Properties

Label 270.3.g.e.163.2
Level $270$
Weight $3$
Character 270.163
Analytic conductor $7.357$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,3,Mod(163,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.163");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 270.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.35696713773\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.122645643264.38
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 24x^{6} + 164x^{4} + 336x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 163.2
Root \(3.72938i\) of defining polynomial
Character \(\chi\) \(=\) 270.163
Dual form 270.3.g.e.217.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{2} -2.00000i q^{4} +(1.97347 + 4.59406i) q^{5} +(-6.46083 + 6.46083i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-6.56753 - 2.62059i) q^{10} +12.3232 q^{11} +(-13.0758 - 13.0758i) q^{13} -12.9217i q^{14} -4.00000 q^{16} +(-12.7500 + 12.7500i) q^{17} +13.6021i q^{19} +(9.18813 - 3.94694i) q^{20} +(-12.3232 + 12.3232i) q^{22} +(-12.0221 - 12.0221i) q^{23} +(-17.2108 + 18.1325i) q^{25} +26.1515 q^{26} +(12.9217 + 12.9217i) q^{28} +33.7903i q^{29} -36.9772 q^{31} +(4.00000 - 4.00000i) q^{32} -25.5000i q^{34} +(-42.4317 - 16.9312i) q^{35} +(6.86120 - 6.86120i) q^{37} +(-13.6021 - 13.6021i) q^{38} +(-5.24119 + 13.1351i) q^{40} -0.973558 q^{41} +(-49.2083 - 49.2083i) q^{43} -24.6464i q^{44} +24.0442 q^{46} +(-53.1311 + 53.1311i) q^{47} -34.4847i q^{49} +(-0.921664 - 35.3433i) q^{50} +(-26.1515 + 26.1515i) q^{52} +(47.4841 + 47.4841i) q^{53} +(24.3195 + 56.6135i) q^{55} -25.8433 q^{56} +(-33.7903 - 33.7903i) q^{58} -53.9887i q^{59} +107.631 q^{61} +(36.9772 - 36.9772i) q^{62} +8.00000i q^{64} +(34.2662 - 85.8755i) q^{65} +(22.6879 - 22.6879i) q^{67} +(25.5000 + 25.5000i) q^{68} +(59.3629 - 25.5005i) q^{70} -36.8169 q^{71} +(85.0530 + 85.0530i) q^{73} +13.7224i q^{74} +27.2043 q^{76} +(-79.6181 + 79.6181i) q^{77} +29.5091i q^{79} +(-7.89388 - 18.3763i) q^{80} +(0.973558 - 0.973558i) q^{82} +(70.7126 + 70.7126i) q^{83} +(-83.7360 - 33.4126i) q^{85} +98.4165 q^{86} +(24.6464 + 24.6464i) q^{88} +30.9687i q^{89} +168.961 q^{91} +(-24.0442 + 24.0442i) q^{92} -106.262i q^{94} +(-62.4891 + 26.8434i) q^{95} +(9.50991 - 9.50991i) q^{97} +(34.4847 + 34.4847i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 12 q^{5} - 8 q^{7} + 16 q^{8} - 16 q^{10} - 40 q^{11} - 24 q^{13} - 32 q^{16} + 8 q^{17} + 8 q^{20} + 40 q^{22} - 16 q^{23} + 16 q^{25} + 48 q^{26} + 16 q^{28} - 64 q^{31} + 32 q^{32} - 124 q^{35}+ \cdots + 128 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.00000i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 2.00000i 0.500000i
\(5\) 1.97347 + 4.59406i 0.394694 + 0.918813i
\(6\) 0 0
\(7\) −6.46083 + 6.46083i −0.922976 + 0.922976i −0.997239 0.0742627i \(-0.976340\pi\)
0.0742627 + 0.997239i \(0.476340\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) −6.56753 2.62059i −0.656753 0.262059i
\(11\) 12.3232 1.12029 0.560145 0.828394i \(-0.310745\pi\)
0.560145 + 0.828394i \(0.310745\pi\)
\(12\) 0 0
\(13\) −13.0758 13.0758i −1.00583 1.00583i −0.999983 0.00584502i \(-0.998139\pi\)
−0.00584502 0.999983i \(-0.501861\pi\)
\(14\) 12.9217i 0.922976i
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) −12.7500 + 12.7500i −0.750000 + 0.750000i −0.974479 0.224479i \(-0.927932\pi\)
0.224479 + 0.974479i \(0.427932\pi\)
\(18\) 0 0
\(19\) 13.6021i 0.715902i 0.933740 + 0.357951i \(0.116525\pi\)
−0.933740 + 0.357951i \(0.883475\pi\)
\(20\) 9.18813 3.94694i 0.459406 0.197347i
\(21\) 0 0
\(22\) −12.3232 + 12.3232i −0.560145 + 0.560145i
\(23\) −12.0221 12.0221i −0.522701 0.522701i 0.395685 0.918386i \(-0.370507\pi\)
−0.918386 + 0.395685i \(0.870507\pi\)
\(24\) 0 0
\(25\) −17.2108 + 18.1325i −0.688433 + 0.725300i
\(26\) 26.1515 1.00583
\(27\) 0 0
\(28\) 12.9217 + 12.9217i 0.461488 + 0.461488i
\(29\) 33.7903i 1.16518i 0.812766 + 0.582591i \(0.197961\pi\)
−0.812766 + 0.582591i \(0.802039\pi\)
\(30\) 0 0
\(31\) −36.9772 −1.19281 −0.596407 0.802682i \(-0.703406\pi\)
−0.596407 + 0.802682i \(0.703406\pi\)
\(32\) 4.00000 4.00000i 0.125000 0.125000i
\(33\) 0 0
\(34\) 25.5000i 0.750000i
\(35\) −42.4317 16.9312i −1.21234 0.483749i
\(36\) 0 0
\(37\) 6.86120 6.86120i 0.185438 0.185438i −0.608283 0.793720i \(-0.708141\pi\)
0.793720 + 0.608283i \(0.208141\pi\)
\(38\) −13.6021 13.6021i −0.357951 0.357951i
\(39\) 0 0
\(40\) −5.24119 + 13.1351i −0.131030 + 0.328377i
\(41\) −0.973558 −0.0237453 −0.0118727 0.999930i \(-0.503779\pi\)
−0.0118727 + 0.999930i \(0.503779\pi\)
\(42\) 0 0
\(43\) −49.2083 49.2083i −1.14438 1.14438i −0.987640 0.156738i \(-0.949902\pi\)
−0.156738 0.987640i \(-0.550098\pi\)
\(44\) 24.6464i 0.560145i
\(45\) 0 0
\(46\) 24.0442 0.522701
\(47\) −53.1311 + 53.1311i −1.13045 + 1.13045i −0.140346 + 0.990102i \(0.544822\pi\)
−0.990102 + 0.140346i \(0.955178\pi\)
\(48\) 0 0
\(49\) 34.4847i 0.703769i
\(50\) −0.921664 35.3433i −0.0184333 0.706866i
\(51\) 0 0
\(52\) −26.1515 + 26.1515i −0.502914 + 0.502914i
\(53\) 47.4841 + 47.4841i 0.895926 + 0.895926i 0.995073 0.0991473i \(-0.0316115\pi\)
−0.0991473 + 0.995073i \(0.531611\pi\)
\(54\) 0 0
\(55\) 24.3195 + 56.6135i 0.442172 + 1.02934i
\(56\) −25.8433 −0.461488
\(57\) 0 0
\(58\) −33.7903 33.7903i −0.582591 0.582591i
\(59\) 53.9887i 0.915062i −0.889194 0.457531i \(-0.848734\pi\)
0.889194 0.457531i \(-0.151266\pi\)
\(60\) 0 0
\(61\) 107.631 1.76444 0.882222 0.470834i \(-0.156047\pi\)
0.882222 + 0.470834i \(0.156047\pi\)
\(62\) 36.9772 36.9772i 0.596407 0.596407i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) 34.2662 85.8755i 0.527173 1.32116i
\(66\) 0 0
\(67\) 22.6879 22.6879i 0.338625 0.338625i −0.517225 0.855850i \(-0.673035\pi\)
