Properties

Label 288.4.d.a.145.1
Level $288$
Weight $4$
Character 288.145
Analytic conductor $16.993$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [288,4,Mod(145,288)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(288, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("288.145");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 288.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.9925500817\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 145.1
Root \(0.500000 + 1.32288i\) of defining polynomial
Character \(\chi\) \(=\) 288.145
Dual form 288.4.d.a.145.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-10.5830i q^{5} +8.00000 q^{7} +O(q^{10})\) \(q-10.5830i q^{5} +8.00000 q^{7} +15.8745i q^{11} -52.9150i q^{13} +14.0000 q^{17} -37.0405i q^{19} -152.000 q^{23} +13.0000 q^{25} -158.745i q^{29} -224.000 q^{31} -84.6640i q^{35} -243.409i q^{37} +70.0000 q^{41} -439.195i q^{43} +336.000 q^{47} -279.000 q^{49} +31.7490i q^{53} +168.000 q^{55} -534.442i q^{59} -95.2470i q^{61} -560.000 q^{65} +174.620i q^{67} -72.0000 q^{71} -294.000 q^{73} +126.996i q^{77} +464.000 q^{79} +545.025i q^{83} -148.162i q^{85} -266.000 q^{89} -423.320i q^{91} -392.000 q^{95} +994.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 16 q^{7} + 28 q^{17} - 304 q^{23} + 26 q^{25} - 448 q^{31} + 140 q^{41} + 672 q^{47} - 558 q^{49} + 336 q^{55} - 1120 q^{65} - 144 q^{71} - 588 q^{73} + 928 q^{79} - 532 q^{89} - 784 q^{95} + 1988 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/288\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 10.5830i − 0.946573i −0.880909 0.473286i \(-0.843068\pi\)
0.880909 0.473286i \(-0.156932\pi\)
\(6\) 0 0
\(7\) 8.00000 0.431959 0.215980 0.976398i \(-0.430705\pi\)
0.215980 + 0.976398i \(0.430705\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 15.8745i 0.435122i 0.976047 + 0.217561i \(0.0698101\pi\)
−0.976047 + 0.217561i \(0.930190\pi\)
\(12\) 0 0
\(13\) − 52.9150i − 1.12892i −0.825460 0.564461i \(-0.809084\pi\)
0.825460 0.564461i \(-0.190916\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 14.0000 0.199735 0.0998676 0.995001i \(-0.468158\pi\)
0.0998676 + 0.995001i \(0.468158\pi\)
\(18\) 0 0
\(19\) − 37.0405i − 0.447246i −0.974676 0.223623i \(-0.928212\pi\)
0.974676 0.223623i \(-0.0717885\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −152.000 −1.37801 −0.689004 0.724757i \(-0.741952\pi\)
−0.689004 + 0.724757i \(0.741952\pi\)
\(24\) 0 0
\(25\) 13.0000 0.104000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 158.745i − 1.01649i −0.861212 0.508245i \(-0.830294\pi\)
0.861212 0.508245i \(-0.169706\pi\)
\(30\) 0 0
\(31\) −224.000 −1.29779 −0.648897 0.760877i \(-0.724769\pi\)
−0.648897 + 0.760877i \(0.724769\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 84.6640i − 0.408881i
\(36\) 0 0
\(37\) − 243.409i − 1.08152i −0.841177 0.540760i \(-0.818137\pi\)
0.841177 0.540760i \(-0.181863\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 70.0000 0.266638 0.133319 0.991073i \(-0.457436\pi\)
0.133319 + 0.991073i \(0.457436\pi\)
\(42\) 0 0
\(43\) − 439.195i − 1.55759i −0.627276 0.778797i \(-0.715830\pi\)
0.627276 0.778797i \(-0.284170\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 336.000 1.04278 0.521390 0.853319i \(-0.325414\pi\)
0.521390 + 0.853319i \(0.325414\pi\)
\(48\) 0 0
\(49\) −279.000 −0.813411
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 31.7490i 0.0822842i 0.999153 + 0.0411421i \(0.0130996\pi\)
−0.999153 + 0.0411421i \(0.986900\pi\)
\(54\) 0 0
\(55\) 168.000 0.411875
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 534.442i − 1.17929i −0.807661 0.589647i \(-0.799267\pi\)
0.807661 0.589647i \(-0.200733\pi\)
\(60\) 0 0
\(61\) − 95.2470i − 0.199920i −0.994991 0.0999601i \(-0.968128\pi\)
0.994991 0.0999601i \(-0.0318715\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −560.000 −1.06861
\(66\) 0 0
\(67\) 174.620i 0.318406i 0.987246 + 0.159203i \(0.0508924\pi\)
−0.987246 + 0.159203i \(0.949108\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −72.0000 −0.120350 −0.0601748 0.998188i \(-0.519166\pi\)
−0.0601748 + 0.998188i \(0.519166\pi\)
\(72\) 0 0
\(73\) −294.000 −0.471371 −0.235686 0.971829i \(-0.575734\pi\)
