Properties

Label 2793.2.a.s
Level $2793$
Weight $2$
Character orbit 2793.a
Self dual yes
Analytic conductor $22.302$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2793,2,Mod(1,2793)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2793.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2793 = 3 \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2793.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.3022172845\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - q^{3} - q^{4} + 2 q^{5} - q^{6} - 3 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - q^{3} - q^{4} + 2 q^{5} - q^{6} - 3 q^{8} + q^{9} + 2 q^{10} + (3 \beta + 2) q^{11} + q^{12} + ( - 2 \beta + 2) q^{13} - 2 q^{15} - q^{16} + (2 \beta - 2) q^{17} + q^{18} + q^{19} - 2 q^{20} + (3 \beta + 2) q^{22} + ( - 3 \beta + 2) q^{23} + 3 q^{24} - q^{25} + ( - 2 \beta + 2) q^{26} - q^{27} + ( - 4 \beta + 4) q^{29} - 2 q^{30} + (2 \beta - 2) q^{31} + 5 q^{32} + ( - 3 \beta - 2) q^{33} + (2 \beta - 2) q^{34} - q^{36} + (4 \beta + 2) q^{37} + q^{38} + (2 \beta - 2) q^{39} - 6 q^{40} + (5 \beta - 4) q^{41} + ( - 2 \beta + 4) q^{43} + ( - 3 \beta - 2) q^{44} + 2 q^{45} + ( - 3 \beta + 2) q^{46} + ( - 6 \beta - 2) q^{47} + q^{48} - q^{50} + ( - 2 \beta + 2) q^{51} + (2 \beta - 2) q^{52} + (4 \beta + 6) q^{53} - q^{54} + (6 \beta + 4) q^{55} - q^{57} + ( - 4 \beta + 4) q^{58} - 4 \beta q^{59} + 2 q^{60} - 3 \beta q^{61} + (2 \beta - 2) q^{62} + 7 q^{64} + ( - 4 \beta + 4) q^{65} + ( - 3 \beta - 2) q^{66} + ( - \beta + 14) q^{67} + ( - 2 \beta + 2) q^{68} + (3 \beta - 2) q^{69} + ( - 2 \beta + 8) q^{71} - 3 q^{72} + \beta q^{73} + (4 \beta + 2) q^{74} + q^{75} - q^{76} + (2 \beta - 2) q^{78} + (3 \beta + 2) q^{79} - 2 q^{80} + q^{81} + (5 \beta - 4) q^{82} + 12 q^{83} + (4 \beta - 4) q^{85} + ( - 2 \beta + 4) q^{86} + (4 \beta - 4) q^{87} + ( - 9 \beta - 6) q^{88} + ( - 9 \beta - 4) q^{89} + 2 q^{90} + (3 \beta - 2) q^{92} + ( - 2 \beta + 2) q^{93} + ( - 6 \beta - 2) q^{94} + 2 q^{95} - 5 q^{96} + (6 \beta - 6) q^{97} + (3 \beta + 2) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{3} - 2 q^{4} + 4 q^{5} - 2 q^{6} - 6 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} - 2 q^{3} - 2 q^{4} + 4 q^{5} - 2 q^{6} - 6 q^{8} + 2 q^{9} + 4 q^{10} + 4 q^{11} + 2 q^{12} + 4 q^{13} - 4 q^{15} - 2 q^{16} - 4 q^{17} + 2 q^{18} + 2 q^{19} - 4 q^{20} + 4 q^{22} + 4 q^{23} + 6 q^{24} - 2 q^{25} + 4 q^{26} - 2 q^{27} + 8 q^{29} - 4 q^{30} - 4 q^{31} + 10 q^{32} - 4 q^{33} - 4 q^{34} - 2 q^{36} + 4 q^{37} + 2 q^{38} - 4 q^{39} - 12 q^{40} - 8 q^{41} + 8 q^{43} - 4 q^{44} + 4 q^{45} + 4 q^{46} - 4 q^{47} + 2 q^{48} - 2 q^{50} + 4 q^{51} - 4 q^{52} + 12 q^{53} - 2 q^{54} + 8 q^{55} - 2 q^{57} + 8 q^{58} + 4 q^{60} - 4 q^{62} + 14 q^{64} + 8 q^{65} - 4 q^{66} + 28 q^{67} + 4 q^{68} - 4 q^{69} + 16 q^{71} - 6 q^{72} + 4 q^{74} + 2 q^{75} - 2 q^{76} - 4 q^{78} + 4 q^{79} - 4 q^{80} + 2 q^{81} - 8 q^{82} + 24 q^{83} - 8 q^{85} + 8 q^{86} - 8 q^{87} - 12 q^{88} - 8 q^{89} + 4 q^{90} - 4 q^{92} + 4 q^{93} - 4 q^{94} + 4 q^{95} - 10 q^{96} - 12 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
1.00000 −1.00000 −1.00000 2.00000 −1.00000 0 −3.00000 1.00000 2.00000
1.2 1.00000 −1.00000 −1.00000 2.00000 −1.00000 0 −3.00000 1.00000 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2793.2.a.s 2
3.b odd 2 1 8379.2.a.r 2
7.b odd 2 1 2793.2.a.u yes 2
21.c even 2 1 8379.2.a.s 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2793.2.a.s 2 1.a even 1 1 trivial
2793.2.a.u yes 2 7.b odd 2 1
8379.2.a.r 2 3.b odd 2 1
8379.2.a.s 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2793))\):

\( T_{2} - 1 \) Copy content Toggle raw display
\( T_{5} - 2 \) Copy content Toggle raw display
\( T_{11}^{2} - 4T_{11} - 14 \) Copy content Toggle raw display
\( T_{13}^{2} - 4T_{13} - 4 \) Copy content Toggle raw display
\( T_{17}^{2} + 4T_{17} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T - 2)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 4T - 14 \) Copy content Toggle raw display
$13$ \( T^{2} - 4T - 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 4T - 4 \) Copy content Toggle raw display
$19$ \( (T - 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 4T - 14 \) Copy content Toggle raw display
$29$ \( T^{2} - 8T - 16 \) Copy content Toggle raw display
$31$ \( T^{2} + 4T - 4 \) Copy content Toggle raw display
$37$ \( T^{2} - 4T - 28 \) Copy content Toggle raw display
$41$ \( T^{2} + 8T - 34 \) Copy content Toggle raw display
$43$ \( T^{2} - 8T + 8 \) Copy content Toggle raw display
$47$ \( T^{2} + 4T - 68 \) Copy content Toggle raw display
$53$ \( T^{2} - 12T + 4 \) Copy content Toggle raw display
$59$ \( T^{2} - 32 \) Copy content Toggle raw display
$61$ \( T^{2} - 18 \) Copy content Toggle raw display
$67$ \( T^{2} - 28T + 194 \) Copy content Toggle raw display
$71$ \( T^{2} - 16T + 56 \) Copy content Toggle raw display
$73$ \( T^{2} - 2 \) Copy content Toggle raw display
$79$ \( T^{2} - 4T - 14 \) Copy content Toggle raw display
$83$ \( (T - 12)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 8T - 146 \) Copy content Toggle raw display
$97$ \( T^{2} + 12T - 36 \) Copy content Toggle raw display
show more
show less