0.855850 + 0.517225i \(0.173035\pi\)
\(68\) 25.5000 + 25.5000i 0.375000 + 0.375000i
\(69\) 0 0
\(70\) 59.3629 25.5005i 0.848042 0.364293i
\(71\) −36.8169 −0.518548 −0.259274 0.965804i \(-0.583483\pi\)
−0.259274 + 0.965804i \(0.583483\pi\)
\(72\) 0 0
\(73\) 85.0530 + 85.0530i 1.16511 + 1.16511i 0.983341 + 0.181768i \(0.0581820\pi\)
0.181768 + 0.983341i \(0.441818\pi\)
\(74\) 13.7224i 0.185438i
\(75\) 0 0
\(76\) 27.2043 0.357951
\(77\) −79.6181 + 79.6181i −1.03400 + 1.03400i
\(78\) 0 0
\(79\) 29.5091i 0.373533i 0.982404 + 0.186767i \(0.0598008\pi\)
−0.982404 + 0.186767i \(0.940199\pi\)
\(80\) −7.89388 18.3763i −0.0986735 0.229703i
\(81\) 0 0
\(82\) 0.973558 0.973558i 0.0118727 0.0118727i
\(83\) 70.7126 + 70.7126i 0.851959 + 0.851959i 0.990374 0.138416i \(-0.0442009\pi\)
−0.138416 + 0.990374i \(0.544201\pi\)
\(84\) 0 0
\(85\) −83.7360 33.4126i −0.985130 0.393089i
\(86\) 98.4165 1.14438
\(87\) 0 0
\(88\) 24.6464 + 24.6464i 0.280073 + 0.280073i
\(89\) 30.9687i 0.347963i 0.984749 + 0.173982i \(0.0556633\pi\)
−0.984749 + 0.173982i \(0.944337\pi\)
\(90\) 0 0
\(91\) 168.961 1.85671
\(92\) −24.0442 + 24.0442i −0.261350 + 0.261350i
\(93\) 0 0
\(94\) 106.262i 1.13045i
\(95\) −62.4891 + 26.8434i −0.657780 + 0.282562i
\(96\) 0 0
\(97\) 9.50991 9.50991i 0.0980403 0.0980403i −0.656385 0.754426i \(-0.727915\pi\)
0.754426 + 0.656385i \(0.227915\pi\)
\(98\) 34.4847 + 34.4847i 0.351885 + 0.351885i
\(99\) 0 0
\(100\) 36.2650 + 34.4217i 0.362650 + 0.344217i
\(101\) 125.544 1.24301 0.621503 0.783412i \(-0.286522\pi\)
0.621503 + 0.783412i \(0.286522\pi\)
\(102\) 0 0
\(103\) −19.9733 19.9733i −0.193916 0.193916i 0.603470 0.797386i \(-0.293784\pi\)
−0.797386 + 0.603470i \(0.793784\pi\)
\(104\) 52.3031i 0.502914i
\(105\) 0 0
\(106\) −94.9681 −0.895926
\(107\) −51.5206 + 51.5206i −0.481501 + 0.481501i −0.905611 0.424110i \(-0.860587\pi\)
0.424110 + 0.905611i \(0.360587\pi\)
\(108\) 0 0
\(109\) 45.8585i 0.420720i −0.977624 0.210360i \(-0.932536\pi\)
0.977624 0.210360i \(-0.0674636\pi\)
\(110\) −80.9330 32.2941i −0.735754 0.293582i
\(111\) 0 0
\(112\) 25.8433 25.8433i 0.230744 0.230744i
\(113\) 77.3377 + 77.3377i 0.684404 + 0.684404i 0.960989 0.276585i \(-0.0892028\pi\)
−0.276585 + 0.960989i \(0.589203\pi\)
\(114\) 0 0
\(115\) 31.5051 78.9557i 0.273957 0.686571i
\(116\) 67.5805 0.582591
\(117\) 0 0
\(118\) 53.9887 + 53.9887i 0.457531 + 0.457531i
\(119\) 164.751i 1.38446i
\(120\) 0 0
\(121\) 30.8611 0.255050
\(122\) −107.631 + 107.631i −0.882222 + 0.882222i
\(123\) 0 0
\(124\) 73.9545i 0.596407i
\(125\) −117.267 43.2837i −0.938135 0.346270i
\(126\) 0 0
\(127\) 71.9103 71.9103i 0.566223 0.566223i −0.364845 0.931068i \(-0.618878\pi\)
0.931068 + 0.364845i \(0.118878\pi\)
\(128\) −8.00000 8.00000i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) 51.6093 + 120.142i 0.396994 + 0.924167i
\(131\) 198.637 1.51631 0.758155 0.652074i \(-0.226101\pi\)
0.758155 + 0.652074i \(0.226101\pi\)
\(132\) 0 0
\(133\) −87.8812 87.8812i −0.660761 0.660761i
\(134\) 45.3758i 0.338625i
\(135\) 0 0
\(136\) −51.0000 −0.375000
\(137\) 111.144 111.144i 0.811272 0.811272i −0.173553 0.984825i \(-0.555525\pi\)
0.984825 + 0.173553i \(0.0555246\pi\)
\(138\) 0 0
\(139\) 162.695i 1.17047i 0.810864 + 0.585234i \(0.198997\pi\)
−0.810864 + 0.585234i \(0.801003\pi\)
\(140\) −33.8624 + 84.8635i −0.241874 + 0.606168i
\(141\) 0 0
\(142\) 36.8169 36.8169i 0.259274 0.259274i
\(143\) −161.135 161.135i −1.12682 1.12682i
\(144\) 0 0
\(145\) −155.235 + 66.6841i −1.07058 + 0.459890i
\(146\) −170.106 −1.16511
\(147\) 0 0
\(148\) −13.7224 13.7224i −0.0927189 0.0927189i
\(149\) 144.268i 0.968245i −0.875000 0.484122i \(-0.839139\pi\)
0.875000 0.484122i \(-0.160861\pi\)
\(150\) 0 0
\(151\) −35.2866 −0.233686 −0.116843 0.993150i \(-0.537277\pi\)
−0.116843 + 0.993150i \(0.537277\pi\)
\(152\) −27.2043 + 27.2043i −0.178976 + 0.178976i
\(153\) 0 0
\(154\) 159.236i 1.03400i
\(155\) −72.9735 169.876i −0.470797 1.09597i
\(156\) 0 0
\(157\) −61.4290 + 61.4290i −0.391268 + 0.391268i −0.875139 0.483871i \(-0.839230\pi\)
0.483871 + 0.875139i \(0.339230\pi\)
\(158\) −29.5091 29.5091i −0.186767 0.186767i
\(159\) 0 0
\(160\) 26.2701 + 10.4824i 0.164188 + 0.0655148i
\(161\) 155.346 0.964881
\(162\) 0 0
\(163\) −72.7564 72.7564i −0.446358 0.446358i 0.447784 0.894142i \(-0.352213\pi\)
−0.894142 + 0.447784i \(0.852213\pi\)
\(164\) 1.94712i 0.0118727i
\(165\) 0 0
\(166\) −141.425 −0.851959
\(167\) −151.643 + 151.643i −0.908044 + 0.908044i −0.996114 0.0880707i \(-0.971930\pi\)
0.0880707 + 0.996114i \(0.471930\pi\)
\(168\) 0 0
\(169\) 172.951i 1.02338i
\(170\) 117.149 50.3235i 0.689109 0.296020i
\(171\) 0 0
\(172\) −98.4165 + 98.4165i −0.572189 + 0.572189i
\(173\) 217.572 + 217.572i 1.25764 + 1.25764i 0.952217 + 0.305422i \(0.0987975\pi\)
0.305422 + 0.952217i \(0.401203\pi\)
\(174\) 0 0
\(175\) −5.95472 228.347i −0.0340270 1.30484i
\(176\) −49.2928 −0.280073
\(177\) 0 0
\(178\) −30.9687 30.9687i −0.173982 0.173982i
\(179\) 106.382i 0.594315i −0.954828 0.297157i \(-0.903961\pi\)
0.954828 0.297157i \(-0.0960386\pi\)
\(180\) 0 0
\(181\) −347.724 −1.92113 −0.960565 0.278056i \(-0.910310\pi\)
−0.960565 + 0.278056i \(0.910310\pi\)
\(182\) −168.961 + 168.961i −0.928355 + 0.928355i
\(183\) 0 0
\(184\) 48.0885i 0.261350i
\(185\) 45.0611 + 17.9804i 0.243574 + 0.0971913i
\(186\) 0 0
\(187\) −157.121 + 157.121i −0.840218 + 0.840218i
\(188\) 106.262 + 106.262i 0.565224 + 0.565224i
\(189\) 0 0
\(190\) 35.6457 89.3325i 0.187609 0.470171i
\(191\) −206.695 −1.08217 −0.541086 0.840967i \(-0.681987\pi\)
−0.541086 + 0.840967i \(0.681987\pi\)
\(192\) 0 0
\(193\) 121.798 + 121.798i 0.631075 + 0.631075i 0.948338 0.317262i \(-0.102764\pi\)