−0.235686 + 0.971829i \(0.575734\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 126.996i 0.187955i
\(78\) 0 0
\(79\) 464.000 0.660811 0.330406 0.943839i \(-0.392814\pi\)
0.330406 + 0.943839i \(0.392814\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 545.025i 0.720774i 0.932803 + 0.360387i \(0.117355\pi\)
−0.932803 + 0.360387i \(0.882645\pi\)
\(84\) 0 0
\(85\) − 148.162i − 0.189064i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −266.000 −0.316808 −0.158404 0.987374i \(-0.550635\pi\)
−0.158404 + 0.987374i \(0.550635\pi\)
\(90\) 0 0
\(91\) − 423.320i − 0.487649i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −392.000 −0.423351
\(96\) 0 0
\(97\) 994.000 1.04047 0.520234 0.854024i \(-0.325845\pi\)
0.520234 + 0.854024i \(0.325845\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 751.393i 0.740262i 0.928980 + 0.370131i \(0.120687\pi\)
−0.928980 + 0.370131i \(0.879313\pi\)
\(102\) 0 0
\(103\) −1176.00 −1.12500 −0.562499 0.826798i \(-0.690160\pi\)
−0.562499 + 0.826798i \(0.690160\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 269.867i 0.243822i 0.992541 + 0.121911i \(0.0389023\pi\)
−0.992541 + 0.121911i \(0.961098\pi\)
\(108\) 0 0
\(109\) 1894.36i 1.66465i 0.554290 + 0.832324i \(0.312990\pi\)
−0.554290 + 0.832324i \(0.687010\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1710.00 1.42357 0.711784 0.702398i \(-0.247887\pi\)
0.711784 + 0.702398i \(0.247887\pi\)
\(114\) 0 0
\(115\) 1608.62i 1.30439i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 112.000 0.0862775
\(120\) 0 0
\(121\) 1079.00 0.810669
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 1460.45i − 1.04502i
\(126\) 0 0
\(127\) 1664.00 1.16265 0.581323 0.813673i \(-0.302535\pi\)
0.581323 + 0.813673i \(0.302535\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 672.021i 0.448204i 0.974566 + 0.224102i \(0.0719449\pi\)
−0.974566 + 0.224102i \(0.928055\pi\)
\(132\) 0 0
\(133\) − 296.324i − 0.193192i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1062.00 0.662283 0.331142 0.943581i \(-0.392566\pi\)
0.331142 + 0.943581i \(0.392566\pi\)
\(138\) 0 0
\(139\) 2693.37i 1.64352i 0.569835 + 0.821759i \(0.307007\pi\)
−0.569835 + 0.821759i \(0.692993\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 840.000 0.491219
\(144\) 0 0
\(145\) −1680.00 −0.962182
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 793.725i 0.436406i 0.975903 + 0.218203i \(0.0700195\pi\)
−0.975903 + 0.218203i \(0.929980\pi\)
\(150\) 0 0
\(151\) −744.000 −0.400966 −0.200483 0.979697i \(-0.564251\pi\)
−0.200483 + 0.979697i \(0.564251\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2370.59i 1.22846i
\(156\) 0 0
\(157\) − 179.911i − 0.0914552i −0.998954 0.0457276i \(-0.985439\pi\)
0.998954 0.0457276i \(-0.0145606\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1216.00 −0.595244
\(162\) 0 0
\(163\) − 1772.65i − 0.851809i −0.904768 0.425905i \(-0.859956\pi\)
0.904768 0.425905i \(-0.140044\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1960.00 −0.908200 −0.454100 0.890951i \(-0.650039\pi\)
−0.454100 + 0.890951i \(0.650039\pi\)
\(168\) 0 0
\(169\) −603.000 −0.274465
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2000.19i 0.879026i 0.898236 + 0.439513i \(0.144849\pi\)
−0.898236 + 0.439513i \(0.855151\pi\)
\(174\) 0 0
\(175\) 104.000 0.0449238
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 3264.86i − 1.36328i −0.731688 0.681639i \(-0.761267\pi\)
0.731688 0.681639i \(-0.238733\pi\)
\(180\) 0 0
\(181\) 2338.84i 0.960469i 0.877140 + 0.480235i \(0.159448\pi\)
−0.877140 + 0.480235i \(0.840552\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2576.00 −1.02374
\(186\) 0 0
\(187\) 222.243i 0.0869092i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3904.00 1.47897 0.739486 0.673172i \(-0.235069\pi\)
0.739486 + 0.673172i \(0.235069\pi\)
\(192\) 0 0
\(193\) 3330.00 1.24196 0.620981 0.783826i \(-0.286734\pi\)
0.620981 + 0.783826i \(0.286734\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 1195.88i − 0.432502i −0.976338 0.216251i \(-0.930617\pi\)
0.976338 0.216251i \(-0.0693829\pi\)
\(198\) 0 0
\(199\) 1736.00 0.618401 0.309200 0.950997i \(-0.399939\pi\)
0.309200 + 0.950997i \(0.399939\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 1269.96i − 0.439083i
\(204\) 0 0
