Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [28,6,Mod(3,28)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(28, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 1]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("28.3");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 28 = 2^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 28.f (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.49074695476\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.1 | −5.54682 | − | 1.11033i | −11.0700 | + | 19.1738i | 29.5343 | + | 12.3176i | −2.22247 | + | 1.28315i | 82.6927 | − | 94.0624i | −89.5633 | − | 93.7305i | −150.145 | − | 101.116i | −123.591 | − | 214.066i | 13.7524 | − | 4.64969i |
3.2 | −5.50906 | + | 1.28461i | 13.0818 | − | 22.6584i | 28.6996 | − | 14.1540i | −60.0746 | + | 34.6841i | −42.9616 | + | 141.632i | 33.9161 | − | 125.127i | −139.926 | + | 114.843i | −220.769 | − | 382.383i | 286.399 | − | 268.249i |
3.3 | −5.20690 | + | 2.21092i | −0.490819 | + | 0.850123i | 22.2237 | − | 23.0241i | 22.7704 | − | 13.1465i | 0.676095 | − | 5.51167i | −16.6033 | + | 128.574i | −64.8124 | + | 169.019i | 121.018 | + | 209.610i | −89.4976 | + | 118.796i |
3.4 | −4.49521 | − | 3.43411i | 0.901244 | − | 1.56100i | 8.41378 | + | 30.8741i | −41.1834 | + | 23.7773i | −9.41192 | + | 3.92205i | 122.887 | + | 41.3025i | 68.2033 | − | 167.679i | 119.876 | + | 207.630i | 266.782 | + | 34.5447i |
3.5 | −4.33025 | − | 3.63991i | 10.6204 | − | 18.3950i | 5.50212 | + | 31.5234i | 88.2183 | − | 50.9329i | −112.945 | + | 40.9978i | −128.565 | + | 16.6726i | 90.9169 | − | 156.532i | −104.084 | − | 180.280i | −567.398 | − | 100.555i |
3.6 | −2.83899 | + | 4.89286i | −11.9407 | + | 20.6819i | −15.8802 | − | 27.7816i | −26.3592 | + | 15.2185i | −67.2942 | − | 117.140i | 129.440 | − | 7.22687i | 181.016 | + | 1.17187i | −163.661 | − | 283.469i | 0.371546 | − | 172.177i |
3.7 | −2.40397 | + | 5.12064i | 4.28235 | − | 7.41724i | −20.4419 | − | 24.6197i | 47.5979 | − | 27.4807i | 27.6864 | + | 39.7592i | −6.17988 | − | 129.494i | 175.210 | − | 45.4904i | 84.8230 | + | 146.918i | 26.2947 | + | 309.794i |
3.8 | −0.987129 | − | 5.57006i | −10.6204 | + | 18.3950i | −30.0512 | + | 10.9967i | 88.2183 | − | 50.9329i | 112.945 | + | 40.9978i | 128.565 | − | 16.6726i | 90.9169 | + | 156.532i | −104.084 | − | 180.280i | −370.782 | − | 441.104i |
3.9 | −0.726423 | − | 5.61002i | −0.901244 | + | 1.56100i | −30.9446 | + | 8.15049i | −41.1834 | + | 23.7773i | 9.41192 | + | 3.92205i | −122.887 | − | 41.3025i | 68.2033 | + | 167.679i | 119.876 | + | 207.630i | 163.307 | + | 213.767i |
3.10 | 0.0458201 | + | 5.65667i | 5.07408 | − | 8.78857i | −31.9958 | + | 0.518378i | −73.9432 | + | 42.6911i | 49.9465 | + | 28.2997i | −80.3926 | + | 101.706i | −4.39834 | − | 180.966i | 70.0074 | + | 121.256i | −244.878 | − | 416.316i |
3.11 | 1.81183 | − | 5.35885i | 11.0700 | − | 19.1738i | −25.4345 | − | 19.4187i | −2.22247 | + | 1.28315i | −82.6927 | − | 94.0624i | 89.5633 | + | 93.7305i | −150.145 | + | 101.116i | −123.591 | − | 214.066i | 2.84943 | + | 14.2347i |