−0.317262 + 0.948338i \(0.602764\pi\)
\(194\) 19.0198i 0.0980403i
\(195\) 0 0
\(196\) −68.9694 −0.351885
\(197\) −147.354 + 147.354i −0.747988 + 0.747988i −0.974101 0.226113i \(-0.927398\pi\)
0.226113 + 0.974101i \(0.427398\pi\)
\(198\) 0 0
\(199\) 244.458i 1.22843i 0.789139 + 0.614215i \(0.210527\pi\)
−0.789139 + 0.614215i \(0.789473\pi\)
\(200\) −70.6866 + 1.84333i −0.353433 + 0.00921664i
\(201\) 0 0
\(202\) −125.544 + 125.544i −0.621503 + 0.621503i
\(203\) −218.313 218.313i −1.07543 1.07543i
\(204\) 0 0
\(205\) −1.92129 4.47259i −0.00937214 0.0218175i
\(206\) 39.9466 0.193916
\(207\) 0 0
\(208\) 52.3031 + 52.3031i 0.251457 + 0.251457i
\(209\) 167.622i 0.802018i
\(210\) 0 0
\(211\) −28.2709 −0.133985 −0.0669927 0.997753i \(-0.521340\pi\)
−0.0669927 + 0.997753i \(0.521340\pi\)
\(212\) 94.9681 94.9681i 0.447963 0.447963i
\(213\) 0 0
\(214\) 103.041i 0.481501i
\(215\) 128.955 323.177i 0.599790 1.50315i
\(216\) 0 0
\(217\) 238.904 238.904i 1.10094 1.10094i
\(218\) 45.8585 + 45.8585i 0.210360 + 0.210360i
\(219\) 0 0
\(220\) 113.227 48.6389i 0.514668 0.221086i
\(221\) 333.432 1.50874
\(222\) 0 0
\(223\) 8.47057 + 8.47057i 0.0379846 + 0.0379846i 0.725844 0.687859i \(-0.241449\pi\)
−0.687859 + 0.725844i \(0.741449\pi\)
\(224\) 51.6867i 0.230744i
\(225\) 0 0
\(226\) −154.675 −0.684404
\(227\) 260.270 260.270i 1.14656 1.14656i 0.159338 0.987224i \(-0.449064\pi\)
0.987224 0.159338i \(-0.0509358\pi\)
\(228\) 0 0
\(229\) 52.4929i 0.229227i −0.993410 0.114613i \(-0.963437\pi\)
0.993410 0.114613i \(-0.0365629\pi\)
\(230\) 47.4506 + 110.461i 0.206307 + 0.480264i
\(231\) 0 0
\(232\) −67.5805 + 67.5805i −0.291295 + 0.291295i
\(233\) 221.397 + 221.397i 0.950201 + 0.950201i 0.998817 0.0486170i \(-0.0154814\pi\)
−0.0486170 + 0.998817i \(0.515481\pi\)
\(234\) 0 0
\(235\) −348.940 139.235i −1.48485 0.592489i
\(236\) −107.977 −0.457531
\(237\) 0 0
\(238\) 164.751 + 164.751i 0.692232 + 0.692232i
\(239\) 3.75966i 0.0157308i 0.999969 + 0.00786540i \(0.00250366\pi\)
−0.999969 + 0.00786540i \(0.997496\pi\)
\(240\) 0 0
\(241\) 137.954 0.572425 0.286213 0.958166i \(-0.407604\pi\)
0.286213 + 0.958166i \(0.407604\pi\)
\(242\) −30.8611 + 30.8611i −0.127525 + 0.127525i
\(243\) 0 0
\(244\) 215.262i 0.882222i
\(245\) 158.425 68.0545i 0.646632 0.277774i
\(246\) 0 0
\(247\) 177.858 177.858i 0.720074 0.720074i
\(248\) −73.9545 73.9545i −0.298203 0.298203i
\(249\) 0 0
\(250\) 160.551 73.9832i 0.642202 0.295933i
\(251\) −242.805 −0.967352 −0.483676 0.875247i \(-0.660699\pi\)
−0.483676 + 0.875247i \(0.660699\pi\)
\(252\) 0 0
\(253\) −148.151 148.151i −0.585577 0.585577i
\(254\) 143.821i 0.566223i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 107.024 107.024i 0.416437 0.416437i −0.467537 0.883974i \(-0.654859\pi\)
0.883974 + 0.467537i \(0.154859\pi\)
\(258\) 0 0
\(259\) 88.6581i 0.342309i
\(260\) −171.751 68.5325i −0.660581 0.263587i
\(261\) 0 0
\(262\) −198.637 + 198.637i −0.758155 + 0.758155i
\(263\) 153.982 + 153.982i 0.585483 + 0.585483i 0.936405 0.350922i \(-0.114132\pi\)
−0.350922 + 0.936405i \(0.614132\pi\)
\(264\) 0 0
\(265\) −124.436 + 311.853i −0.469571 + 1.17680i
\(266\) 175.762 0.660761
\(267\) 0 0
\(268\) −45.3758 45.3758i −0.169313 0.169313i
\(269\) 265.824i 0.988193i 0.869407 + 0.494097i \(0.164501\pi\)
−0.869407 + 0.494097i \(0.835499\pi\)
\(270\) 0 0
\(271\) −303.438 −1.11970 −0.559849 0.828595i \(-0.689141\pi\)
−0.559849 + 0.828595i \(0.689141\pi\)
\(272\) 51.0000 51.0000i 0.187500 0.187500i
\(273\) 0 0
\(274\) 222.289i 0.811272i
\(275\) −212.092 + 223.450i −0.771245 + 0.812546i
\(276\) 0 0
\(277\) 215.146 215.146i 0.776699 0.776699i −0.202569 0.979268i \(-0.564929\pi\)
0.979268 + 0.202569i \(0.0649291\pi\)
\(278\) −162.695 162.695i −0.585234 0.585234i
\(279\) 0 0
\(280\) −51.0010 118.726i −0.182147 0.424021i
\(281\) −153.456 −0.546107 −0.273053 0.961999i \(-0.588034\pi\)
−0.273053 + 0.961999i \(0.588034\pi\)
\(282\) 0 0
\(283\) 252.110 + 252.110i 0.890847 + 0.890847i 0.994603 0.103756i \(-0.0330862\pi\)
−0.103756 + 0.994603i \(0.533086\pi\)
\(284\) 73.6338i 0.259274i
\(285\) 0 0
\(286\) 322.270 1.12682
\(287\) 6.29000 6.29000i 0.0219164 0.0219164i
\(288\) 0 0
\(289\) 36.1249i 0.125000i
\(290\) 88.5505 221.919i 0.305347 0.765237i
\(291\) 0 0
\(292\) 170.106 170.106i 0.582555 0.582555i
\(293\) −331.076 331.076i −1.12995 1.12995i −0.990184 0.139766i \(-0.955365\pi\)
−0.139766 0.990184i \(-0.544635\pi\)
\(294\) 0 0
\(295\) 248.027 106.545i 0.840771 0.361170i
\(296\) 27.4448 0.0927189
\(297\) 0 0
\(298\) 144.268 + 144.268i 0.484122 + 0.484122i
\(299\) 314.397i 1.05149i
\(300\) 0 0
\(301\) 635.853 2.11247
\(302\) 35.2866 35.2866i 0.116843 0.116843i
\(303\) 0 0
\(304\) 54.4086i 0.178976i
\(305\) 212.407 + 494.464i 0.696416 + 1.62119i
\(306\) 0 0
\(307\) 207.650 207.650i 0.676386 0.676386i −0.282795 0.959180i \(-0.591262\pi\)
0.959180 + 0.282795i \(0.0912615\pi\)
\(308\) 159.236 + 159.236i 0.517001 + 0.517001i
\(309\) 0 0
\(310\) 242.849 + 96.9023i 0.783384 + 0.312588i
\(311\) 83.9014 0.269779 0.134890 0.990861i \(-0.456932\pi\)
0.134890 + 0.990861i \(0.456932\pi\)
\(312\) 0 0
\(313\) −160.209 160.209i −0.511850 0.511850i 0.403243 0.915093i \(-0.367883\pi\)
−0.915093 + 0.403243i \(0.867883\pi\)
\(314\) 122.858i 0.391268i
\(315\) 0 0
\(316\) 59.0182 0.186767
\(317\) −192.318 + 192.318i −0.606680 + 0.606680i −0.942077 0.335397i \(-0.891130\pi\)
0.335397 + 0.942077i \(0.391130\pi\)
\(318\) 0 0
\(319\) 416.404i 1.30534i
\(320\) −36.7525 + 15.7878i −0.114852 + 0.0493368i
\(321\) 0 0
\(322\) −155.346 + 155.346i −0.482440 + 0.482440i
\(323\) −173.427 173.427i −0.536927 0.536927i
\(324\) 0 0
\(325\) 462.141 12.0515i 1.42197 0.0370814i
\(326\) 145.513 0.446358