\(205\) − 740.810i − 0.252392i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 588.000 0.194607
\(210\) 0 0
\(211\) − 2915.62i − 0.951277i −0.879641 0.475638i \(-0.842217\pi\)
0.879641 0.475638i \(-0.157783\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4648.00 −1.47438
\(216\) 0 0
\(217\) −1792.00 −0.560594
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 740.810i − 0.225486i
\(222\) 0 0
\(223\) −1568.00 −0.470857 −0.235428 0.971892i \(-0.575649\pi\)
−0.235428 + 0.971892i \(0.575649\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1264.67i 0.369775i 0.982760 + 0.184888i \(0.0591922\pi\)
−0.982760 + 0.184888i \(0.940808\pi\)
\(228\) 0 0
\(229\) − 5153.92i − 1.48725i −0.668595 0.743626i \(-0.733104\pi\)
0.668595 0.743626i \(-0.266896\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 838.000 0.235619 0.117809 0.993036i \(-0.462413\pi\)
0.117809 + 0.993036i \(0.462413\pi\)
\(234\) 0 0
\(235\) − 3555.89i − 0.987067i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6288.00 1.70183 0.850914 0.525305i \(-0.176049\pi\)
0.850914 + 0.525305i \(0.176049\pi\)
\(240\) 0 0
\(241\) −2926.00 −0.782076 −0.391038 0.920375i \(-0.627884\pi\)
−0.391038 + 0.920375i \(0.627884\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2952.66i 0.769953i
\(246\) 0 0
\(247\) −1960.00 −0.504906
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 5444.96i − 1.36925i −0.728894 0.684627i \(-0.759965\pi\)
0.728894 0.684627i \(-0.240035\pi\)
\(252\) 0 0
\(253\) − 2412.93i − 0.599602i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2562.00 −0.621841 −0.310921 0.950436i \(-0.600637\pi\)
−0.310921 + 0.950436i \(0.600637\pi\)
\(258\) 0 0
\(259\) − 1947.27i − 0.467172i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −5896.00 −1.38237 −0.691184 0.722679i \(-0.742911\pi\)
−0.691184 + 0.722679i \(0.742911\pi\)
\(264\) 0 0
\(265\) 336.000 0.0778880
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 5365.58i − 1.21615i −0.793878 0.608077i \(-0.791941\pi\)
0.793878 0.608077i \(-0.208059\pi\)
\(270\) 0 0
\(271\) 1680.00 0.376578 0.188289 0.982114i \(-0.439706\pi\)
0.188289 + 0.982114i \(0.439706\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 206.369i 0.0452527i
\(276\) 0 0
\(277\) 1576.87i 0.342039i 0.985268 + 0.171019i \(0.0547061\pi\)
−0.985268 + 0.171019i \(0.945294\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2742.00 0.582114 0.291057 0.956706i \(-0.405993\pi\)
0.291057 + 0.956706i \(0.405993\pi\)
\(282\) 0 0
\(283\) 2989.70i 0.627983i 0.949426 + 0.313991i \(0.101666\pi\)
−0.949426 + 0.313991i \(0.898334\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 560.000 0.115177
\(288\) 0 0
\(289\) −4717.00 −0.960106
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 9238.96i − 1.84214i −0.389401 0.921068i \(-0.627318\pi\)
0.389401 0.921068i \(-0.372682\pi\)
\(294\) 0 0
\(295\) −5656.00 −1.11629
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 8043.08i 1.55566i
\(300\) 0 0
\(301\) − 3513.56i − 0.672818i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1008.00 −0.189239
\(306\) 0 0
\(307\) 2587.54i 0.481039i 0.970644 + 0.240520i \(0.0773178\pi\)
−0.970644 + 0.240520i \(0.922682\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2744.00 −0.500315 −0.250157 0.968205i \(-0.580482\pi\)
−0.250157 + 0.968205i \(0.580482\pi\)
\(312\) 0 0
\(313\) 2282.00 0.412097 0.206048 0.978542i \(-0.433940\pi\)
0.206048 + 0.978542i \(0.433940\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9577.62i 1.69695i 0.529237 + 0.848474i \(0.322478\pi\)
−0.529237 + 0.848474i \(0.677522\pi\)
\(318\) 0 0
\(319\) 2520.00 0.442298
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 518.567i − 0.0893308i
\(324\) 0 0
\(325\) − 687.895i − 0.117408i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2688.00 0.450438
\(330\) 0 0
\(331\) − 4249.08i − 0.705590i −0.935701 0.352795i \(-0.885231\pi\)
0.935701 0.352795i \(-0.114769\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1848.00 0.301394
\(336\) 0 0
\(337\) 6130.00 0.990868 0.495434 0.868646i \(-0.335009\pi\)
0.495434 + 0.868646i \(0.335009\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 3555.89i − 0.564699i
\(342\) 0 0
\(343\) −4976.00 −0.783320
