 −0.270011 0.962857i \(-0.587027\pi\)
−0.270011 + 0.962857i \(0.587027\pi\)
\(992\) 5.00000i 0.158750i
\(993\) 0 0
\(994\) −24.0000 −0.761234
\(995\) −3.00000 6.00000i −0.0951064 0.190213i
\(996\) 0 0
\(997\) 15.0000i 0.475055i −0.971381 0.237527i \(-0.923663\pi\)
0.971381 0.237527i \(-0.0763369\pi\)
\(998\) 12.0000i 0.379853i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 270.2.c.b.109.1 yes 2
3.2 odd 2 270.2.c.a.109.2 yes 2
4.3 odd 2 2160.2.f.e.1729.2 2
5.2 odd 4 1350.2.a.v.1.1 1
5.3 odd 4 1350.2.a.b.1.1 1
5.4 even 2 inner 270.2.c.b.109.2 yes 2
9.2 odd 6 810.2.i.d.109.2 4
9.4 even 3 810.2.i.c.379.2 4
9.5 odd 6 810.2.i.d.379.1 4
9.7 even 3 810.2.i.c.109.1 4
12.11 even 2 2160.2.f.d.1729.1 2
15.2 even 4 1350.2.a.j.1.1 1
15.8 even 4 1350.2.a.l.1.1 1
15.14 odd 2 270.2.c.a.109.1 2
20.19 odd 2 2160.2.f.e.1729.1 2
45.4 even 6 810.2.i.c.379.1 4
45.14 odd 6 810.2.i.d.379.2 4
45.29 odd 6 810.2.i.d.109.1 4
45.34 even 6 810.2.i.c.109.2 4
60.59 even 2 2160.2.f.d.1729.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
270.2.c.a.109.1 2 15.14 odd 2
270.2.c.a.109.2 yes 2 3.2 odd 2
270.2.c.b.109.1 yes 2 1.1 even 1 trivial
270.2.c.b.109.2 yes 2 5.4 even 2 inner
810.2.i.c.109.1 4 9.7 even 3
810.2.i.c.109.2 4 45.34 even 6
810.2.i.c.379.1 4 45.4 even 6
810.2.i.c.379.2 4 9.4 even 3
810.2.i.d.109.1 4 45.29 odd 6
810.2.i.d.109.2 4 9.2 odd 6
810.2.i.d.379.1 4 9.5 odd 6
810.2.i.d.379.2 4 45.14 odd 6
1350.2.a.b.1.1 1 5.3 odd 4
1350.2.a.j.1.1 1 15.2 even 4
1350.2.a.l.1.1 1 15.8 even 4
1350.2.a.v.1.1 1 5.2 odd 4
2160.2.f.d.1729.1 2 12.11 even 2
2160.2.f.d.1729.2 2 60.59 even 2
2160.2.f.e.1729.1 2 20.19 odd 2
2160.2.f.e.1729.2 2 4.3 odd 2