\(327\) 0 0
\(328\) −1.94712 1.94712i −0.00593633 0.00593633i
\(329\) 686.542i 2.08675i
\(330\) 0 0
\(331\) 53.1278 0.160507 0.0802535 0.996774i \(-0.474427\pi\)
0.0802535 + 0.996774i \(0.474427\pi\)
\(332\) 141.425 141.425i 0.425979 0.425979i
\(333\) 0 0
\(334\) 303.287i 0.908044i
\(335\) 149.003 + 59.4557i 0.444786 + 0.177480i
\(336\) 0 0
\(337\) 104.914 104.914i 0.311317 0.311317i −0.534103 0.845420i \(-0.679350\pi\)
0.845420 + 0.534103i \(0.179350\pi\)
\(338\) −172.951 172.951i −0.511690 0.511690i
\(339\) 0 0
\(340\) −66.8251 + 167.472i −0.196544 + 0.492565i
\(341\) −455.678 −1.33630
\(342\) 0 0
\(343\) −93.7809 93.7809i −0.273414 0.273414i
\(344\) 196.833i 0.572189i
\(345\) 0 0
\(346\) −435.143 −1.25764
\(347\) −227.752 + 227.752i −0.656347 + 0.656347i −0.954514 0.298167i \(-0.903625\pi\)
0.298167 + 0.954514i \(0.403625\pi\)
\(348\) 0 0
\(349\) 465.818i 1.33472i 0.744735 + 0.667361i \(0.232576\pi\)
−0.744735 + 0.667361i \(0.767424\pi\)
\(350\) 234.302 + 222.393i 0.669434 + 0.635407i
\(351\) 0 0
\(352\) 49.2928 49.2928i 0.140036 0.140036i
\(353\) −364.225 364.225i −1.03180 1.03180i −0.999478 0.0323201i \(-0.989710\pi\)
−0.0323201 0.999478i \(-0.510290\pi\)
\(354\) 0 0
\(355\) −72.6570 169.139i −0.204668 0.476448i
\(356\) 61.9374 0.173982
\(357\) 0 0
\(358\) 106.382 + 106.382i 0.297157 + 0.297157i
\(359\) 278.678i 0.776262i −0.921604 0.388131i \(-0.873121\pi\)
0.921604 0.388131i \(-0.126879\pi\)
\(360\) 0 0
\(361\) 175.982 0.487484
\(362\) 347.724 347.724i 0.960565 0.960565i
\(363\) 0 0
\(364\) 337.921i 0.928355i
\(365\) −222.889 + 558.588i −0.610655 + 1.53038i
\(366\) 0 0
\(367\) 121.328 121.328i 0.330594 0.330594i −0.522218 0.852812i \(-0.674895\pi\)
0.852812 + 0.522218i \(0.174895\pi\)
\(368\) 48.0885 + 48.0885i 0.130675 + 0.130675i
\(369\) 0 0
\(370\) −63.0415 + 27.0807i −0.170383 + 0.0731912i
\(371\) −613.573 −1.65384
\(372\) 0 0
\(373\) −222.716 222.716i −0.597094 0.597094i 0.342444 0.939538i \(-0.388745\pi\)
−0.939538 + 0.342444i \(0.888745\pi\)
\(374\) 314.241i 0.840218i
\(375\) 0 0
\(376\) −212.524 −0.565224
\(377\) 441.834 441.834i 1.17197 1.17197i
\(378\) 0 0
\(379\) 271.908i 0.717435i −0.933446 0.358718i \(-0.883214\pi\)
0.933446 0.358718i \(-0.116786\pi\)
\(380\) 53.6868 + 124.978i 0.141281 + 0.328890i
\(381\) 0 0
\(382\) 206.695 206.695i 0.541086 0.541086i
\(383\) 192.728 + 192.728i 0.503205 + 0.503205i 0.912433 0.409227i \(-0.134202\pi\)
−0.409227 + 0.912433i \(0.634202\pi\)
\(384\) 0 0
\(385\) −522.894 208.647i −1.35817 0.541939i
\(386\) −243.595 −0.631075
\(387\) 0 0
\(388\) −19.0198 19.0198i −0.0490202 0.0490202i
\(389\) 628.058i 1.61455i 0.590178 + 0.807273i \(0.299058\pi\)
−0.590178 + 0.807273i \(0.700942\pi\)
\(390\) 0 0
\(391\) 306.564 0.784051
\(392\) 68.9694 68.9694i 0.175942 0.175942i
\(393\) 0 0
\(394\) 294.707i 0.747988i
\(395\) −135.567 + 58.2354i −0.343207 + 0.147431i
\(396\) 0 0
\(397\) −298.678 + 298.678i −0.752337 + 0.752337i −0.974915 0.222578i \(-0.928553\pi\)
0.222578 + 0.974915i \(0.428553\pi\)
\(398\) −244.458 244.458i −0.614215 0.614215i
\(399\) 0 0
\(400\) 68.8433 72.5300i 0.172108 0.181325i
\(401\) 558.519 1.39282 0.696408 0.717647i \(-0.254781\pi\)
0.696408 + 0.717647i \(0.254781\pi\)
\(402\) 0 0
\(403\) 483.505 + 483.505i 1.19977 + 1.19977i
\(404\) 251.087i 0.621503i
\(405\) 0 0
\(406\) 436.627 1.07543
\(407\) 84.5518 84.5518i 0.207744 0.207744i
\(408\) 0 0
\(409\) 399.027i 0.975617i −0.872951 0.487808i \(-0.837796\pi\)
0.872951 0.487808i \(-0.162204\pi\)
\(410\) 6.39388 + 2.55130i 0.0155948 + 0.00622268i
\(411\) 0 0
\(412\) −39.9466 + 39.9466i −0.0969578 + 0.0969578i
\(413\) 348.812 + 348.812i 0.844581 + 0.844581i
\(414\) 0 0
\(415\) −185.309 + 464.407i −0.446527 + 1.11905i
\(416\) −104.606 −0.251457
\(417\) 0 0
\(418\) −167.622 167.622i −0.401009 0.401009i
\(419\) 678.231i 1.61869i 0.587334 + 0.809345i \(0.300177\pi\)
−0.587334 + 0.809345i \(0.699823\pi\)
\(420\) 0 0
\(421\) 298.303 0.708558 0.354279 0.935140i \(-0.384726\pi\)
0.354279 + 0.935140i \(0.384726\pi\)
\(422\) 28.2709 28.2709i 0.0669927 0.0669927i
\(423\) 0 0
\(424\) 189.936i 0.447963i
\(425\) −11.7512 450.627i −0.0276499 1.06030i
\(426\) 0 0
\(427\) −695.386 + 695.386i −1.62854 + 1.62854i
\(428\) 103.041 + 103.041i 0.240751 + 0.240751i
\(429\) 0 0
\(430\) 194.222 + 452.132i 0.451679 + 1.05147i
\(431\) −135.033 −0.313302 −0.156651 0.987654i \(-0.550070\pi\)
−0.156651 + 0.987654i \(0.550070\pi\)
\(432\) 0 0
\(433\) −175.145 175.145i −0.404492 0.404492i 0.475320 0.879813i \(-0.342332\pi\)
−0.879813 + 0.475320i \(0.842332\pi\)
\(434\) 477.807i 1.10094i
\(435\) 0 0
\(436\) −91.7170 −0.210360
\(437\) 163.527 163.527i 0.374203 0.374203i
\(438\) 0 0
\(439\) 446.700i 1.01754i −0.860902 0.508770i \(-0.830100\pi\)
0.860902 0.508770i \(-0.169900\pi\)
\(440\) −64.5881 + 161.866i −0.146791 + 0.367877i
\(441\) 0 0
\(442\) −333.432 + 333.432i −0.754371 + 0.754371i
\(443\) 71.7531 + 71.7531i 0.161971 + 0.161971i 0.783439 0.621468i \(-0.213464\pi\)
−0.621468 + 0.783439i \(0.713464\pi\)
\(444\) 0 0
\(445\) −142.272 + 61.1159i −0.319713 + 0.137339i
\(446\) −16.9411 −0.0379846
\(447\) 0 0
\(448\) −51.6867 51.6867i −0.115372 0.115372i
\(449\) 412.660i 0.919065i 0.888161 + 0.459532i \(0.151983\pi\)
−0.888161 + 0.459532i \(0.848017\pi\)
\(450\) 0 0
\(451\) −11.9973 −0.0266017
\(452\) 154.675 154.675i 0.342202 0.342202i
\(453\) 0 0
\(454\) 520.539i 1.14656i
\(455\) 333.439 + 776.216i 0.732832 + 1.70597i
\(456\) 0 0
\(457\) −357.034 + 357.034i −0.781257 + 0.781257i −0.980043 0.198786i \(-0.936300\pi\)
0.198786 + 0.980043i \(0.436300\pi\)
\(458\) 52.4929 + 52.4929i 0.114613 + 0.114613i
\(459\) 0 0
\(460\) −157.911 63.0102i −0.343286 0.136979i