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 2481.71i − 0.383935i −0.981401 0.191967i \(-0.938513\pi\)
0.981401 0.191967i \(-0.0614868\pi\)
\(348\) 0 0
\(349\) 328.073i 0.0503191i 0.999683 + 0.0251595i \(0.00800937\pi\)
−0.999683 + 0.0251595i \(0.991991\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10206.0 1.53884 0.769420 0.638743i \(-0.220545\pi\)
0.769420 + 0.638743i \(0.220545\pi\)
\(354\) 0 0
\(355\) 761.976i 0.113920i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3176.00 −0.466916 −0.233458 0.972367i \(-0.575004\pi\)
−0.233458 + 0.972367i \(0.575004\pi\)
\(360\) 0 0
\(361\) 5487.00 0.799971
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3111.40i 0.446187i
\(366\) 0 0
\(367\) 11760.0 1.67266 0.836331 0.548225i \(-0.184696\pi\)
0.836331 + 0.548225i \(0.184696\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 253.992i 0.0355434i
\(372\) 0 0
\(373\) 10974.6i 1.52344i 0.647908 + 0.761719i \(0.275644\pi\)
−0.647908 + 0.761719i \(0.724356\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8400.00 −1.14754
\(378\) 0 0
\(379\) 3074.36i 0.416674i 0.978057 + 0.208337i \(0.0668051\pi\)
−0.978057 + 0.208337i \(0.933195\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2688.00 0.358617 0.179309 0.983793i \(-0.442614\pi\)
0.179309 + 0.983793i \(0.442614\pi\)
\(384\) 0 0
\(385\) 1344.00 0.177913
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 10487.8i 1.36697i 0.729966 + 0.683484i \(0.239536\pi\)
−0.729966 + 0.683484i \(0.760464\pi\)
\(390\) 0 0
\(391\) −2128.00 −0.275237
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 4910.51i − 0.625506i
\(396\) 0 0
\(397\) 5704.24i 0.721127i 0.932735 + 0.360564i \(0.117416\pi\)
−0.932735 + 0.360564i \(0.882584\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12402.0 −1.54445 −0.772227 0.635346i \(-0.780857\pi\)
−0.772227 + 0.635346i \(0.780857\pi\)
\(402\) 0 0
\(403\) 11853.0i 1.46511i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3864.00 0.470593
\(408\) 0 0
\(409\) −12278.0 −1.48437 −0.742186 0.670194i \(-0.766211\pi\)
−0.742186 + 0.670194i \(0.766211\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 4275.53i − 0.509407i
\(414\) 0 0
\(415\) 5768.00 0.682265
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8207.12i 0.956907i 0.878113 + 0.478454i \(0.158802\pi\)
−0.878113 + 0.478454i \(0.841198\pi\)
\(420\) 0 0
\(421\) 1449.87i 0.167844i 0.996472 + 0.0839221i \(0.0267447\pi\)
−0.996472 + 0.0839221i \(0.973255\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 182.000 0.0207725
\(426\) 0 0
\(427\) − 761.976i − 0.0863574i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7632.00 0.852948 0.426474 0.904500i \(-0.359756\pi\)
0.426474 + 0.904500i \(0.359756\pi\)
\(432\) 0 0
\(433\) 3794.00 0.421081 0.210540 0.977585i \(-0.432478\pi\)
0.210540 + 0.977585i \(0.432478\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5630.16i 0.616309i
\(438\) 0 0
\(439\) 1848.00 0.200912 0.100456 0.994942i \(-0.467970\pi\)
0.100456 + 0.994942i \(0.467970\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12334.5i 1.32287i 0.750004 + 0.661433i \(0.230051\pi\)
−0.750004 + 0.661433i \(0.769949\pi\)
\(444\) 0 0
\(445\) 2815.08i 0.299882i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3582.00 0.376492 0.188246 0.982122i \(-0.439720\pi\)
0.188246 + 0.982122i \(0.439720\pi\)
\(450\) 0 0
\(451\) 1111.22i 0.116020i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4480.00 −0.461595
\(456\) 0 0
\(457\) 2714.00 0.277802 0.138901 0.990306i \(-0.455643\pi\)
0.138901 + 0.990306i \(0.455643\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8349.99i 0.843596i 0.906690 + 0.421798i \(0.138601\pi\)
−0.906690 + 0.421798i \(0.861399\pi\)
\(462\) 0 0
\(463\) −2224.00 −0.223236 −0.111618 0.993751i \(-0.535603\pi\)
−0.111618 + 0.993751i \(0.535603\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 10292.0i − 1.01982i −0.860228 0.509910i \(-0.829679\pi\)
0.860228 0.509910i \(-0.170321\pi\)
\(468\) 0 0
\(469\) 1396.96i 0.137538i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6972.00 0.677744
\(474\) 0 0
\(475\) − 481.527i − 0.0465136i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 17696.0 1.68800 0.843999 0.536345i \(-0.180195\pi\)
0.843999 + 0.536345i \(0.180195\pi\)
\(480\) 0 0
\(481\) −12880.0 −1.22095