3.12 | 2.36282 | + | 5.13976i | −9.72416 | + | 16.8427i | −20.8342 | + | 24.2886i | 43.6962 | − | 25.2280i | −109.544 | − | 10.1835i | −129.558 | − | 4.64978i | −174.065 | − | 49.6932i | −67.6187 | − | 117.119i | 232.912 | + | 164.979i |
3.13 | 3.26975 | + | 4.61614i | 9.72416 | − | 16.8427i | −10.6174 | + | 30.1872i | 43.6962 | − | 25.2280i | 109.544 | − | 10.1835i | 129.558 | + | 4.64978i | −174.065 | + | 49.6932i | −67.6187 | − | 117.119i | 259.332 | + | 119.218i |
3.14 | 3.86703 | − | 4.12869i | −13.0818 | + | 22.6584i | −2.09210 | − | 31.9315i | −60.0746 | + | 34.6841i | 42.9616 | + | 141.632i | −33.9161 | + | 125.127i | −139.926 | − | 114.843i | −220.769 | − | 382.383i | −89.1108 | + | 382.154i |
3.15 | 4.51816 | − | 3.40385i | 0.490819 | − | 0.850123i | 8.82757 | − | 30.7583i | 22.7704 | − | 13.1465i | −0.676095 | − | 5.51167i | 16.6033 | − | 128.574i | −64.8124 | − | 169.019i | 121.018 | + | 209.610i | 58.1317 | − | 136.905i |
3.16 | 4.87591 | + | 2.86802i | −5.07408 | + | 8.78857i | 15.5490 | + | 27.9684i | −73.9432 | + | 42.6911i | −49.9465 | + | 28.2997i | 80.3926 | − | 101.706i | −4.39834 | + | 180.966i | 70.0074 | + | 121.256i | −482.979 | − | 3.91222i |
3.17 | 5.63659 | + | 0.478421i | −4.28235 | + | 7.41724i | 31.5422 | + | 5.39333i | 47.5979 | − | 27.4807i | −27.6864 | + | 39.7592i | 6.17988 | + | 129.494i | 175.210 | + | 45.4904i | 84.8230 | + | 146.918i | 281.437 | − | 132.125i |
3.18 | 5.65684 | − | 0.0122071i | 11.9407 | − | 20.6819i | 31.9997 | − | 0.138107i | −26.3592 | + | 15.2185i | 67.2942 | − | 117.140i | −129.440 | + | 7.22687i | 181.016 | − | 1.17187i | −163.661 | − | 283.469i | −148.924 | + | 86.4103i |
19.1 | −5.54682 | + | 1.11033i | −11.0700 | − | 19.1738i | 29.5343 | − | 12.3176i | −2.22247 | − | 1.28315i | 82.6927 | + | 94.0624i | −89.5633 | + | 93.7305i | −150.145 | + | 101.116i | −123.591 | + | 214.066i | 13.7524 | + | 4.64969i |
19.2 | −5.50906 | − | 1.28461i | 13.0818 | + | 22.6584i | 28.6996 | + | 14.1540i | −60.0746 | − | 34.6841i | −42.9616 | − | 141.632i | 33.9161 | + | 125.127i | −139.926 | − | 114.843i | −220.769 | + | 382.383i | 286.399 | + | 268.249i |
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
7.d | odd | 6 | 1 | inner |
28.f | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 28.6.f.a | ✓ | 36 |
4.b | odd | 2 | 1 | inner | 28.6.f.a | ✓ | 36 |
7.c | even | 3 | 1 | 196.6.d.b | 36 | ||
7.d | odd | 6 | 1 | inner | 28.6.f.a | ✓ | 36 |
7.d | odd | 6 | 1 | 196.6.d.b | 36 | ||
28.f | even | 6 | 1 | inner | 28.6.f.a | ✓ | 36 |
28.f | even | 6 | 1 | 196.6.d.b | 36 | ||
28.g | odd | 6 | 1 | 196.6.d.b | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
28.6.f.a | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
28.6.f.a | ✓ | 36 | 4.b | odd | 2 | 1 | inner |
28.6.f.a | ✓ | 36 | 7.d | odd | 6 | 1 | inner |
28.6.f.a | ✓ | 36 | 28.f | even | 6 | 1 | inner |
196.6.d.b | 36 | 7.c | even | 3 | 1 | ||
196.6.d.b | 36 | 7.d | odd | 6 | 1 | ||
196.6.d.b | 36 | 28.f | even | 6 | 1 | ||
196.6.d.b | 36 | 28.g | odd | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{6}^{\mathrm{new}}(28, [\chi])\).