\(461\) −711.833 −1.54411 −0.772053 0.635558i \(-0.780770\pi\)
−0.772053 + 0.635558i \(0.780770\pi\)
\(462\) 0 0
\(463\) −299.197 299.197i −0.646213 0.646213i 0.305862 0.952076i \(-0.401055\pi\)
−0.952076 + 0.305862i \(0.901055\pi\)
\(464\) 135.161i 0.291295i
\(465\) 0 0
\(466\) −442.793 −0.950201
\(467\) 578.852 578.852i 1.23951 1.23951i 0.279312 0.960200i \(-0.409894\pi\)
0.960200 0.279312i \(-0.0901064\pi\)
\(468\) 0 0
\(469\) 293.165i 0.625086i
\(470\) 488.175 209.705i 1.03867 0.446181i
\(471\) 0 0
\(472\) 107.977 107.977i 0.228766 0.228766i
\(473\) −606.403 606.403i −1.28204 1.28204i
\(474\) 0 0
\(475\) −246.641 234.104i −0.519244 0.492851i
\(476\) −329.502 −0.692232
\(477\) 0 0
\(478\) −3.75966 3.75966i −0.00786540 0.00786540i
\(479\) 198.574i 0.414559i 0.978282 + 0.207280i \(0.0664610\pi\)
−0.978282 + 0.207280i \(0.933539\pi\)
\(480\) 0 0
\(481\) −179.431 −0.373037
\(482\) −137.954 + 137.954i −0.286213 + 0.286213i
\(483\) 0 0
\(484\) 61.7222i 0.127525i
\(485\) 62.4567 + 24.9216i 0.128777 + 0.0513847i
\(486\) 0 0
\(487\) 452.269 452.269i 0.928684 0.928684i −0.0689372 0.997621i \(-0.521961\pi\)
0.997621 + 0.0689372i \(0.0219608\pi\)
\(488\) 215.262 + 215.262i 0.441111 + 0.441111i
\(489\) 0 0
\(490\) −90.3704 + 226.479i −0.184429 + 0.462203i
\(491\) −55.1876 −0.112398 −0.0561992 0.998420i \(-0.517898\pi\)
−0.0561992 + 0.998420i \(0.517898\pi\)
\(492\) 0 0
\(493\) −430.826 430.826i −0.873886 0.873886i
\(494\) 355.717i 0.720074i
\(495\) 0 0
\(496\) 147.909 0.298203
\(497\) 237.868 237.868i 0.478607 0.478607i
\(498\) 0 0
\(499\) 681.525i 1.36578i −0.730520 0.682891i \(-0.760722\pi\)
0.730520 0.682891i \(-0.239278\pi\)
\(500\) −86.5674 + 234.534i −0.173135 + 0.469068i
\(501\) 0 0
\(502\) 242.805 242.805i 0.483676 0.483676i
\(503\) −15.2144 15.2144i −0.0302473 0.0302473i 0.691821 0.722069i \(-0.256809\pi\)
−0.722069 + 0.691821i \(0.756809\pi\)
\(504\) 0 0
\(505\) 247.757 + 576.755i 0.490607 + 1.14209i
\(506\) 296.302 0.585577
\(507\) 0 0
\(508\) −143.821 143.821i −0.283112 0.283112i
\(509\) 385.771i 0.757899i 0.925417 + 0.378950i \(0.123715\pi\)
−0.925417 + 0.378950i \(0.876285\pi\)
\(510\) 0 0
\(511\) −1099.03 −2.15074
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 214.048i 0.416437i
\(515\) 52.3419 131.175i 0.101635 0.254710i
\(516\) 0 0
\(517\) −654.745 + 654.745i −1.26643 + 1.26643i
\(518\) −88.6581 88.6581i −0.171155 0.171155i
\(519\) 0 0
\(520\) 240.284 103.219i 0.462084 0.198497i
\(521\) 107.880 0.207064 0.103532 0.994626i \(-0.466986\pi\)
0.103532 + 0.994626i \(0.466986\pi\)
\(522\) 0 0
\(523\) 38.9695 + 38.9695i 0.0745115 + 0.0745115i 0.743380 0.668869i \(-0.233221\pi\)
−0.668869 + 0.743380i \(0.733221\pi\)
\(524\) 397.273i 0.758155i
\(525\) 0 0
\(526\) −307.964 −0.585483
\(527\) 471.460 471.460i 0.894610 0.894610i
\(528\) 0 0
\(529\) 239.937i 0.453567i
\(530\) −187.417 436.289i −0.353616 0.823188i
\(531\) 0 0
\(532\) −175.762 + 175.762i −0.330380 + 0.330380i
\(533\) 12.7300 + 12.7300i 0.0238837 + 0.0238837i
\(534\) 0 0
\(535\) −338.364 135.015i −0.632455 0.252364i
\(536\) 90.7516 0.169313
\(537\) 0 0
\(538\) −265.824 265.824i −0.494097 0.494097i
\(539\) 424.962i 0.788426i
\(540\) 0 0
\(541\) 579.593 1.07134 0.535668 0.844429i \(-0.320060\pi\)
0.535668 + 0.844429i \(0.320060\pi\)
\(542\) 303.438 303.438i 0.559849 0.559849i
\(543\) 0 0
\(544\) 102.000i 0.187500i
\(545\) 210.677 90.5004i 0.386563 0.166056i
\(546\) 0 0
\(547\) 522.943 522.943i 0.956020 0.956020i −0.0430532 0.999073i \(-0.513708\pi\)
0.999073 + 0.0430532i \(0.0137085\pi\)
\(548\) −222.289 222.289i −0.405636 0.405636i
\(549\) 0 0
\(550\) −11.3578 435.543i −0.0206506 0.791896i
\(551\) −459.620 −0.834156
\(552\) 0 0
\(553\) −190.653 190.653i −0.344762 0.344762i
\(554\) 430.291i 0.776699i
\(555\) 0 0
\(556\) 325.390 0.585234
\(557\) −590.215 + 590.215i −1.05963 + 1.05963i −0.0615269 + 0.998105i \(0.519597\pi\)
−0.998105 + 0.0615269i \(0.980403\pi\)
\(558\) 0 0
\(559\) 1286.87i 2.30209i
\(560\) 169.727 + 67.7248i 0.303084 + 0.120937i
\(561\) 0 0
\(562\) 153.456 153.456i 0.273053 0.273053i
\(563\) −7.64258 7.64258i −0.0135747 0.0135747i 0.700287 0.713862i \(-0.253055\pi\)
−0.713862 + 0.700287i \(0.753055\pi\)
\(564\) 0 0
\(565\) −202.670 + 507.918i −0.358709 + 0.898969i
\(566\) −504.219 −0.890847
\(567\) 0 0
\(568\) −73.6338 73.6338i −0.129637 0.129637i
\(569\) 873.581i 1.53529i −0.640874 0.767646i \(-0.721428\pi\)
0.640874 0.767646i \(-0.278572\pi\)
\(570\) 0 0
\(571\) −253.180 −0.443398 −0.221699 0.975115i \(-0.571160\pi\)
−0.221699 + 0.975115i \(0.571160\pi\)
\(572\) −322.270 + 322.270i −0.563410 + 0.563410i
\(573\) 0 0
\(574\) 12.5800i 0.0219164i
\(575\) 424.902 11.0804i 0.738960 0.0192702i
\(576\) 0 0
\(577\) −205.666 + 205.666i −0.356440 + 0.356440i −0.862499 0.506059i \(-0.831102\pi\)
0.506059 + 0.862499i \(0.331102\pi\)
\(578\) 36.1249 + 36.1249i 0.0624998 + 0.0624998i
\(579\) 0 0
\(580\) 133.368 + 310.469i 0.229945 + 0.535292i
\(581\) −913.724 −1.57267
\(582\) 0 0
\(583\) 585.155 + 585.155i 1.00370 + 1.00370i
\(584\) 340.212i 0.582555i
\(585\) 0 0
\(586\) 662.151 1.12995
\(587\) −45.0649 + 45.0649i −0.0767716 + 0.0767716i −0.744450 0.667678i \(-0.767288\pi\)
0.667678 + 0.744450i \(0.267288\pi\)
\(588\) 0 0
\(589\) 502.970i 0.853938i
\(590\) −141.482 + 354.572i −0.239801 + 0.600970i
\(591\) 0 0
\(592\) −27.4448 + 27.4448i −0.0463594 + 0.0463594i
\(593\) −185.940 185.940i −0.313559 0.313559i 0.532728 0.846287i \(-0.321167\pi\)
−0.846287 + 0.532728i \(0.821167\pi\)
\(594\) 0 0
\(595\) 756.877 325.132i 1.27206 0.546440i
\(596\) −288.537 −0.484122
\(597\) 0 0
\(598\) −314.397 314.397i −0.525747 0.525747i
\(599\) 692.513i 1.15611i −0.815996 0.578057i \(-0.803811\pi\)