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 10519.5i − 0.984879i
\(486\) 0 0
\(487\) −1304.00 −0.121334 −0.0606672 0.998158i \(-0.519323\pi\)
−0.0606672 + 0.998158i \(0.519323\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 16662.9i − 1.53154i −0.643112 0.765772i \(-0.722357\pi\)
0.643112 0.765772i \(-0.277643\pi\)
\(492\) 0 0
\(493\) − 2222.43i − 0.203029i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −576.000 −0.0519862
\(498\) 0 0
\(499\) 3095.53i 0.277705i 0.990313 + 0.138853i \(0.0443414\pi\)
−0.990313 + 0.138853i \(0.955659\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −19320.0 −1.71260 −0.856298 0.516481i \(-0.827242\pi\)
−0.856298 + 0.516481i \(0.827242\pi\)
\(504\) 0 0
\(505\) 7952.00 0.700712
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 4476.61i − 0.389828i −0.980820 0.194914i \(-0.937557\pi\)
0.980820 0.194914i \(-0.0624427\pi\)
\(510\) 0 0
\(511\) −2352.00 −0.203613
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 12445.6i 1.06489i
\(516\) 0 0
\(517\) 5333.83i 0.453737i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2982.00 0.250756 0.125378 0.992109i \(-0.459986\pi\)
0.125378 + 0.992109i \(0.459986\pi\)
\(522\) 0 0
\(523\) 2016.06i 0.168559i 0.996442 + 0.0842794i \(0.0268588\pi\)
−0.996442 + 0.0842794i \(0.973141\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3136.00 −0.259215
\(528\) 0 0
\(529\) 10937.0 0.898907
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 3704.05i − 0.301014i
\(534\) 0 0
\(535\) 2856.00 0.230796
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 4428.99i − 0.353933i
\(540\) 0 0
\(541\) − 15419.4i − 1.22539i −0.790321 0.612693i \(-0.790086\pi\)
0.790321 0.612693i \(-0.209914\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 20048.0 1.57571
\(546\) 0 0
\(547\) − 12609.7i − 0.985649i −0.870129 0.492824i \(-0.835965\pi\)
0.870129 0.492824i \(-0.164035\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −5880.00 −0.454621
\(552\) 0 0
\(553\) 3712.00 0.285444
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 7143.53i − 0.543413i −0.962380 0.271706i \(-0.912412\pi\)
0.962380 0.271706i \(-0.0875880\pi\)
\(558\) 0 0
\(559\) −23240.0 −1.75840
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7572.14i 0.566834i 0.958997 + 0.283417i \(0.0914681\pi\)
−0.958997 + 0.283417i \(0.908532\pi\)
\(564\) 0 0
\(565\) − 18096.9i − 1.34751i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −15594.0 −1.14892 −0.574459 0.818533i \(-0.694788\pi\)
−0.574459 + 0.818533i \(0.694788\pi\)
\(570\) 0 0
\(571\) − 16737.0i − 1.22666i −0.789827 0.613330i \(-0.789830\pi\)
0.789827 0.613330i \(-0.210170\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1976.00 −0.143313
\(576\) 0 0
\(577\) 6594.00 0.475757 0.237879 0.971295i \(-0.423548\pi\)
0.237879 + 0.971295i \(0.423548\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4360.20i 0.311345i
\(582\) 0 0
\(583\) −504.000 −0.0358037
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 23213.8i 1.63226i 0.577868 + 0.816130i \(0.303885\pi\)
−0.577868 + 0.816130i \(0.696115\pi\)
\(588\) 0 0
\(589\) 8297.08i 0.580433i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −14322.0 −0.991794 −0.495897 0.868381i \(-0.665161\pi\)
−0.495897 + 0.868381i \(0.665161\pi\)
\(594\) 0 0
\(595\) − 1185.30i − 0.0816679i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −16088.0 −1.09739 −0.548696 0.836022i \(-0.684876\pi\)
−0.548696 + 0.836022i \(0.684876\pi\)
\(600\) 0 0
\(601\) −21238.0 −1.44146 −0.720729 0.693217i \(-0.756193\pi\)
−0.720729 + 0.693217i \(0.756193\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 11419.1i − 0.767357i
\(606\) 0 0
\(607\) 13664.0 0.913681 0.456841 0.889549i \(-0.348981\pi\)
0.456841 + 0.889549i \(0.348981\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 17779.4i − 1.17722i
\(612\) 0 0
\(613\) − 20393.5i − 1.34369i −0.740690 0.671846i \(-0.765501\pi\)
0.740690 0.671846i \(-0.234499\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3782.00 0.246771 0.123385 0.992359i \(-0.460625\pi\)
0.123385 + 0.992359i \(0.460625\pi\)
\(618\) 0 0
\(619\) 5825.94i 0.378295i 0.981949 + 0.189147i \(0.0605724\pi\)
−0.981949 + 0.189147i \(0.939428\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2128.00 −0.136848
\(624\) 0 0
\(625\) −13831.0 −0.885184
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 3407.73i − 0.216017i
\(630\) 0 0
\(631\) −2056.00 −0.129712 −0.0648558 0.997895i \(-0.520659\pi\)
−0.0648558 + 0.997895i \(0.520659\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 17610.1i − 1.10053i
\(636\) 0 0
\(637\) 14763.3i 0.918278i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −11842.0 −0.729689 −0.364845 0.931068i \(-0.618878\pi\)
−0.364845 + 0.931068i \(0.618878\pi\)
\(642\) 0 0
\(643\) − 16250.2i − 0.996649i −0.866991 0.498325i \(-0.833949\pi\)
0.866991 0.498325i \(-0.166051\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 19320.0 1.17395 0.586976 0.809604i \(-0.300318\pi\)
0.586976 + 0.809604i \(0.300318\pi\)
\(648\) 0 0
\(649\) 8484.00 0.513137
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 2317.68i − 0.138894i −0.997586 0.0694470i \(-0.977877\pi\)
0.997586 0.0694470i \(-0.0221235\pi\)
\(654\) 0 0
\(655\) 7112.00 0.424258
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 27732.8i − 1.63932i −0.572847 0.819662i \(-0.694161\pi\)
0.572847 0.819662i \(-0.305839\pi\)
\(660\) 0 0
\(661\) − 22467.7i − 1.32208i −0.750352 0.661039i \(-0.770116\pi\)
0.750352 0.661039i \(-0.229884\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3136.00 −0.182870
\(666\) 0 0
\(667\) 24129.3i 1.40073i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1512.00 0.0869897
\(672\) 0 0
\(673\) −10078.0 −0.577234 −0.288617 0.957445i \(-0.593195\pi\)
−0.288617 + 0.957445i \(0.593195\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 16160.2i 0.917413i 0.888588 + 0.458707i \(0.151687\pi\)
−0.888588 + 0.458707i \(0.848313\pi\)
\(678\) 0 0
\(679\) 7952.00 0.449440
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 16356.0i 0.916320i 0.888870 + 0.458160i \(0.151491\pi\)
−0.888870 + 0.458160i \(0.848509\pi\)
\(684\) 0 0
\(685\) − 11239.2i − 0.626899i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1680.00 0.0928925
\(690\) 0 0
\(691\) − 29246.1i − 1.61009i −0.593211 0.805047i \(-0.702140\pi\)
0.593211 0.805047i \(-0.297860\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 28504.0 1.55571
\(696\) 0 0
\(697\) 980.000 0.0532570
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2465.84i 0.132858i 0.997791 + 0.0664290i \(0.0211606\pi\)
−0.997791 + 0.0664290i \(0.978839\pi\)
\(702\) 0 0
\(703\) −9016.00 −0.483705
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6011.15i 0.319763i
\(708\) 0 0
\(709\) 31674.9i 1.67782i 0.544267 + 0.838912i \(0.316808\pi\)
−0.544267 + 0.838912i \(0.683192\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 34048.0 1.78837
\(714\) 0 0
\(715\) − 8889.72i − 0.464975i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −9296.00 −0.482173 −0.241086 0.970504i \(-0.577504\pi\)
−0.241086 + 0.970504i \(0.577504\pi\)
\(720\) 0 0
\(721\) −9408.00 −0.485953
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 2063.69i − 0.105715i
\(726\) 0 0
\(727\) −21672.0 −1.10560 −0.552799 0.833315i \(-0.686440\pi\)
−0.552799 + 0.833315i \(0.686440\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 6148.73i − 0.311106i
\(732\) 0 0
\(733\) 9471.79i 0.477283i 0.971108 + 0.238642i \(0.0767021\pi\)
−0.971108 + 0.238642i \(0.923298\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2772.00 −0.138545
\(738\) 0 0
\(739\) 6863.08i 0.341627i 0.985303 + 0.170814i \(0.0546396\pi\)
−0.985303 + 0.170814i \(0.945360\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 17432.0 0.860724 0.430362 0.902656i \(-0.358386\pi\)
0.430362 + 0.902656i \(0.358386\pi\)
\(744\) 0 0
\(745\) 8400.00 0.413090
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2158.93i 0.105321i
\(750\) 0 0
\(751\) 11632.0 0.565190 0.282595 0.959239i \(-0.408805\pi\)
0.282595 + 0.959239i \(0.408805\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 7873.76i 0.379543i
\(756\) 0 0
\(757\) 16731.7i 0.803336i 0.915785 + 0.401668i \(0.131569\pi\)
−0.915785 + 0.401668i \(0.868431\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −39466.0 −1.87995 −0.939975 0.341244i \(-0.889152\pi\)
−0.939975 + 0.341244i \(0.889152\pi\)
\(762\) 0 0
\(763\) 15154.9i 0.719060i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −28280.0 −1.33133