0.815996 0.578057i \(-0.196189\pi\)
\(600\) 0 0
\(601\) 982.288 1.63442 0.817212 0.576338i \(-0.195519\pi\)
0.817212 + 0.576338i \(0.195519\pi\)
\(602\) −635.853 + 635.853i −1.05623 + 1.05623i
\(603\) 0 0
\(604\) 70.5732i 0.116843i
\(605\) 60.9034 + 141.778i 0.100667 + 0.234343i
\(606\) 0 0
\(607\) 709.111 709.111i 1.16822 1.16822i 0.185597 0.982626i \(-0.440578\pi\)
0.982626 0.185597i \(-0.0594217\pi\)
\(608\) 54.4086 + 54.4086i 0.0894878 + 0.0894878i
\(609\) 0 0
\(610\) −706.871 282.057i −1.15880 0.462389i
\(611\) 1389.46 2.27407
\(612\) 0 0
\(613\) 196.939 + 196.939i 0.321271 + 0.321271i 0.849254 0.527984i \(-0.177052\pi\)
−0.527984 + 0.849254i \(0.677052\pi\)
\(614\) 415.301i 0.676386i
\(615\) 0 0
\(616\) −318.472 −0.517001
\(617\) 99.8435 99.8435i 0.161821 0.161821i −0.621552 0.783373i \(-0.713498\pi\)
0.783373 + 0.621552i \(0.213498\pi\)
\(618\) 0 0
\(619\) 16.2229i 0.0262082i 0.999914 + 0.0131041i \(0.00417128\pi\)
−0.999914 + 0.0131041i \(0.995829\pi\)
\(620\) −339.751 + 145.947i −0.547986 + 0.235398i
\(621\) 0 0
\(622\) −83.9014 + 83.9014i −0.134890 + 0.134890i
\(623\) −200.084 200.084i −0.321162 0.321162i
\(624\) 0 0
\(625\) −32.5747 624.151i −0.0521195 0.998641i
\(626\) 320.418 0.511850
\(627\) 0 0
\(628\) 122.858 + 122.858i 0.195634 + 0.195634i
\(629\) 174.960i 0.278157i
\(630\) 0 0
\(631\) −561.037 −0.889124 −0.444562 0.895748i \(-0.646641\pi\)
−0.444562 + 0.895748i \(0.646641\pi\)
\(632\) −59.0182 + 59.0182i −0.0933833 + 0.0933833i
\(633\) 0 0
\(634\) 384.635i 0.606680i
\(635\) 472.274 + 188.448i 0.743738 + 0.296768i
\(636\) 0 0
\(637\) −450.914 + 450.914i −0.707871 + 0.707871i
\(638\) −416.404 416.404i −0.652671 0.652671i
\(639\) 0 0
\(640\) 20.9647 52.5403i 0.0327574 0.0820942i
\(641\) −250.686 −0.391086 −0.195543 0.980695i \(-0.562647\pi\)
−0.195543 + 0.980695i \(0.562647\pi\)
\(642\) 0 0
\(643\) 347.726 + 347.726i 0.540786 + 0.540786i 0.923760 0.382973i \(-0.125100\pi\)
−0.382973 + 0.923760i \(0.625100\pi\)
\(644\) 310.692i 0.482440i
\(645\) 0 0
\(646\) 346.855 0.536927
\(647\) 267.912 267.912i 0.414084 0.414084i −0.469075 0.883158i \(-0.655413\pi\)
0.883158 + 0.469075i \(0.155413\pi\)
\(648\) 0 0
\(649\) 665.313i 1.02514i
\(650\) −450.089 + 474.192i −0.692445 + 0.729527i
\(651\) 0 0
\(652\) −145.513 + 145.513i −0.223179 + 0.223179i
\(653\) −411.160 411.160i −0.629647 0.629647i 0.318332 0.947979i \(-0.396877\pi\)
−0.947979 + 0.318332i \(0.896877\pi\)
\(654\) 0 0
\(655\) 392.004 + 912.549i 0.598479 + 1.39321i
\(656\) 3.89423 0.00593633
\(657\) 0 0
\(658\) 686.542 + 686.542i 1.04338 + 1.04338i
\(659\) 733.210i 1.11261i 0.830978 + 0.556305i \(0.187781\pi\)
−0.830978 + 0.556305i \(0.812219\pi\)
\(660\) 0 0
\(661\) 259.433 0.392485 0.196243 0.980555i \(-0.437126\pi\)
0.196243 + 0.980555i \(0.437126\pi\)
\(662\) −53.1278 + 53.1278i −0.0802535 + 0.0802535i
\(663\) 0 0
\(664\) 282.850i 0.425979i
\(665\) 230.301 577.162i 0.346317 0.867913i
\(666\) 0 0
\(667\) 406.231 406.231i 0.609042 0.609042i
\(668\) 303.287 + 303.287i 0.454022 + 0.454022i
\(669\) 0 0
\(670\) −208.459 + 89.5477i −0.311133 + 0.133653i
\(671\) 1326.36 1.97669
\(672\) 0 0
\(673\) −214.601 214.601i −0.318872 0.318872i 0.529462 0.848334i \(-0.322394\pi\)
−0.848334 + 0.529462i \(0.822394\pi\)
\(674\) 209.828i 0.311317i
\(675\) 0 0
\(676\) 345.902 0.511690
\(677\) 183.229 183.229i 0.270648 0.270648i −0.558713 0.829361i \(-0.688705\pi\)
0.829361 + 0.558713i \(0.188705\pi\)
\(678\) 0 0
\(679\) 122.884i 0.180978i
\(680\) −100.647 234.297i −0.148010 0.344555i
\(681\) 0 0
\(682\) 455.678 455.678i 0.668149 0.668149i
\(683\) −362.133 362.133i −0.530209 0.530209i 0.390426 0.920634i \(-0.372328\pi\)
−0.920634 + 0.390426i \(0.872328\pi\)
\(684\) 0 0
\(685\) 729.944 + 291.264i 1.06561 + 0.425203i
\(686\) 187.562 0.273414
\(687\) 0 0
\(688\) 196.833 + 196.833i 0.286095 + 0.286095i
\(689\) 1241.78i 1.80229i
\(690\) 0 0
\(691\) −404.857 −0.585901 −0.292950 0.956128i \(-0.594637\pi\)
−0.292950 + 0.956128i \(0.594637\pi\)
\(692\) 435.143 435.143i 0.628819 0.628819i
\(693\) 0 0
\(694\) 455.505i 0.656347i
\(695\) −747.432 + 321.074i −1.07544 + 0.461977i
\(696\) 0 0
\(697\) 12.4129 12.4129i 0.0178090 0.0178090i
\(698\) −465.818 465.818i −0.667361 0.667361i
\(699\) 0 0
\(700\) −456.695 + 11.9094i −0.652421 + 0.0170135i
\(701\) 247.220 0.352667 0.176334 0.984330i \(-0.443576\pi\)
0.176334 + 0.984330i \(0.443576\pi\)
\(702\) 0 0
\(703\) 93.3270 + 93.3270i 0.132755 + 0.132755i
\(704\) 98.5855i 0.140036i
\(705\) 0 0
\(706\) 728.449 1.03180
\(707\) −811.116 + 811.116i −1.14726 + 1.14726i
\(708\) 0 0
\(709\) 1148.58i 1.62000i −0.586429 0.810001i \(-0.699467\pi\)
0.586429 0.810001i \(-0.300533\pi\)
\(710\) 241.796 + 96.4821i 0.340558 + 0.135890i
\(711\) 0 0
\(712\) −61.9374 + 61.9374i −0.0869908 + 0.0869908i
\(713\) 444.545 + 444.545i 0.623485 + 0.623485i
\(714\) 0 0
\(715\) 422.270 1058.26i 0.590587 1.48008i
\(716\) −212.765 −0.297157
\(717\) 0 0
\(718\) 278.678 + 278.678i 0.388131 + 0.388131i
\(719\) 709.966i 0.987436i 0.869622 + 0.493718i \(0.164362\pi\)
−0.869622 + 0.493718i \(0.835638\pi\)
\(720\) 0 0
\(721\) 258.088 0.357959
\(722\) −175.982 + 175.982i −0.243742 + 0.243742i
\(723\) 0 0
\(724\) 695.449i 0.960565i
\(725\) −612.702 581.559i −0.845106 0.802150i
\(726\) 0 0
\(727\) −115.201 + 115.201i −0.158461 + 0.158461i −0.781884 0.623424i \(-0.785741\pi\)
0.623424 + 0.781884i \(0.285741\pi\)
\(728\) 337.921 + 337.921i 0.464178 + 0.464178i
\(729\) 0 0
\(730\) −335.699 781.478i −0.459862 1.07052i
\(731\) 1254.81 1.71657
\(732\) 0 0
\(733\) 632.363 + 632.363i 0.862706 + 0.862706i 0.991652 0.128946i \(-0.0411593\pi\)
−0.128946 + 0.991652i \(0.541159\pi\)
\(734\) 242.656i 0.330594i
\(735\) 0 0