\(768\) 0 0
\(769\) 35266.0 1.65374 0.826869 0.562395i \(-0.190120\pi\)
0.826869 + 0.562395i \(0.190120\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 16244.9i 0.755872i 0.925832 + 0.377936i \(0.123366\pi\)
−0.925832 + 0.377936i \(0.876634\pi\)
\(774\) 0 0
\(775\) −2912.00 −0.134970
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 2592.84i − 0.119253i
\(780\) 0 0
\(781\) − 1142.96i − 0.0523668i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1904.00 −0.0865690
\(786\) 0 0
\(787\) 34844.5i 1.57824i 0.614240 + 0.789119i \(0.289463\pi\)
−0.614240 + 0.789119i \(0.710537\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 13680.0 0.614924
\(792\) 0 0
\(793\) −5040.00 −0.225694
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2550.50i 0.113354i 0.998393 + 0.0566772i \(0.0180506\pi\)
−0.998393 + 0.0566772i \(0.981949\pi\)
\(798\) 0 0
\(799\) 4704.00 0.208280
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 4667.11i − 0.205104i
\(804\) 0 0
\(805\) 12868.9i 0.563441i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 24390.0 1.05996 0.529979 0.848010i \(-0.322200\pi\)
0.529979 + 0.848010i \(0.322200\pi\)
\(810\) 0 0
\(811\) − 9582.91i − 0.414922i −0.978243 0.207461i \(-0.933480\pi\)
0.978243 0.207461i \(-0.0665200\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −18760.0 −0.806300
\(816\) 0 0
\(817\) −16268.0 −0.696628
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 8773.31i − 0.372948i −0.982460 0.186474i \(-0.940294\pi\)
0.982460 0.186474i \(-0.0597061\pi\)
\(822\) 0 0
\(823\) 21688.0 0.918586 0.459293 0.888285i \(-0.348103\pi\)
0.459293 + 0.888285i \(0.348103\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 19446.3i 0.817670i 0.912608 + 0.408835i \(0.134065\pi\)
−0.912608 + 0.408835i \(0.865935\pi\)
\(828\) 0 0
\(829\) 19546.8i 0.818925i 0.912327 + 0.409462i \(0.134284\pi\)
−0.912327 + 0.409462i \(0.865716\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3906.00 −0.162467
\(834\) 0 0
\(835\) 20742.7i 0.859677i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −18760.0 −0.771951 −0.385976 0.922509i \(-0.626135\pi\)
−0.385976 + 0.922509i \(0.626135\pi\)
\(840\) 0 0
\(841\) −811.000 −0.0332527
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 6381.55i 0.259801i
\(846\) 0 0
\(847\) 8632.00 0.350176
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 36998.2i 1.49034i
\(852\) 0 0
\(853\) − 28732.9i − 1.15333i −0.816979 0.576667i \(-0.804353\pi\)
0.816979 0.576667i \(-0.195647\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −8778.00 −0.349884 −0.174942 0.984579i \(-0.555974\pi\)
−0.174942 + 0.984579i \(0.555974\pi\)
\(858\) 0 0
\(859\) − 5646.03i − 0.224261i −0.993693 0.112130i \(-0.964233\pi\)
0.993693 0.112130i \(-0.0357675\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −9312.00 −0.367305 −0.183652 0.982991i \(-0.558792\pi\)
−0.183652 + 0.982991i \(0.558792\pi\)
\(864\) 0 0
\(865\) 21168.0 0.832062
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 7365.77i 0.287534i
\(870\) 0 0
\(871\) 9240.00 0.359455
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 11683.6i − 0.451405i
\(876\) 0 0
\(877\) − 137.579i − 0.00529728i −0.999996 0.00264864i \(-0.999157\pi\)
0.999996 0.00264864i \(-0.000843089\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 31150.0 1.19123 0.595613 0.803272i \(-0.296909\pi\)
0.595613 + 0.803272i \(0.296909\pi\)
\(882\) 0 0
\(883\) 12577.9i 0.479366i 0.970851 + 0.239683i \(0.0770435\pi\)
−0.970851 + 0.239683i \(0.922957\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 37128.0 1.40545 0.702726 0.711460i \(-0.251966\pi\)
0.702726 + 0.711460i \(0.251966\pi\)
\(888\) 0 0
\(889\) 13312.0 0.502216
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 12445.6i − 0.466379i
\(894\) 0 0
\(895\) −34552.0 −1.29044
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 35558.9i 1.31919i
\(900\) 0 0
\(901\) 444.486i 0.0164351i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 24752.0 0.909154
\(906\) 0 0
\(907\) 35204.4i 1.28880i 0.764688 + 0.644400i \(0.222893\pi\)
−0.764688 + 0.644400i \(0.777107\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −10512.0 −0.382303 −0.191152 0.981561i \(-0.561222\pi\)
−0.191152 + 0.981561i \(0.561222\pi\)
\(912\) 0 0
\(913\) −8652.00 −0.313625
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5376.17i 0.193606i
\(918\) 0 0
\(919\) 46104.0 1.65488 0.827438 0.561557i \(-0.189798\pi\)
0.827438 + 0.561557i \(0.189798\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3809.88i 0.135865i
\(924\) 0 0
\(925\) − 3164.32i − 0.112478i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 5726.00 0.202222 0.101111 0.994875i \(-0.467760\pi\)
0.101111 + 0.994875i \(0.467760\pi\)
\(930\) 0 0
\(931\) 10334.3i 0.363795i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2352.00 0.0822659
\(936\) 0 0
\(937\) 1274.00 0.0444181 0.0222091 0.999753i \(-0.492930\pi\)
0.0222091 + 0.999753i \(0.492930\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 26446.9i − 0.916201i −0.888900 0.458101i \(-0.848530\pi\)
0.888900 0.458101i \(-0.151470\pi\)
\(942\) 0 0
\(943\) −10640.0 −0.367430
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 23922.9i − 0.820897i −0.911884 0.410448i \(-0.865372\pi\)
0.911884 0.410448i \(-0.134628\pi\)
\(948\) 0 0
\(949\) 15557.0i 0.532141i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −38250.0 −1.30015 −0.650073 0.759872i \(-0.725262\pi\)
−0.650073 + 0.759872i \(0.725262\pi\)
\(954\) 0 0
\(955\) − 41316.1i − 1.39995i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 8496.00 0.286079
\(960\) 0 0
\(961\) 20385.0 0.684267
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 35241.4i − 1.17561i
\(966\) 0 0
\(967\) −4664.00 −0.155103 −0.0775513 0.996988i \(-0.524710\pi\)
−0.0775513 + 0.996988i \(0.524710\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 30971.2i − 1.02360i −0.859106 0.511798i \(-0.828980\pi\)
0.859106 0.511798i \(-0.171020\pi\)
\(972\) 0 0
\(973\) 21547.0i 0.709933i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4814.00 0.157639 0.0788196 0.996889i \(-0.474885\pi\)
0.0788196 + 0.996889i \(0.474885\pi\)
\(978\) 0 0
\(979\) − 4222.62i − 0.137850i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −12376.0 −0.401560 −0.200780 0.979636i \(-0.564348\pi\)
−0.200780 + 0.979636i \(0.564348\pi\)
\(984\) 0 0
\(985\) −12656.0 −0.409395
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 66757.6i 2.14638i
\(990\) 0 0
\(991\) −45344.0 −1.45348 −0.726740 0.686912i \(-0.758966\pi\)
−0.726740 + 0.686912i \(0.758966\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 18372.1i − 0.585361i
\(996\) 0 0
\(997\) 26002.4i 0.825984i 0.910735 + 0.412992i \(0.135516\pi\)
−0.910735 + 0.412992i \(0.864484\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 288.4.d.a.145.1 2
3.2 odd 2 32.4.b.a.17.2 2
4.3 odd 2 72.4.d.b.37.1 2
8.3 odd 2 72.4.d.b.37.2 2
8.5 even 2 inner 288.4.d.a.145.2 2
12.11 even 2 8.4.b.a.5.2 yes 2
15.2 even 4 800.4.f.a.49.4 4
15.8 even 4 800.4.f.a.49.1 4
15.14 odd 2 800.4.d.a.401.1 2
16.3 odd 4 2304.4.a.bn.1.1 2
16.5 even 4 2304.4.a.v.1.2 2
16.11 odd 4 2304.4.a.bn.1.2 2
16.13 even 4 2304.4.a.v.1.1 2
24.5 odd 2 32.4.b.a.17.1 2
24.11 even 2 8.4.b.a.5.1 2
48.5 odd 4 256.4.a.j.1.2 2
48.11 even 4 256.4.a.l.1.1 2
48.29 odd 4 256.4.a.j.1.1 2
48.35 even 4 256.4.a.l.1.2 2
60.23 odd 4 200.4.f.a.149.4 4
60.47 odd 4 200.4.f.a.149.1 4
60.59 even 2 200.4.d.a.101.1 2
120.29 odd 2 800.4.d.a.401.2 2
120.53 even 4 800.4.f.a.49.3 4
120.59 even 2 200.4.d.a.101.2 2
120.77 even 4 800.4.f.a.49.2 4
120.83 odd 4 200.4.f.a.149.2 4
120.107 odd 4 200.4.f.a.149.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8.4.b.a.5.1 2 24.11 even 2
8.4.b.a.5.2 yes 2 12.11 even 2
32.4.b.a.17.1 2 24.5 odd 2
32.4.b.a.17.2 2 3.2 odd 2
72.4.d.b.37.1 2 4.3 odd 2
72.4.d.b.37.2 2 8.3 odd 2
200.4.d.a.101.1 2 60.59 even 2
200.4.d.a.101.2 2 120.59 even 2
200.4.f.a.149.1 4 60.47 odd 4
200.4.f.a.149.2 4 120.83 odd 4
200.4.f.a.149.3 4 120.107 odd 4
200.4.f.a.149.4 4 60.23 odd 4
256.4.a.j.1.1 2 48.29 odd 4
256.4.a.j.1.2 2 48.5 odd 4
256.4.a.l.1.1 2 48.11 even 4
256.4.a.l.1.2 2 48.35 even 4
288.4.d.a.145.1 2 1.1 even 1 trivial
288.4.d.a.145.2 2 8.5 even 2 inner
800.4.d.a.401.1 2 15.14 odd 2
800.4.d.a.401.2 2 120.29 odd 2
800.4.f.a.49.1 4 15.8 even 4
800.4.f.a.49.2 4 120.77 even 4
800.4.f.a.49.3 4 120.53 even 4
800.4.f.a.49.4 4 15.2 even 4
2304.4.a.v.1.1 2 16.13 even 4
2304.4.a.v.1.2 2 16.5 even 4
2304.4.a.bn.1.1 2 16.3 odd 4
2304.4.a.bn.1.2 2 16.11 odd 4