\(736\) −96.1770 −0.130675
\(737\) 279.587 279.587i 0.379358 0.379358i
\(738\) 0 0
\(739\) 1074.05i 1.45338i 0.686965 + 0.726690i \(0.258942\pi\)
−0.686965 + 0.726690i \(0.741058\pi\)
\(740\) 35.9608 90.1223i 0.0485957 0.121787i
\(741\) 0 0
\(742\) 613.573 613.573i 0.826918 0.826918i
\(743\) 709.169 + 709.169i 0.954467 + 0.954467i 0.999008 0.0445407i \(-0.0141824\pi\)
−0.0445407 + 0.999008i \(0.514182\pi\)
\(744\) 0 0
\(745\) 662.779 284.710i 0.889636 0.382160i
\(746\) 445.432 0.597094
\(747\) 0 0
\(748\) 314.241 + 314.241i 0.420109 + 0.420109i
\(749\) 665.732i 0.888828i
\(750\) 0 0
\(751\) −524.769 −0.698760 −0.349380 0.936981i \(-0.613608\pi\)
−0.349380 + 0.936981i \(0.613608\pi\)
\(752\) 212.524 212.524i 0.282612 0.282612i
\(753\) 0 0
\(754\) 883.667i 1.17197i
\(755\) −69.6370 162.109i −0.0922345 0.214714i
\(756\) 0 0
\(757\) 507.020 507.020i 0.669775 0.669775i −0.287889 0.957664i \(-0.592953\pi\)
0.957664 + 0.287889i \(0.0929533\pi\)
\(758\) 271.908 + 271.908i 0.358718 + 0.358718i
\(759\) 0 0
\(760\) −178.665 71.2914i −0.235086 0.0938044i
\(761\) 239.905 0.315249 0.157625 0.987499i \(-0.449616\pi\)
0.157625 + 0.987499i \(0.449616\pi\)
\(762\) 0 0
\(763\) 296.284 + 296.284i 0.388315 + 0.388315i
\(764\) 413.390i 0.541086i
\(765\) 0 0
\(766\) −385.455 −0.503205
\(767\) −705.943 + 705.943i −0.920395 + 0.920395i
\(768\) 0 0
\(769\) 821.514i 1.06829i 0.845393 + 0.534144i \(0.179366\pi\)
−0.845393 + 0.534144i \(0.820634\pi\)
\(770\) 731.541 314.248i 0.950053 0.408114i
\(771\) 0 0
\(772\) 243.595 243.595i 0.315538 0.315538i
\(773\) 101.566 + 101.566i 0.131391 + 0.131391i 0.769744 0.638353i \(-0.220384\pi\)
−0.638353 + 0.769744i \(0.720384\pi\)
\(774\) 0 0
\(775\) 636.409 670.489i 0.821173 0.865148i
\(776\) 38.0396 0.0490202
\(777\) 0 0
\(778\) −628.058 628.058i −0.807273 0.807273i
\(779\) 13.2425i 0.0169993i
\(780\) 0 0
\(781\) −453.702 −0.580924
\(782\) −306.564 + 306.564i −0.392026 + 0.392026i
\(783\) 0 0
\(784\) 137.939i 0.175942i
\(785\) −403.437 160.980i −0.513933 0.205071i
\(786\) 0 0
\(787\) −944.082 + 944.082i −1.19960 + 1.19960i −0.225309 + 0.974287i \(0.572339\pi\)
−0.974287 + 0.225309i \(0.927661\pi\)
\(788\) 294.707 + 294.707i 0.373994 + 0.373994i
\(789\) 0 0
\(790\) 77.3314 193.802i 0.0978878 0.245319i
\(791\) −999.331 −1.26338
\(792\) 0 0
\(793\) −1407.36 1407.36i −1.77473 1.77473i
\(794\) 597.356i 0.752337i
\(795\) 0 0
\(796\) 488.915 0.614215
\(797\) 78.1020 78.1020i 0.0979950 0.0979950i −0.656410 0.754405i \(-0.727926\pi\)
0.754405 + 0.656410i \(0.227926\pi\)
\(798\) 0 0
\(799\) 1354.84i 1.69567i
\(800\) 3.68666 + 141.373i 0.00460832 + 0.176717i
\(801\) 0 0
\(802\) −558.519 + 558.519i −0.696408 + 0.696408i
\(803\) 1048.12 + 1048.12i 1.30526 + 1.30526i
\(804\) 0 0
\(805\) 306.570 + 713.668i 0.380833 + 0.886545i
\(806\) −967.011 −1.19977
\(807\) 0 0
\(808\) 251.087 + 251.087i 0.310752 + 0.310752i
\(809\) 229.281i 0.283413i 0.989909 + 0.141707i \(0.0452589\pi\)
−0.989909 + 0.141707i \(0.954741\pi\)
\(810\) 0 0
\(811\) −1240.21 −1.52923 −0.764615 0.644487i \(-0.777071\pi\)
−0.764615 + 0.644487i \(0.777071\pi\)
\(812\) −436.627 + 436.627i −0.537717 + 0.537717i
\(813\) 0 0
\(814\) 169.104i 0.207744i
\(815\) 190.665 477.830i 0.233945 0.586295i
\(816\) 0 0
\(817\) 669.338 669.338i 0.819263 0.819263i
\(818\) 399.027 + 399.027i 0.487808 + 0.487808i
\(819\) 0 0
\(820\) −8.94518 + 3.84258i −0.0109088 + 0.00468607i
\(821\) −1215.87 −1.48096 −0.740481 0.672077i \(-0.765402\pi\)
−0.740481 + 0.672077i \(0.765402\pi\)
\(822\) 0 0
\(823\) 132.661 + 132.661i 0.161192 + 0.161192i 0.783095 0.621903i \(-0.213640\pi\)
−0.621903 + 0.783095i \(0.713640\pi\)
\(824\) 79.8933i 0.0969578i
\(825\) 0 0
\(826\) −697.624 −0.844581
\(827\) 99.9685 99.9685i 0.120881 0.120881i −0.644079 0.764959i \(-0.722759\pi\)
0.764959 + 0.644079i \(0.222759\pi\)
\(828\) 0 0
\(829\) 475.686i 0.573807i −0.957960 0.286903i \(-0.907374\pi\)
0.957960 0.286903i \(-0.0926259\pi\)
\(830\) −279.098 649.716i −0.336263 0.782790i
\(831\) 0 0
\(832\) 104.606 104.606i 0.125728 0.125728i
\(833\) 439.680 + 439.680i 0.527827 + 0.527827i
\(834\) 0 0
\(835\) −995.922 397.395i −1.19272 0.475922i
\(836\) 335.244 0.401009
\(837\) 0 0
\(838\) −678.231 678.231i −0.809345 0.809345i
\(839\) 375.996i 0.448148i 0.974572 + 0.224074i \(0.0719357\pi\)
−0.974572 + 0.224074i \(0.928064\pi\)
\(840\) 0 0
\(841\) −300.782 −0.357648
\(842\) −298.303 + 298.303i −0.354279 + 0.354279i
\(843\) 0 0
\(844\) 56.5419i 0.0669927i
\(845\) −794.549 + 341.314i −0.940294 + 0.403922i
\(846\) 0 0
\(847\) −199.388 + 199.388i −0.235405 + 0.235405i
\(848\) −189.936 189.936i −0.223981 0.223981i
\(849\) 0 0
\(850\) 462.379 + 438.876i 0.543975 + 0.516325i
\(851\) −164.972 −0.193857
\(852\) 0 0
\(853\) 1083.08 + 1083.08i 1.26973 + 1.26973i 0.946229 + 0.323497i \(0.104859\pi\)
0.323497 + 0.946229i \(0.395141\pi\)
\(854\) 1390.77i 1.62854i
\(855\) 0 0
\(856\) −206.083 −0.240751
\(857\) 164.839 164.839i 0.192344 0.192344i −0.604364 0.796708i \(-0.706573\pi\)
0.796708 + 0.604364i \(0.206573\pi\)
\(858\) 0 0
\(859\) 811.864i 0.945126i 0.881297 + 0.472563i \(0.156671\pi\)
−0.881297 + 0.472563i \(0.843329\pi\)
\(860\) −646.354 257.910i −0.751574 0.299895i
\(861\) 0 0
\(862\) 135.033 135.033i 0.156651 0.156651i
\(863\) 322.861 + 322.861i 0.374114 + 0.374114i 0.868973 0.494859i \(-0.164780\pi\)
−0.494859 + 0.868973i \(0.664780\pi\)
\(864\) 0 0
\(865\) −570.166 + 1428.91i −0.659152 + 1.65192i
\(866\) 350.291 0.404492
\(867\) 0 0
\(868\) −477.807 477.807i −0.550469 0.550469i
\(869\) 363.646i 0.418465i
\(870\) 0 0
\(871\) −593.323 −0.681197
\(872\) 91.7170 91.7170i 0.105180 0.105180i
\(873\) 0 0
\(874\) 327.053i 0.374203i
\(875\) 1037.29 477.993i 1.18547 0.546278i
\(876\) 0 0
\(877\) 10.6514 10.6514i 0.0121452 0.0121452i −0.701008 0.713153i \(-0.747266\pi\)
0.713153 + 0.701008i \(0.247266\pi\)
\(878\) 446.700 + 446.700i 0.508770 + 0.508770i
\(879\) 0 0
\(880\) −97.2778 226.454i −0.110543 0.257334i
\(881\) −63.3171 −0.0718696 −0.0359348 0.999354i \(-0.511441\pi\)
−0.0359348 + 0.999354i \(0.511441\pi\)
\(882\) 0 0
\(883\) 111.772 + 111.772i 0.126582 + 0.126582i 0.767560 0.640977i \(-0.221471\pi\)
−0.640977 + 0.767560i \(0.721471\pi\)
\(884\) 666.864i 0.754371i
\(885\) 0 0
\(886\) −143.506 −0.161971
\(887\) −550.783 + 550.783i −0.620950 + 0.620950i −0.945774 0.324824i \(-0.894695\pi\)
0.324824 + 0.945774i \(0.394695\pi\)
\(888\) 0 0
\(889\) 929.201i 1.04522i
\(890\) 81.1564 203.388i 0.0911870 0.228526i
\(891\) 0 0
\(892\) 16.9411 16.9411i 0.0189923 0.0189923i
\(893\) −722.697 722.697i −0.809291 0.809291i
\(894\) 0 0
\(895\) 488.727 209.942i 0.546064 0.234573i
\(896\) 103.373 0.115372
\(897\) 0 0
\(898\) −412.660 412.660i −0.459532 0.459532i
\(899\) 1249.47i 1.38984i
\(900\) 0 0
\(901\) −1210.84 −1.34389
\(902\) 11.9973 11.9973i 0.0133008 0.0133008i
\(903\) 0 0
\(904\) 309.351i 0.342202i
\(905\) −686.224 1597.47i −0.758258 1.76516i
\(906\) 0 0
\(907\) −774.652 + 774.652i −0.854081 + 0.854081i −0.990633 0.136552i \(-0.956398\pi\)
0.136552 + 0.990633i \(0.456398\pi\)
\(908\) −520.539 520.539i −0.573281 0.573281i
\(909\) 0 0
\(910\) −1109.65 442.777i −1.21940 0.486568i
\(911\) 1468.88 1.61238 0.806189 0.591659i \(-0.201527\pi\)
0.806189 + 0.591659i \(0.201527\pi\)
\(912\) 0 0
\(913\) 871.405 + 871.405i 0.954441 + 0.954441i
\(914\) 714.068i 0.781257i
\(915\) 0 0
\(916\) −104.986 −0.114613
\(917\) −1283.36 + 1283.36i −1.39952 + 1.39952i
\(918\) 0 0
\(919\) 883.246i 0.961095i −0.876969 0.480547i \(-0.840438\pi\)
0.876969 0.480547i \(-0.159562\pi\)
\(920\) 220.922 94.9012i 0.240132 0.103153i
\(921\) 0 0
\(922\) 711.833 711.833i 0.772053 0.772053i
\(923\) 481.409 + 481.409i 0.521570 + 0.521570i
\(924\) 0 0
\(925\) 6.32372 + 242.497i 0.00683645 + 0.262159i
\(926\) 598.393 0.646213
\(927\) 0 0
\(928\) 135.161 + 135.161i 0.145648 + 0.145648i
\(929\) 813.460i 0.875629i −0.899065 0.437815i \(-0.855753\pi\)
0.899065 0.437815i \(-0.144247\pi\)
\(930\) 0 0
\(931\) 469.066 0.503830
\(932\) 442.793 442.793i 0.475100 0.475100i
\(933\) 0 0
\(934\) 1157.70i 1.23951i
\(935\) −1031.90 411.749i −1.10363 0.440374i
\(936\) 0 0
\(937\) −1047.09 + 1047.09i −1.11750 + 1.11750i −0.125388 + 0.992108i \(0.540018\pi\)
−0.992108 + 0.125388i \(0.959982\pi\)
\(938\) −293.165 293.165i −0.312543 0.312543i
\(939\) 0 0
\(940\) −278.470 + 697.880i −0.296245 + 0.742426i
\(941\) −675.780 −0.718151 −0.359075 0.933309i \(-0.616908\pi\)
−0.359075 + 0.933309i \(0.616908\pi\)
\(942\) 0 0
\(943\) 11.7042 + 11.7042i 0.0124117 + 0.0124117i
\(944\) 215.955i 0.228766i
\(945\) 0 0
\(946\) 1212.81 1.28204
\(947\) 123.223 123.223i 0.130119 0.130119i −0.639048 0.769167i \(-0.720671\pi\)
0.769167 + 0.639048i \(0.220671\pi\)
\(948\) 0 0
\(949\) 2224.27i 2.34380i
\(950\) 480.745 12.5366i 0.506047 0.0131964i
\(951\) 0 0
\(952\) 329.502 329.502i 0.346116 0.346116i
\(953\) 119.680 + 119.680i 0.125582 + 0.125582i 0.767104 0.641522i \(-0.221697\pi\)
−0.641522 + 0.767104i \(0.721697\pi\)
\(954\) 0 0
\(955\) −407.907 949.570i −0.427127 0.994314i
\(956\) 7.51932 0.00786540
\(957\) 0 0
\(958\) −198.574 198.574i −0.207280 0.207280i
\(959\) 1436.17i 1.49757i
\(960\) 0 0
\(961\) 406.316 0.422805
\(962\) 179.431 179.431i 0.186518 0.186518i
\(963\) 0 0
\(964\) 275.909i 0.286213i
\(965\) −319.182 + 799.909i −0.330758 + 0.828922i
\(966\) 0 0
\(967\) −499.034 + 499.034i −0.516064 + 0.516064i −0.916378 0.400314i \(-0.868901\pi\)
0.400314 + 0.916378i \(0.368901\pi\)
\(968\) 61.7222 + 61.7222i 0.0637626 + 0.0637626i
\(969\) 0 0
\(970\) −87.3783 + 37.5351i −0.0900807 + 0.0386959i
\(971\) −452.541 −0.466057 −0.233028 0.972470i \(-0.574863\pi\)
−0.233028 + 0.972470i \(0.574863\pi\)
\(972\) 0 0
\(973\) −1051.15 1051.15i −1.08031 1.08031i
\(974\) 904.538i 0.928684i
\(975\) 0 0
\(976\) −430.524 −0.441111
\(977\) −625.196 + 625.196i −0.639914 + 0.639914i −0.950534 0.310620i \(-0.899463\pi\)
0.310620 + 0.950534i \(0.399463\pi\)
\(978\) 0 0
\(979\) 381.634i 0.389820i
\(980\) −136.109 316.850i −0.138887 0.323316i
\(981\) 0 0
\(982\) 55.1876 55.1876i 0.0561992 0.0561992i
\(983\) −966.110 966.110i −0.982818 0.982818i 0.0170369 0.999855i \(-0.494577\pi\)
−0.999855 + 0.0170369i \(0.994577\pi\)
\(984\) 0 0
\(985\) −967.750 386.154i −0.982487 0.392034i
\(986\) 861.652 0.873886
\(987\) 0 0
\(988\) −355.717 355.717i −0.360037 0.360037i
\(989\) 1183.18i 1.19633i
\(990\) 0 0
\(991\) −1070.42 −1.08014 −0.540071 0.841620i \(-0.681603\pi\)
−0.540071 + 0.841620i \(0.681603\pi\)
\(992\) −147.909 + 147.909i −0.149102 + 0.149102i
\(993\) 0 0
\(994\) 475.735i 0.478607i
\(995\) −1123.05 + 482.430i −1.12870 + 0.484854i
\(996\) 0 0
\(997\) −644.229 + 644.229i −0.646167 + 0.646167i −0.952064 0.305897i \(-0.901044\pi\)
0.305897 + 0.952064i \(0.401044\pi\)
\(998\) 681.525 + 681.525i 0.682891 + 0.682891i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 270.3.g.e.163.2 8
3.2 odd 2 270.3.g.f.163.3 yes 8
5.2 odd 4 inner 270.3.g.e.217.2 yes 8
5.3 odd 4 1350.3.g.r.757.4 8
5.4 even 2 1350.3.g.r.1243.4 8
15.2 even 4 270.3.g.f.217.3 yes 8
15.8 even 4 1350.3.g.o.757.4 8
15.14 odd 2 1350.3.g.o.1243.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
270.3.g.e.163.2 8 1.1 even 1 trivial
270.3.g.e.217.2 yes 8 5.2 odd 4 inner
270.3.g.f.163.3 yes 8 3.2 odd 2
270.3.g.f.217.3 yes 8 15.2 even 4
1350.3.g.o.757.4 8 15.8 even 4
1350.3.g.o.1243.4 8 15.14 odd 2
1350.3.g.r.757.4 8 5.3 odd 4
1350.3.g.r.1243.4 8 5.4 even 2